
Citation: Fan, C.; Wang, X.; Wang, Y.;

Xi, Z.; Wang, Y.; Zhu, S.; Wang, M.;

Xu, L. Fabricating a PDA-Liposome

Dual-Film Coated Hollow

Mesoporous Silica Nanoplatform for

Chemo-Photothermal Synergistic

Antitumor Therapy. Pharmaceutics

2023, 15, 1128. https://doi.org/

10.3390/pharmaceutics15041128

Academic Editor: Maria Nowakowska

Received: 27 February 2023

Revised: 23 March 2023

Accepted: 29 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Fabricating a PDA-Liposome Dual-Film Coated Hollow
Mesoporous Silica Nanoplatform for Chemo-Photothermal
Synergistic Antitumor Therapy
Chuanyong Fan 1, Xiyu Wang 2, Yuwen Wang 1, Ziyue Xi 1, Yuxin Wang 1, Shuang Zhu 1, Miao Wang 3,*
and Lu Xu 1,*

1 School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
2 School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
3 School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
* Correspondence: wangmiao@syphu.edu.cn (M.W.); xulu@syphu.edu.cn (L.X.)

Abstract: In this study, we synthesized hollow mesoporous silica nanoparticles (HMSNs) coated with
polydopamine (PDA) and a D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-modified
hybrid lipid membrane (denoted as HMSNs-PDA@liposome-TPGS) to load doxorubicin (DOX),
which achieved the integration of chemotherapy and photothermal therapy (PTT). Dynamic light
scattering (DLS), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier trans-
form infrared spectrometry (FT-IR), and small-angle X-ray scattering (SAXS) were used to show the
successful fabrication of the nanocarrier. Simultaneously, in vitro drug release experiments showed
the pH/NIR-laser-triggered DOX release profiles, which could enhance the synergistic therapeutic
anticancer effect. Hemolysis tests, non-specific protein adsorption tests, and in vivo pharmacoki-
netics studies exhibited that the HMSNs-PDA@liposome-TPGS had a prolonged blood circulation
time and greater hemocompatibility compared with HMSNs-PDA. Cellular uptake experiments
demonstrated that HMSNs-PDA@liposome-TPGS had a high cellular uptake efficiency. In vitro and
in vivo antitumor efficiency evaluations showed that the HMSNs-PDA@liposome-TPGS + NIR group
had a desirable inhibitory activity on tumor growth. In conclusion, HMSNs-PDA@liposome-TPGS
successfully achieved the synergistic combination of chemotherapy and photothermal therapy, and
is expected to become one of the candidates for the combination of photothermal therapy and
chemotherapy antitumor strategies.

Keywords: chemo-photothermal therapy; hollow mesoporous silica; liposome-TPGS; polydopamine;
doxorubicin

1. Introduction

Breast cancer is still the leading cause of cancer death in women worldwide [1]. The
traditional treatment methods (including chemotherapy, surgery, and radiotherapy) are still
the main options for the treatment of breast cancer. However, the results of these therapeutic
methods are dissatisfactory, due to the drug resistance caused by long-term chemotherapy,
damage to normal tissues and organs caused by radiotherapy, and high recurrence rate after
surgery. Simultaneously, due to the complex, diverse, and heterogeneous characteristics of
tumors, single treatments (radiotherapy, chemotherapy, etc.) cannot achieve the ideal effect of
tumor suppression. To overcome the limited therapeutic effect of single chemotherapy, the
synergistic treatment of tumors by combining multiple antitumor strategies has attracted in-
creasing attention [2–8]. More importantly, nanotechnology can enable multimodal synergistic
therapies by assembling various therapeutic elements into a nanoplatform, thereby form-
ing multifunctional nanomaterials [9–11]. In this regard, various synergistic nanoplatforms
have been proposed, such as chemo-photothermal therapy (chemo-PTT) [12,13], chemo-
photodynamic therapy (chemo-PDT) [14], chemoimmunotherapy [15,16], and PTT/PDT [17].
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Among these, the combination of PTT and chemotherapy has attracted much attention due to
its unique advantages in cancer treatment. Firstly, PTT is potentially specific and less invasive,
because the PTT agent can effectively convert light energy into thermal energy to trigger
destructive damage to tumor cells only when a certain body tissue is exposed to near-infrared
(NIR) lasers [18–21]. Secondly, under NIR laser excitation, the local heat will improve the cell
metabolism and cell membrane permeability, thereby promoting the uptake of anticancer
drugs by cancer cells, effectively reducing the necessary dose of chemotherapeutic drugs to
synergistically enhance the therapeutic effect and reduce drug resistance [22–24].

Therefore, how to construct an effective nanoplatform to achieve chemotherapy–photothermal
(chemo-PTT) synergistic therapy is particularly important. On the one hand, an appropriate pho-
tothermal converter is required to induce mild hyperthermia to achieve chemo-PTT therapy for
cancer. To induce the photothermal ablation of cancer cells, a significant number of NIR-absorbing
inorganic nanomaterials, including black phosphorus [25], carbon nanomaterials (carbon nan-
otube, graphene oxide) [26], gold nanostructures [27], copper sulfide nanoparticles [28], Cu-based
semiconductor nanoparticles [29], and two-dimensional antimonene [30], have been widely investi-
gated. Nevertheless, these agents cannot apply to clinical applications stemming from the limited
long-term safety [31,32]. Compared with the high photothermal conversion performance of
inorganic photothermal agents, organic photothermal agents have attracted widespread
attention due to their superior biocompatibility and biodegradability. In recent years,
polydopamine (PDA)-based surface modification has shown many advantages including
its easy adhesion to surfaces, simple preparation method, and excellent pH sensitivity,
which make it an excellent gatekeeper [33,34]. Moreover, it also exhibited outstanding
light-to-heat conversion efficiency under NIR irradiation [35]. On the other hand, vari-
ous organic and inorganic nanomaterials, such as synthetic polymers (dendrimers) [36],
carbon-based nanostructures (carbon nanotubes [37,38], graphene [39]), nanoscale metal-
organic frameworks (ZIF-8) [40], and mesoporous silica (silica-based nanocapsules) [41]
have been used to accomplish a synergistic chemo-PTT antitumor impact. Among these
carriers, mesoporous silica NPs (MSNs) are commonly used to load antitumor drugs due
to their stable porous structure, easy-to-adjust pore size, large specific surface area, high
drug loading capability, and simplicity of surface functionalization [42]. Compared with
MSNs, HMSNs with a hollow structure showed more obvious advantages in the field of
drug delivery [43]. To date, different chemo-PTT systems based on HMSNs have been
created [44,45]. However, designing an intelligent and manageable gatekeeper for the
HMSNs to achieve accurate and effective drug delivery is still a significant difficulty.

Additionally, the application of silica-based nanoparticles as drug carriers has also
faced many challenges, such as their easy aggregation in saline buffers, non-specific protein
adsorption in the blood circulation, rapid clearance by the reticuloendothelial system (RES),
and high rates of hemolysis [46–48]. Therefore, solving the above limitations of silica-based
nanomaterials is particularly important to improve their antitumor effect. Inspired by the
supported lipid bilayer that mimics the cell membrane, MSNs-supported lipid bilayers
(protocells) nanocarriers show unique advantages in addressing the above-mentioned
limitations of silica-based materials. Protocell structures can fully combine the advantages
of liposomes and MSNs [49–51], as (1) the lipid layer can not only promote the internal-
ization of cells but also improve the dispersion and biocompatibility of MSNs [52–54]
and (2) MSNs can serve as a supporting skeleton to stabilize the lipid bilayer. In previous
reports, Wang et al. designed a calcium carbonate (CaCO3) and lipid membrane (liposomes)
double-coated mesoporous silica nanodrug delivery platform (MSNs@CaCO3 @liposomes)
to enhance cellular uptake in terms of improving blood circulation efficiency and biocom-
patibility [55]. In addition, lipid bilayers modified with polyethylene glycol (PEG) can
increase the time of circulation and decrease the immunogenicity of MSN, consequently
boosting the aggregation of drug carriers at the tumor site via the enhanced permeability
and retention (EPR) effect [56–58]. Therefore, we integrated D-α-tocopheryl polyethylene
glycol 1000 succinate (TPGS) into the lipid layer to achieve the PEGylation of the lipid
layer, thereby prolonging the blood circulation time of the carrier. TPGS, as a water-soluble



Pharmaceutics 2023, 15, 1128 3 of 20

derivative of natural vitamin E, has been widely used in tumor therapy in recent years.
TPGS can act as an effective surfactant to emulsify hydrophobic molecules and stabilize
nanoparticles. Furthermore, TPGS has been shown to improve the drug encapsulation
efficiency, cellular uptake, and in vitro cytotoxicity of cancer cells and the reversal of mul-
tidrug resistance (MDR) [59]. More importantly, the PEG chain of TPGS can prolong the
reaction time and systemic circulation time in the blood stream after intravenous injection,
enabling the drug carrier to better accumulate in the tumor site via the EPR effect. There-
fore, TPGS-modified mixed lipids have been widely used as drug carriers to improve the
blood circulation time and promote drug enrichment at tumor sites. Song et al. formulated
TPGS-modified long-circulating liposomes to load ZgI (ziyuglycoside I). Compared with
blank liposomes, the ZgI-TPGS liposomes exhibited a significantly longer mean residence
time (MRT) and significantly lower clearance (CL) rate [60].

Here, we constructed a hollow mesoporous silica nanodrug delivery system
(DOX/HMSNs-PDA@liposome-TPGS) double-coated with polydopamine (PDA) and a
hybrid lipid membrane (liposome-TPGS) for chemotherapy–photothermal synergistic
therapy. As shown in Scheme 1, we coated a PDA shell and hybrid lipid film on the
surfaces of the HMSNs loaded with the anticancer drug doxorubicin (DOX), and the struc-
ture not only effectively prevented DOX leakage under physiological cycling conditions
(pH 7.4), but also exhibited sustained-release behavior in the tumor microenvironment
(pH 5.0). Meanwhile, the coating of liposome-TPGS can prolong the circulation time of
the carrier and improve the blood compatibility of the carrier. Additionally, the PDA
coating showed excellent photothermal conversion efficiency (η = 16.7%). Furthermore,
the DOX/HMSNs-PDA@liposome-TPGS exhibited good chemo-PTT synergistic antitumor
effects through in vitro and in vivo antitumor experiments. Our results all proved that the
DOX/HMSNs-PDA@liposome-TPGS could be a promising nanoplatform for drug delivery
and combination chemo-PTT therapy for cancer.
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2. Materials and Methods
2.1. Materials

The cetyltrimethylammonium bromide (CTAB) and tetraethoxysilane (TEOS) were purchased
from the Shandong YuWang Chemical Reagent Corporation (Yucheng, China). The cholesterol was
obtained from Panjin Yanfeng Technology Co, Ltd. (Panjin, China). The D-α-tocopheryl polyethy-
lene glycol 1000 succinate (TPGS) was bought from Kunshan Rongbai Biotechnology Co, Ltd.
(Kunshan, China). The F127 pluronic polymer, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), 3-aminopropyltriethoxysilane (APTES), soybean lecithin (SPC), dopamine hydrochloride
(DA), and doxorubicin hydrochloride (DOX) were purchased from Aladdin Chemistry Co., Ltd.
(Shanghai, China). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and
4% paraformaldehyde, 4′,6-diamidino-2-phenylindole (DAPI) were obtained from Dalian Meilun
Biotechnology Company (Dalian, China).

2.2. Synthesis of HMSNs-PDA and HMSNs-PDA@Liposome-TPGS

The procedures for the HMSNs were conducted via a self-template etching method
based on previous reports with a slight adjustment [61]. Here, 5 mL of F127 solution
(5 mg/mL) and 7 mL of 2 M NaOH were added to a solution of 1 g of CTAB that had been
dissolved in 475 mL of water. The reaction mixture was then stirred while being heated to
80 ◦C (600 rpm). Then, TEOS (6 mL) was rapidly added to this solution and the reaction
mixture was stirred for 1 h. Next, TEOS (5 mL) was slowly added to this suspension
in a dropwise manner. The reaction mixture was then agitated for a further hour. The
above product was centrifuged, washed with water and absolute ethanol, and dried. The
obtained powder was dissolved in PBS (pH 7.4) at a concentration of 0.5 mg/mL at 65 ◦C
for 18 h under gentle stirring. The HMSNs were collected by centrifugation at 9000 rpm
and washed with absolute ethanol three times.

Then, the amino-modified HMSNs (denoted as HMSNs-NH2) were fabricated using
the after-grafting method. In brief, 0.2365 g of HMSNs was placed in 23.65 mL of ethanol
and the mixture was sonicated to be dispersed. Then, APTES (710 µL) was added dropwise
and the reactant was stirred for 24 h to synthesize the HMSNs-NH2. Afterwards, 10 mg of
HMSNs-NH2 was placed in 5 mL of HEPES (pH 7.4). Next, 2 mg of dopamine and 2.4 mg
of ammonium persulfate were added and reacted for 12 h. The product was collected and
recorded as HMSNs-PDA.

The liposome-TPGS was synthesized using the thin-film hydration method [62]. Firstly,
SPC, cholesterol, and TPGS (w/w/w, 8:1:1) were dissolved in 3 mL of chloroform and the
organic solvent was removed by rotary evaporation under vacuum (−0.1 MPa) at 37 ◦C,
after which a layer of thin film existed on the bottom. Then, the film was hydrated with
deionized water and sonicated to obtain liposome-TPGS. Finally, HMSNs-PDA@liposome-
TPGS was fabricated by mixing HMSNs-PDA and liposome-TPGS (w/w, 1:2), followed by
sonication for 1 min.

2.3. Characterization of NPs
2.3.1. Transmission Electron Microscopy (TEM)

We prepared the sample into a 2 mg/mL ethanol solution, then added the prepared
sample dropwise on the copper grid coated with carbon and let it stand for 1 min. Then, it was
dried under an infrared lamp before being photographed. For HMSNs-PDA@liposome-TPGS
samples coated with liposome-TPGS mixed lipid film, we first let the sample sit for 1 min.
Then, the grid was incubated with 2% phosphotungstic acid for 1 min and dried under
infrared light to shoot. The morphology was observed by TEM (JSM-6510A, JEOL, Tokyo,
Japan) at an acceleration voltage of 200 kV.

2.3.2. N2 Adsorption/Desorption

Approximately 0.1 g of finely ground sample was placed in a sample tube. The sample
was then pretreated at the appropriate temperature. After the pretreatment, the sample
was weighed again to obtain the exact mass of the sample. Finally, a nitrogen adsorp-
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tion/desorption isotherm test was performed. The nitrogen adsorption and desorption
capacity was measured on an SA3100 surface with a pore size analyzer (Beckman Coulter,
Brea, CA, USA).

2.3.3. Fourier Transform Infrared Spectroscopy (FT-IR)

We took appropriate amounts of the samples to be tested. The samples were prepared
using the KBr pellet method. Fourier transform infrared spectroscopy (FT-IR) was per-
formed using a spectrometer (Spectrum 1000, PerkinElmer, Waltham, MA, USA). For the
test conditions, the wavelength range was 4000~400 cm−1 and the resolution was 4 cm−1.

2.3.4. Small-Angle X-ray Scattering (SAXS)

The powder was placed in the cuvette and measured after the instrument had reached
vacuum conditions. The test conditions were a scanning range of 0◦~6◦ (2θ), scanning
step size of 0.02◦, and scanning speed of 0.6◦/min. An SAXS study was carried out to
investigate the state of the drug (crystalline/amorphous) in the HMSNs-PDA.

2.3.5. Size Distribution and Zeta Potential (ζ)

We diluted the samples and put them into the sample cell. The size and charge of the
NPs were measured using a Zetasizer Nano ZS90 instrument (Malvern Instruments Ltd.,
Malvern, UK).

2.4. Photothermal Conversion Property Test

To determine the photothermal effects of different samples, water, HMSNs-NH2,
HMSNs-PDA, and HMSNs-PDA@liposome-TPGS at different concentrations (25, 50, 100,
200, and 400 µg/mL) were subjected to NIR irradiation at 2.0 W/cm2 for 5 min (808 nm)
and the HMSNs-PDA@liposome-TPGS (400 µg/mL) sample suspensions were irradiated
with various power densities for 5 min. To investigate the photothermal stability of
HMSNs-PDA@liposome-TPGS, the sample suspensions were continuously irradiated with
an NIR laser for 5 min (808 nm, 2 W/cm2) and then cooled naturally for 10 min without
irradiation. The temperature changes of the HMSNs-PDA@liposome-TPGS with three
on/off cycles of laser irradiation were recorded. Additionally, the photothermal conversion
efficiency of the HMSNs-PDA@liposome-TPGS was calculated by referring to the relevant
literature [63–65].

2.5. Drug Loading Capacity and Encapsulation Efficiency

Here, 10 mg of HMSNs-PDA and 5 mg of DOX were dispersed in 3 mL of phosphate-
buffered solution (PBS, pH 7.4) and stirred for 24 h in the dark, then the precipitate
was collected and washed three times with PBS. The washed PBS was collected and
a UV spectrophotometer was used to determine the concentration of DOX in the PBS
at 480 nm. The precipitates were dried to obtain drug-loaded HMSNs-PDA (denoted
as DOX/HMSNs-PDA). To synthesize the drug-loaded HMSNs-PDA@liposome-TPGS,
the DOX/HMSNs-PDA was coated with a lipid membrane as described above, and the
HMSNs-PDA was replaced with DOX/HMSNs-PDA. Meanwhile, all other operations
remained unchanged. The formula of the drug loading (DL%) was as follows:

DL(%) = Mdrug in NPs/
(

Mtotal drug + MNPs

)
× 100% (1)

where Mdrug in NPs is the mass of DOX-loaded in nanoparticles, Mtotal drug is the initial mass
of DOX, and MNPs is the dry weight of the different nanoparticles.

2.6. In Vitro Drug Release Experiment

The dialysis method was conducted to study the release profiles of drug-loaded NPs.
The DOX/HMSNs-PDA@liposome-TPGS (0.5 mg/mL) suspension was added to dialysis
bags (MWCO = 10,000 Da) and placed in separate flasks containing 30 mL of PBS solution at
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different pH levels (pH 7.4, pH 5.0). The flasks were then shaken in a gas bath shaker (37 ◦C,
100 rpm). At predetermined time points, 3 mL of release medium was withdrawn and an
equal amount of corresponding blank release medium was supplemented. Meanwhile, the
irradiation groups were exposed to NIR (808 nm, 2 W/cm2) for 5 min each hour. Finally,
the amount of released DOX was determined at 480 nm using ultraviolet spectroscopy
(UV-756PC, Sunny Hengping Instrument Co., Ltd., Shanghai, China).

2.7. MTT Assay

The 4T1 cells were cultured into 96-well plates at a density of 1×104 cells/well. Different con-
centrations of blank carriers (HMSNs-NH2, HMSNs-PDA, and HMSNs-PDA@liposome-TPGS)
and DOX-loaded carriers (DOX/HMSNs-NH2, DOX/HMSNs-PDA, and DOX/HMSNs-PDA
@liposome-TPGS) were co-incubated with cells for 24 h. The DOX/HMSNs-PDA@liposome-
TPGS + NIR group was incubated for 4 h and irradiated for 5 min (808 nm, 2 W/cm2), then
cultured for another 20 h. The culture medium was removed and washed with PBS after incu-
bation. Then, 100 µL of MTT solution (0.5 mg/mL) was added to each well and incubated for
an additional 4 h. Finally, the MTT solution was discarded and 200 µL of DMSO solution was
added to each well and shaken for 10 min at 37 ◦C to fully dissolve the formazan crystals. The
absorbance was measured at 490 nm using a microplate reader.

2.8. Blood Compatibility Experiment
2.8.1. Hemolysis Test

Hemolysis caused by NPs was evaluated using a hemolysis test. Samples (HMSNs-NH2,
HMSNs-PDA, HMSNs-PDA@liposome-TPGS were dispersed in saline) containing a 0~800 µg/mL
concentration gradient were incubated with 2% erythrocyte suspensions in an equal volume for
3 h at 37 ◦C. The 2% erythrocyte suspensions mixed with saline or deionized water were regarded
as negative control or positive control groups, respectively. The mixture was centrifuged at
2000 rpm to collect the supernatant. The absorbance of the supernatant was measured at
540 nm and the hemolysis ratio was calculated by the following equation:

Hemolysis ratio (%) = (AS − AN)/(AP − AN)× 100% (2)

where AS is the absorbance of each sample, AN is the absorbance of the negative control,
and AP is the absorbance of the positive control.

2.8.2. Non-Specific Protein Adsorption Test

Bovine serum albumin (BSA) was chosen as a model protein to evaluate the adsorption
of NPs. HMSNs-NH2, HMSNs-PDA, and HMSNs-PDA@liposome-TPGS were incubated
with BSA solution (PBS, 0.5 mg/mL) for 6 h at 37 ◦C, respectively. After incubation, the
mixture was centrifuged to obtain the supernatant. Then, 200 µL of supernatant was added
to 2 mL of Coomassie brilliant blue dye, shaken for 30 s, and placed at room temperature
for 3 min. The absorbance of the solution was measured at 595 nm, and the adsorption rate
Q (%) was calculated using the following equation:

Q (%) = (C0 − C)×V/m× 100% (3)

where C0 and C are the initial and remaining concentrations of the BSA solution, V is the
volume of the solution, and m is the quality of the nanoparticle sample. Each experiment
was carried out in triplicate.

2.9. Cellular Uptake Evaluation

The 4T1 cells at the logarithmic growth stage were cultured into 12-well plates at
a density of 1×105 cell/well and incubated overnight in an incubator with 5% CO2 at
37 ◦C for adherence. DOX, DOX/HMSNs-PDA, DOX/HMSNs-PDA@liposome-TPGS, and
DOX/HMSNs-PDA@liposome-TPGS + NIR were incubated with cells for 4 h. For the
DOX/HMSNs-PDA@liposome-TPGS + NIR group, after 2 h of incubation, the sample was
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irradiated with an 808 nm laser at a power density of 2 W/cm2 for 5 min and cultured
for another 2 h. The medium was removed and washed with PBS. Next, the cells were
fixed with 4% paraformaldehyde for 15 min and stained with 200 µL DAPI for 10 min.
Eventually, the samples were washed with PBS and observed under a confocal laser
scanning microscope (CLSM).

2.10. In Vivo Antitumor Effect Study and H&E Staining Analysis

The tumor-bearing BALB/c mice were randomly divided into five groups, including a
saline group, DOX group, DOX/HMSNs-PDA group, DOX/HMSNs-PDA@liposome-TPGS
group, and DOX/HMSNs-PDA@liposome-TPGS + NIR group (n = 5). Sample solutions at
a 5.0 mg/kg equivalent dose of DOX were intravenously administrated and the mice were
weighed every other day. For the DOX/HMSNs-PDA@liposome-TPGS + NIR group, the
group was irradiated for 5 min (808 nm, 2 W/cm2) after 6 h of administration. At the end
of the experiment, the mice were sacrificed and the heart, liver, spleen, lung, kidney, and
tumor tissues were collected, weighed, and fixed with a 4% paraformaldehyde solution.
After dehydration, paraffin embedding, and sectioning, the samples were stained with
hematoxylin and eosin (H&E). The pathological changes of various tissues and organs were
observed under an optical microscope.

2.11. Biodistribution Behavior In Vivo and Internal Long-Circulation Performance

To investigate the distribution of the nanoformulations in mice, ICG was loaded
into the nanoplatform and stirred in the dark for 24 h, then the product was collected by
centrifugation. When the tumor volume reached about 200 mm3, 100 µL of ICG/HMSNs-
PDA and ICG/HMSNs-PDA@liposome-TPGS (administered dose 50 mg/kg) were injected
via the tail vein. The fluorescence imaging system (IVIS Lumina) was used to perform
PA imaging at 3 h and 24 h. Then, the mice were sacrificed to observe the fluorescence of
the heart, liver, spleen, lung, kidney, and tumor samples (excitation/emission wavelength
720 nm/790 nm).

In order to reflect the long-cycle capacity of the carrier, SD rats were injected intra-
venously with ICG-labeled nanocarriers. The SD rats were anesthetized and blood samples
were collected from the orbit at predetermined time points (5 min, 30 min, 1 h, 2 h, 4 h,
6 h, 8 h, 12 h, 24 h, and 48 h). The blood samples were centrifuged for 10 min at 4000 rpm
and the supernatant was taken for fluorescence detection using a microplate reader. To
quantify the relative percentage of remaining NPs in the blood circulation after injection at
each blood sample time point, the relative fluorescence signal (the ratio of the fluorescence
intensity of the blood sample at each time point to the fluorescence intensity of the blood
sample at 5 min) was used to represent the systemic capacity of the carrier.

2.12. Statistical Analysis

The experiments were conducted at least in triplicate. Statistical differences between
the two groups were analyzed by t-test. When comparing multiple groups of data, statistical
differences between groups were tested by one-way ANOVA. The statistical significance
levels were set at * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results and Discussion
3.1. Synthesis and Characterization of NPs

The HMSNs-PDA and HMSNs-PDA@liposome-TPGS were synthesized as described
in Section 2.2. The TEM images (Figure 1A–D) and particle size distribution curves
(Figure 2A–C) of different samples were shown here. The TEM images indicated that
the bare HMSNs displayed a spherical shape and hollow mesoporous structure. The
hydrated particle size of the HMSNs was about 122.5 ± 14.93 nm (PDI 0.221) (Table 1).
The outer shell was about 7 nm thickness. After coating with PDA, the surface of the
HMSNs-PDA became rough and mesoporous channels were partially masked by a thin
PDA film. After further coating with a lipid film, a lipid layer with a thickness of about
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10 nm appeared on the surface of the HMSNs-PDA@liposome-TPGS. Meanwhile, the parti-
cle sizes of HMSNs-PDA and HMSNs-PDA@liposome-TPGS increased to 153.8 ± 25.18 nm
(PDI 0.128) and 220 ± 16.3 nm (PDI 0.216), respectively. Since the TPGS embedded in
the lipid membrane had a PEG hydrophilic end, it could form a hydration layer on the
surface of the HMSNs-PDA, thereby making it difficult for the particles to aggregate.
Therefore, the HMSNs-PDA@liposome-TPGS exhibited better dispersion. Similarly, the
average surface charges of the different samples also changed significantly (Figure 2D).
The surface charge of the bare HMSNs was (−18.13 ± 3.17 mV), due to the large number
of silane alcohols on silica surface. The surface charge of HMSNs-NH2 then changed
from negative to positive after the surface amination step. The HMSNs-NH2 showed
a positive potential of 14.23 ± 3.01 mV. When the HMSNs-NH2 was coated with PDA,
the potential of HMSNs-PDA decreased to −8.99 ± 0.02 mV, due to the presence of hy-
droxyl groups of PDA. After being coated with liposome-TPGS, the surface ζ potential of
HMSNs-PDA@liposome-TPGS (−13.22 ± 3.09 mV) was close to the lipid membrane po-
tential (−14.75 ± 1.06 mV). These results indicated that the PDA layer and liposome-TPGS
hybrid lipid film were successfully wrapped on the surface of the HMSNs.
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Table 1. Diameter (nm), zeta potential (mV), and PDI values of samples.

Samples Diameter (nm) Zeta Potential (mV) PDI

HMSNs 122.5 ± 14.93 −18.13 ± 3.17 0.221
HMSNs-PDA 153.8 ± 25.18 −8.99 ± 0.02 0.128

HMSNs-PDA@liposome-TPGS 220 ± 16.3 +13.22 ± 3.09 0.216

In addition, the N2 adsorption–desorption isotherms with the corresponding BJH
pore size distribution were examined and were shown in Figure 2E,F. The specific surface
area, pore volume, and most probable pore size values of different HSMNs samples were
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also shown in Table 2. The HMSNs displayed a type IV isotherm with a H2 hysteresis
loop, which exhibited an obvious mesoporous feature. After coating with PDA, the specific
surface area, pore volume, and pore diameter of HMSNs-PDA were significantly decreased
due to the blocking of the PDA layer. After loading the drugs, the relevant parameters of
DOX/HMSNs-PDA further decreased. These results confirmed that DOX occupied the
mesoporous channels and the surface was modified by the PDA film successfully. Next, the
surface characterization of prepared nanoparticles was also evaluated based on the FT-IR
spectra (Figure 2G). The typical FT-IR absorption peaks of silica were found at 3422.0 cm−1,
1090.6 cm−1, and 466.2 cm−1, which were attributed to the stretching vibration of the Si-OH
and the bending stretching vibration of the Si-O-Si, respectively. For the HMSNs-NH2,
the FT-IR absorption showed N-H scissoring at 1628.2 cm−1, which was the characteristic
absorption of the amino group. After further modification of the PDA, the surface of
HMSNs-PDA showed a bending vibration peak of phenolic O-H at 1384.1 cm−1. The above
indicated the synthesis of HMSN framework and the successful wrapping of the PDA layer.
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(D) Zeta potential values of various HMSNs. N2 adsorption/desorption isotherms (E) and BJH pore size
distributions of various HMSNs (F). (G) FT-IR spectra of HMSNs, HMSNs-NH2, and HMSNs-PDA.
(H) SAXS patterns of HMSNs, HMSNs-NH2, and HMSNs-PDA. (I) XRD patterns of HMSNs-PDA,
DOX/HMSNs-PDA, Phy-Mix of DOX, HMSNs-PDA (1:2, w/w), and DOX.
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Table 2. BET surface area (SBET (m2/g)), pore diameter (WBJH (nm)), and pore volume (Vt (cm3/g))
values of samples.

Samples SBET (m2/g) WBJH (nm) Vt (cm3/g)

HMSNs 205.25 32.41 2.10
HMSNs-NH2 168.21 26.25 1.50
HMSNs-PDA 150.03 29.04 1.41

DOX/HMSNs-PDA 63.64 17.66 0.56

Moreover, the pore orders of the HMSNs, HMSNs-NH2, and HMSNs-PDA were
characterized by SAXS. In Figure 2H, it can be seen that the SAXS curves of the three
carriers do not show the maximum peak value, which suggests that the channels of the
three carriers were disordered. An XRD study was carried out to investigate the state of the
drug (crystalline/amorphous) in HMSNs-PDA (Figure 2I). The DOX and physical mixture
groups showed sharp and intense crystalline diffraction peaks at 2θ values of 12.94◦, 14.80◦,
15.56◦, 18.40◦, 22.46◦, and 25.02◦. Meanwhile, no crystal diffraction peaks were observed in
the pattern of HMSNs-PDA. Surprisingly, the crystalline diffraction peaks of DOX were
also not observed in the pattern of DOX/HMSNs-PDA. This phenomenon showed that
the DOX was altered from a crystalline to an amorphous form during the preparation
process. This was due to the adsorption of the drug into the pores, and the nanoscale
pore size limited the long-range ordered structure associated with the existence of drug
crystallization, thereby inhibiting the crystallization of the drug and making the drug exist
in an amorphous state [66].

3.2. Photothermal Conversion Property Test of NPs

As shown in Figure 3A, the temperature gradient (∆T) increased gradually to 6.5, 7.3,
7.7, 10.3, and 14.1 ◦C under 5 min of irradiation (808 nm, 2.0 W/cm2) with the increased
NPs concentrations from 25 to 400 µg/mL. Meanwhile, the carrier exhibited a power-
dependent temperature increase (Figure 3C). Moreover, the photothermal curves of water
and different carriers with NIR irradiation (808 nm, 2.0 W/cm2) were exhibited in Figure 3B.
After 5 min of irradiation at a power density of 2.0 W/cm2, the temperature gradient (∆T)
values observed in the HMSNs-PDA@liposome-TPGS and HMSNs-PDA were 13.8 ◦C and
13.9 ◦C, respectively. Conversely, no significant temperature fluctuations were detected
in the HMSNs-NH2 suspension and water. This showed that the PDA-coated HMSNs
had a good photothermal effect, and the coating of the liposome-TPGS did not affect the
photothermal conversion performance of the HMSNs-PDA. To assess the photostability
of the HMSNs-PDA@liposome-TPGS nanocarrier, we tracked the temperature changes
over three cycles of laser on/off operations. As shown in Figure 3D, we observed no
significant decreases in temperature fluctuations during repeated photothermal heating
(300 s)–natural cooling cycles. This indicated that the HMSNs-PDA@liposome-TPGS
nanocarrier was stable throughout the photothermal conversion process. In addition, based
on the obtained data (Figure 3E,F), we calculated the photothermal conversion efficiency
(η) to be 16.7%.
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Figure 3. (A) Temperature change curves of HMSNs-PDA@liposome-TPGS aqueous solution with
different concentrations upon NIR laser irradiation (2 W/cm2, 5 min). (B) Temperature change curves
of HMSNs-PDA@liposome-TPGS, HMSNs-PDA, HMSNs-NH2, and water. (C) Time–temperature
curves of HMSNs-PDA@liposome-TPGS aqueous solution with various laser power densities
(concentration: 400 µg/mL). (D) Thermal stability of HMSNs-PDA@liposome-TPGS under NIR
laser irradiation (2 W/cm2) for three laser on/off cycles. (E) Temperature variation curve of
HMSNs-PDA@liposome-TPGS aqueous dispersion under 808 nm laser irradiation (2 W/cm2).
(F) The liner plot of the cooling time (t) versus negative natural logarithm of the temperature driving
force (−ln(θ)). Drug cumulative release curves of different samples at pH 7.4 (G) and pH 5.0 (H).
(I) DOX release profiles from HMSNs-PDA@liposome-TPGS at different pH values without and with
NIR laser irradiation.

3.3. Drug Loading and In Vitro Release

The DL values of DOX/HMSNs-NH2, DOX/HMSNs-PDA, and DOX/HMSNs-PDA@
liposome-TPGS were 29.96%, 32.20%, and 27.83%, respectively. The relatively low DOX
release levels from DOX/HMSNs-NH2 (28.92%), DOX/HMSNs-PDA (20.74%), and DOX/
HMSNs-PDA@liposome-TPGS (17.45%) were observed under physiological conditions
(pH 7.4) (Figure 3G). However, in acidic conditions (pH 5.0), to simulate the endo-lysosomal
environment of the cancer cells, the release of DOX in the three carriers increased signifi-
cantly (90.84%, 83.36%, and 71.64%, respectively) (Figure 3H). This pH-responsive drug
release behavior was caused by two factors. On the one hand, the solubility of DOX in-
creased with decreasing pH [67]. On the other hand, the interaction between the DOX and
mesoporous silica became weaker under acidic conditions, which also provided more favor-
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able diffusion conditions for the DOX [68]. In addition, compared with DOX/HMSNs-NH2
and DOX/HMSNs-PDA, the drug release rate of DOX/HMSNs-PDA@liposome-TPGS
decreased slightly under two different pH conditions. The cumulative release rates of DOX
after 48 h were 21.35% and 69.82% at pH 7.4 and 5.0, respectively. This highlighted that
the HSMNs coated with liposome-TPGS showed a slower drug release rate compared to
the bare HMSNs. The sustained release could be attributed to the PDA and liposome film
coating of the NPs, which prevented the premature release of DOX from the inner pores.
After the NIR laser irradiation, the cumulative release amount of DOX reached 82% in
acidic conditions (pH 5.0), which was higher than the 70% rate without laser irradiation at
pH 5.0, and also higher than the 33.5% upon NIR laser irradiation in neutral conditions
(Figure 3I). This property of NIR-responsive drug release was mainly attributed to the fact
that the heat generated by the PDA under NIR laser irradiation destroyed the interaction
between the DOX and HMSNs. Therefore, the HMSNs coated with PDA and hybrid lipid
membrane can not only reduce the release of DOX in normal cells but also endow the
nanoplatform with pH/NIR-responsive drug delivery capability, thereby achieving specific
drug release at tumor sites.

3.4. Cell Toxicity Test

An MTT assay was carried out to evaluate the cell viability and study the chemo-
photothermal therapeutic effect of DOX/HMSNs-PDA@liposome-TPGS. As can be seen
from Figure 4A, the HMSNs-NH2 treatment group showed obvious cytotoxicity at a high
concentration (120 µg/mL), and the cell survival rate was only 68.28%. However, the
survival rate of the 4T1 cells remained above 80% after incubation with HMSNs-PDA or
HMSNs-PDA@liposome-TPGS for 24 h at a concentration range of 15–120 µg/mL, which
clearly demonstrated the negligible toxicity against tissues and cells. This showed that
the HSMNs double-coated by PDA and a lipid membrane had good biocompatibility.
Upon drug loading, the 4T1 cells were incubated with various concentrations of NPs at
a series of DOX concentrations. As shown in Figure 4B, all formulation groups exhibited
concentration-dependent killing effects. Since the free DOX group existed in the form of
solution, it could quickly cross the cell membrane and enter the nucleus to play its role, so
the cell survival rate was only 19.78% when the dosage was 20 µg/mL. However, there
was a time delay in the release of DOX from HMSNs-NH2 and HMSNs-PDA groups, so
the cell viability levels of both groups (45.54%, 63.07%) were higher than the free DOX
group, and the cell survival rate of the DOX/HMSNs-PDA group was further increased
because the pores were covered by the polydopamine coating. Nevertheless, the cell
viability of the DOX/HMSNs-PDA@liposome-TPGS decreased to 39.45%, which may have
been related to the mitochondrial pathway of TPGS regulating apoptosis [69,70]. It is
worth noting that the cytotoxicity of the DOX/HMSNs-PDA@liposome-TPGS increased
dramatically, with a cell viability level of 24.30% at a DOX concentration of 20 µg/mL
after NIR laser irradiation. The above results could be quantitatively illustrated in terms
of the IC50 values by using the GraphPad Prism software, and these IC50 values are listed
in Table 3. As anticipated, the IC50 value of the DOX/HMSNs-PDA@liposome-TPGS
decreased rapidly (by approximately 40%) with NIR irradiation compared to the group
without it. This outcome can be attributed to the outstanding photothermal effect and
enhanced drug release triggered by mild hyperthermia. In conclusion, the DOX/HMSNs-
PDA@liposome-TPGS has good tumor cell growth inhibition ability under the assistance of
near-infrared light.
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Figure 4. The cell viability after incubation with blank carriers (A) and DOX-loaded
nanoparticles (B) for 24 h. (C) The hemolysis ratio of HMSNs-NH2, HMSNs-PDA, and
HMSNs-PDA@liposome-TPGS. Note: ** p < 0.01, *** p < 0.001. (D) Photographs of hemolysis. (E) BSA
adsorption of HMSNs-NH2, HMSNs-PDA, and HMSNs-PDA@liposome-TPGS. Note: ** p < 0.01.
(F) CLSM images of 4T1 cells incubated with DOX, DOX/HMSNs-NH2, DOX/HMSNs-PDA,
DOX/HMSNs-PDA@liposome-TPGS, and DOX/HMSNs-PDA@liposome-TPGS + NIR. Scale bar:
20 µm. (G) MFI analysis of DOX. Note: ** p < 0.01 (H) Pearson’s R value between DOX and DAPI.
All data were analyzed using ImageJ Fiji. (I: DOX; II: DOX/HMSNs-NH2; III: DOX/HMSNs-PDA;
IV: DOX/HMSNs-PDA@liposome-TPGS; V: DOX/HMSNs-PDA@liposome-TPGS + NIR).

Table 3. IC50 values of DOX and DOX-loaded nanoparticles.

Samples IC50 (µg/mL)

DOX 7.56
DOX/HMSNs-NH2 14.50
DOX/HMSNs-PDA 28.56
DOX/HMSNs-PDA@liposome-TPGS 13.97
DOX/HMSNs-PDA@liposome-TPGS + NIR 8.39

3.5. Hemocompatibility Analysis
3.5.1. Hemolysis Test

The hemocompatibility of nanoparticles must be considered for intravenous drug delivery
systems. Therefore, we evaluated the hemocompatibility of HMSNs-PDA@liposome-TPGS
using rat RBCs. As shown in Figure 4C,D, the hemolytic activity of three NPs were displayed
in a dose-dependent manner within the concentration range (50–800 µg/mL). Among them,
the hemolysis of the HMSNs-NH2 was the most significant, reaching 16.14± 2.65% at a concen-
tration of 200 µg/mL. Meanwhile, complete hemolysis was observed once the concentration of
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HMSNs-NH2 exceeded 400 µg/mL. As reported by other studies, the hemolysis activity of
bare HMSNs-NH2 was attributed to the interaction of the surface residual silanol (Si-OH)
with quaternary ammonium ions in the erythrocyte membrane [71]. After wrapping the
PDA and liposome-TPGS layers, the HMSNs-PDA@liposome-TPGS-treated samples did
not cause any visible hemolysis at any tested concentration (50–800 µg/mL). The hemolysis
rate was only 10% at concentrations up to 800 µg/mL. Therefore, the enhanced hemocom-
patibility of the HMSNs-PDA@liposome-TPGS resulted from the shielding of silanol by the
PDA and liposome-TPGS layers.

3.5.2. Non-Specific Protein Adsorption Test

When carrier materials enter the body, the non-specific proteins will be adsorbed on
the surface of the material, resulting in the failure of the nanocarrier function [72,73]. There-
fore, carrier materials should have a low protein adsorption rate to ensure the reliability of
the nanocarrier transport in vivo. Here, we chose bovine serum albumin (BSA) as a model
protein to investigate the non-specific protein adsorption of HMSNs-NH2, HMSNs-PDA,
and HMSNs-PDA@liposome-TPGS, quantified by the BSA standard curves. The results are
shown in Figure 4E. The protein adsorption capacity levels of HMSNs-NH2, HMSNs-PDA,
and HMSNs-PDA@liposome-TPGS were 180.5 µg/mg, 208.0 µg/mg, and 146.0 µg/mg,
respectively. The strong protein adsorption levels of the HMSNs-NH2 and HMSNs-PDA
were attributed to the hydrogen bonds formed between the amino groups on the meso-
porous silica surface and proteins, and the covalent bonding between the benzene rings
contained in the PDA layer and aromatic amino acids, respectively. However, the addition
of a lipid film shielded the influence of the amino group and PDA layer, resulting in a
decrease in the adsorption capacity. Therefore, the coating of liposome-TPGS is beneficial
to improve the biocompatibility of the carrier and reduce the possibility of its clearance by
immune cells.

3.6. Cellular Uptake Evaluation

To observe the uptake of free DOX and DOX/HMSNs-PDA@liposome-TPGS nanopar-
ticles by cells, confocal laser scanning microscopy (CLSM) was utilized. The images in the
first row of Figure 4F show that after 4 h of incubation, the red fluorescence of the free
DOX was primarily found in the nucleus. This could be attributed to the fact that free
small DOX molecules are able to easily penetrate biological membranes through passive
diffusion. However, endocytosis is generally considered one of the main entry mechanisms
for various drug nanocarriers, which is slower than diffusion, so the DOX/HMSNs-NH2
and DOX/HMSNs-PDA treatment groups only showed weak red fluorescence. In com-
parison, the red fluorescence of the DOX/HMSNs-PDA@liposome-TPGS treatment group
was significantly enhanced. This was because the lipid membrane had good fluidity and
the affinity between the HMSNs and cell membrane increased after being encapsulated by
a lipid membrane, resulting in enhanced uptake into the cell [74]. After exposure to the
NIR laser, there was a notable increase in DOX fluorescence compared to the group that
was not exposed to NIR illumination. It was shown that the temperature elevation has a
positive impact on the drug release when near-infrared light irradiation is utilized, which
is consistent with the results for in vitro release. In addition, it was also observed that the
co-localization of DOX and the nucleus is more significant. This may be attributed to the
increase in the permeability of the cell membrane with the increase in temperature, provid-
ing a superior condition for NPs to penetrate the cell membrane [75]. Taken together, this
indicated that DOX/HMSNs-PDA@liposome-TPGS could be internalized and NIR could
accelerate the drug release by enhancing the cell membrane penetrability and sensitivity,
synergistically exerting photothermal–chemotherapy effects to kill tumor cells.

The average fluorescence intensity of DOX in each group shown by the Image Fiji
analysis (Figure 4G). The DOX uptake of the laser irradiation group was 2.60 times that
of the non-irradiated group, indicating that light irradiation can promote the intracellular
drug release of the carrier. Pearson’s coefficient (Pearson’s R) is widely used to analyze
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the degree of correlation between two variables, and the closer the value is to 1, the higher
the positive correlation between the two. Therefore, the colocalization of the nucleus and
DOX was evaluated using the Pearson coefficient as an index. As shown in Figure 4H, the
Pearson coefficient of DOX/HMSNs-PDA@liposome-TPGS + NIR group was 0.76, which
was 1.52 times that of the non-irradiated group. This showed that light was favorable for
DOX to enter the nucleus, so as to combine with deoxynucleotides in the nucleus to exert
its medicinal effect.

3.7. In Vivo Antitumor Effect Study and H&E Staining Analysis

The 4T1 cells were implanted into the subcutaneous tissue of BABL/c mice. After
tumor formation, the mice were peritumorally injected with solutions of saline, DOX,
DOX/HMSNs-PDA, and DOX/HMSNs-PDA@liposome-TPGS, respectively. As shown in
Figure 5A,B, each mouse group’s body weight did not significantly change throughout the
course of the two-week experiment. On the contrary, there was a significant difference in
tumor volume among the experimental groups. The DOX/HMSNs-PDA@liposome-TPGS
group had a better antitumor effect than the DOX/HMSNs-PDA group, which might
because the encapsulation of the lipid membrane prolonged the in vivo circulation time
and increased the uptake of the nanodrug delivery system. It is worth noting that the
DOX/HMSNs-PDA@liposome-TPGS + NIR group exhibited the most superior antitumor
ability due to the excellent light-to-heat conversion effect of PDA, and there was almost
no change in tumor volume. At the end of the pharmacodynamic experiments, the 4T1
tumor-bearing mice were executed and the tumor tissues were removed, weighed, and
photographed (Figure 5C,D). The results showed a consistent trend in the growth of the tu-
mor mass and volume. The tumor mass of the DOX/HMSNs-PDA@liposome-TPGS + NIR
group was about 1/5 that of the saline group. In addition, the tumor inhibition rate of
the DOX/HMSNs-PDA@liposome-TPGS + NIR group reached 87.39%. This indicated
that the DOX/HMSNs-PDA@liposome-TPGS achieved effective accumulation in the tu-
mor site and a prominent tumor retention effect in the blood, showing an outstanding
chemo-PTT therapeutic effect. Moreover, the H&E staining of tumor slices indicated that
DOX/HMSNs-PDA@liposome-TPGS + NIR caused more extensive apoptosis and necrosis
than other treatments. Meanwhile, no discernible histological damage was found when
the major organs were H&E-stained (Figure 5E). The above results confirmed the superior
biocompatibility of the nanoplatform.

3.8. Biodistribution Behavior In Vivo and Internal Long-Circulation Performance

As shown in Figure 5F, the relative fluorescence signal of the ICG/HMSNs-PDA@
liposome-TPGS was 48.7% at 24 h post-injection. However, only 31.4% of the ICG/HMSNs-PDA
was retained in the blood circulation. The relative fluorescence intensity of ICG/HMSNs-PDA@
liposome-TPGS group was 1.55 times that of the ICG/HMSNs-PDA group. Meanwhile, to
investigate the distribution of the preparation in mice, the mice were sacrificed at 3 h and 24 h
after the administration of ICG labeling carriers, and heart, liver, spleen, lung, kidney, and tumor
tissues were collected for in vivo tissue imaging (Figure 5G). Compared with ICG/HMSNs-PDA,
ICG/HMSNs-PDA@liposome-TPGS was more enriched in the tumor site, and a large number
of carriers still existed in the tumor site after 24 h. Furthermore, the fluorescence intensity of
ICG/HMSNs-PDA@liposome-TPGS group was 1.73 times that of the ICG/HMSNs-PDA group.
These results showed that the PEG hydrophilic chain in TPGS can effectively decrease plasma
protein adsorption and prolong the circulation time of nanoparticles in vivo, thereby enriching
the tumor sites.
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Figure 5. (A) Tumor volume changes in 4T1 tumor-bearing mice treated
with saline, DOX, DOX/HMSNs-PDA, DOX/HMSNs-PDA@liposome-TPGS, and
DOX/HMSNs-PDA@liposome-TPGS + NIR for 14 days (n = 5). Note: ** p < 0.01. (B) Rela-
tive body weight of 4T1 tumor-bearing mice treated with different samples for 14 days (n = 5).
Tumor weight of tumor-bearing mice (C) and picture of tumors excised from mice (D) treated
with different preparations for 14 days (n = 5). Note: * p < 0.05 vs. saline group. (E) HE
staining photographs from different treatment groups. Scale bar: 50 µm. (I: saline; II: DOX;
III: DOX/HMSNs-PDA; IV: DOX/HMSNs-PDA@liposome-TPGS; V: DOX/HMSNs-PDA@liposome-
TPGS + NIR). (F) In vivo pharmacokinetic curves for 48 h after intravenous injection of HMSNs-PDA
and HMSNs-PDA@liposome-TPGS. Note: * p < 0.05. (G) The distribution of HMSNs-PDA and
HMSNs-PDA@liposome-TPGS in vivo. Scale bar: 4 mm.

4. Conclusions

We developed a multifunctional nanoplatform, DOX/HMSNs-PDA@liposome-TPGS,
for the controlled and precise delivery of the antitumor drug DOX, thereby achieving a
chemo–photothermal synergistic antitumor effect. In this design, the HMSNs exhibited
high drug loading (27.83%) due to their uniform mesoporous pore and cavity structures.
After loading the DOX, the DOX/HMSNs-PDA@liposome-TPGS exhibited the expected
pH/NIR-responsive drug release performance. Then, a PDA shell and hybrid lipid mem-
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brane were used as gatekeepers to cap the surface of the nanoparticles to achieve excellent
photothermal properties and prolong the blood circulation time. The in vitro and in vivo
antitumor experiments showed that DOX/HMSNs-PDA@liposome-TPGS not only had
good biocompatibility but also exhibited excellent tumor suppression under NIR irradi-
ation through synergistic chemotherapy-PTT effects. In brief, the hollow mesoporous
silica nanodrug delivery system with a dual coating of polydopamine and hybrid lipid
membrane was prepared to not only fully combine the advantages of chemotherapy and
PTT, but also to prolong the blood circulation time to promote the effective enrichment of
chemotherapeutic drugs at the tumor site. Therefore, this is a promising nanoplatform for
synergistic chemo-PTT antitumor effects.
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