Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = hollow fiber hemodialysis membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9631 KiB  
Article
Development of Hollow Fiber Membranes Suitable for Outside-In Filtration of Human Blood Plasma
by David Ramada, Bente Adema, Mohamed Labib, Odyl ter Beek and Dimitrios Stamatialis
Membranes 2025, 15(1), 16; https://doi.org/10.3390/membranes15010016 - 9 Jan 2025
Viewed by 1662
Abstract
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow [...] Read more.
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients’ blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration). This study investigates the development of HF membranes for “outside-in filtration” (OIF) in HD. In OIF, blood flows through the inter-fiber space while dialysate flows within the fiber lumens, reducing the risk of fiber clogging and potentially extending treatment duration. For the OIF mode, the membrane should have a blood-compatible outer selective layer in contact with the patient’s blood. We develop HFs for OIF via liquid-induced phase separation using PES/PVP (polyethersulphone/polyvinylpyrrolidone) blends. The fibers’ surface morphology (SEM, scanning electron microscopy), chemistry (ATR-FTIR—attenuated total reflection-Fourier transform infrared spectroscopy, XPS—X-ray photoelectron spectroscopy), transport properties, and uremic toxin removal from human plasma are evaluated and compared to commercial HFs. These membranes feature a smooth, hydrophilic outer layer, porous lumen, ultrafiltration coefficient of 13–34 mL m2 h−1 mmHg−1, adequate mechanical properties, low albumin leakage, and toxin removal performance on par with commercial membranes in IOF and OIF. They offer potential for more efficient long-term HD by reducing clogging and systemic anticoagulation needs and enhancing treatment time and toxin clearance. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Graphical abstract

25 pages, 16189 KiB  
Article
Accounting for the Structure–Property Relationship of Hollow-Fiber Membranes in Modeling Hemodialyzer Clearance
by Anton Kozmai, Mikhail Porozhnyy, Violetta Gil, Dmitrii Butylskii, Dmitry Lopatin, Aleksey Rodichenko, Igor Voroshilov, Artem Mareev and Victor Nikonenko
Polymers 2024, 16(24), 3491; https://doi.org/10.3390/polym16243491 - 14 Dec 2024
Viewed by 885
Abstract
The relevance of the hemodialysis procedure is increasing worldwide due to the growing number of patients suffering from chronic kidney disease. Taking into account the structure of dialysis polymer membranes is an important aspect in their development to achieve the required performance of [...] Read more.
The relevance of the hemodialysis procedure is increasing worldwide due to the growing number of patients suffering from chronic kidney disease. Taking into account the structure of dialysis polymer membranes is an important aspect in their development to achieve the required performance of hemodialyzers. We propose a new mathematical model of mass transfer that allows hollow-fiber membrane structural parameters to be taken into account in simulating the clearance (CL) of hemodialyzers in a way that does not require difficult to achieve close approximation to the exact geometry of the membrane porous structure. The model was verified by a comparison of calculations with experimental data on CL obtained using a lab-made dialyzer as well as commercially available ones. The simulations by the model show the non-trivial behavior of the dialyzer clearance as a function of membrane porosity (fp) and the arrangement of pores (α). The analysis of this behavior allows one to consider two strategies for increasing the CL of the dialyzer by optimizing the polymer membrane structure: (1) creating a membrane with a well-structured pore system (where α → 1) since doubling α at a high enough fp can lead to an almost tenfold increase in CL; (2) increasing the porosity of the membrane characterized by a random arrangement of pores (α → 0), where, at a relatively low α, a sharp increase in CL is observed with a small increase in fp over a certain threshold value. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

16 pages, 5303 KiB  
Article
Open Pore Ultrafiltration Hollow Fiber Membrane Fabrication Method via Dual Pore Former with Dual Dope Solution Phase
by Kyunghoon Jang, Thanh-Tin Nguyen, Eunsung Yi, Chang Seong Kim, Soo Wan Kim and In S. Kim
Membranes 2022, 12(11), 1140; https://doi.org/10.3390/membranes12111140 - 13 Nov 2022
Cited by 10 | Viewed by 3676
Abstract
Hollow-fiber membranes are widely used in various fields of membrane processes because of their numerous properties, e.g., large surface area, high packing density, mass production with uniform quality, obvious end-of-life indicators, and so on. However, it is difficult to control the pores and [...] Read more.
Hollow-fiber membranes are widely used in various fields of membrane processes because of their numerous properties, e.g., large surface area, high packing density, mass production with uniform quality, obvious end-of-life indicators, and so on. However, it is difficult to control the pores and internal properties of hollow-fiber membranes due to their inherent structure: a hollow inside surrounded by a wall membrane. Herein, we aimed to control pores and the internal structure of hollow-fiber membranes by fabricating a dual layer using a dual nozzle. Two different pore formers, polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP), were separately prepared in the dope solutions and used for spinning the dual layer. Our results show that nanoscale pores could be formed on the lumen side (26.8–33.2 nm), and the open pores continuously increased in size toward the shell side. Due to robust pore structure, our fabricated membrane exhibited a remarkable water permeability of 296.2 ± 5.7 L/m2·h·bar and an extremely low BSA loss rate of 0.06 ± 0.02%, i.e., a high BSA retention of 99.94%. In consideration of these properties, the studied membranes are well-suited for use in either water treatment or hemodialysis. Overall, our membranes could be considered for the latter application with a high urea clearance of 257.6 mL/min, which is comparable with commercial membranes. Full article
(This article belongs to the Special Issue Separation Principles and Applications of Membrane Technology)
Show Figures

Figure 1

23 pages, 9584 KiB  
Article
Investigating the Dialysis Treatment Using Hollow Fiber Membrane: A New Approach by CFD
by Hortência L. F. Magalhães, Ricardo S. Gomez, Boniek E. Leite, Jéssica B. S. Nascimento, Mirenia K. T. Brito, Morgana V. Araújo, Daniel C. M. Cavalcante, Elisiane S. Lima, Antonio G. B. Lima and Severino R. Farias Neto
Membranes 2022, 12(7), 710; https://doi.org/10.3390/membranes12070710 - 15 Jul 2022
Cited by 6 | Viewed by 4191
Abstract
Due to the increase in the number of people affected by chronic renal failure, the demand for hemodialysis treatment has increased considerably over the years. In this sense, theoretical and experimental studies to improve the equipment (hemodialyzer) are extremely important, due to their [...] Read more.
Due to the increase in the number of people affected by chronic renal failure, the demand for hemodialysis treatment has increased considerably over the years. In this sense, theoretical and experimental studies to improve the equipment (hemodialyzer) are extremely important, due to their potential impact on the patient’s life quality undergoing treatment. To contribute to this research line, this work aims to study the fluid behavior inside a hollow fiber dialyzer using computational fluid dynamics. In that new approach, the blood is considered as multiphase fluid and the membrane as an extra flow resistance in the porous region (momentum sink). The numerical study of the hemodialysis process was based on the development of a mathematical model that allowed analyzing the performance of the system using Ansys® Fluent software. The predicted results were compared with results reported in the literature and a good concordance was obtained. The simulation results showed that the proposed model can predict the fluid behavior inside the hollow fiber membrane adequately. In addition, it was found that the clearance decreases with increasing radial viscous resistance, with greater permeations in the vicinity of the lumen inlet region, as well as the emergence of the retrofiltration phenomenon, characteristic of this type of process. Herein, velocity, pressure, and volumetric fraction fields are presented and analyzed. Full article
(This article belongs to the Special Issue Advances in Porous and Dense Membranes: Fabrication and Applications)
Show Figures

Figure 1

69 pages, 14301 KiB  
Review
State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond
by Hui Shen Lau, Siew Kei Lau, Leong Sing Soh, Seang Uyin Hong, Xie Yuen Gok, Shouliang Yi and Wai Fen Yong
Membranes 2022, 12(5), 539; https://doi.org/10.3390/membranes12050539 - 22 May 2022
Cited by 46 | Viewed by 14718
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air [...] Read more.
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes. Full article
(This article belongs to the Section Membrane Chemistry)
Show Figures

Graphical abstract

18 pages, 4683 KiB  
Article
Performance Comparison of Alternative Hollow-Fiber Modules for Hemodialysis by Means of a CFD-Based Model
by Nunzio Cancilla, Luigi Gurreri, Gaspare Marotta, Michele Ciofalo, Andrea Cipollina, Alessandro Tamburini and Giorgio Micale
Membranes 2022, 12(2), 118; https://doi.org/10.3390/membranes12020118 - 20 Jan 2022
Cited by 7 | Viewed by 5766
Abstract
Commercial hemodialyzers are hollow-fiber cylindrical modules with dimensions and inlet–outlet configurations dictated mostly by practice. However, alternative configurations are possible, and one may ask how they would behave in terms of performance. In principle, it would be possible to depart from the standard [...] Read more.
Commercial hemodialyzers are hollow-fiber cylindrical modules with dimensions and inlet–outlet configurations dictated mostly by practice. However, alternative configurations are possible, and one may ask how they would behave in terms of performance. In principle, it would be possible to depart from the standard counter-flow design, while still keeping high clearance values, thanks to the increase in the shell-side Sherwood number (Sh) due to the cross-flow. To elucidate these aspects, a previously developed computational model was used in which blood and dialysate are treated as flowing through two interpenetrating porous media. Measured Darcy permeabilities and mass transfer coefficients derived from theoretical arguments and CFD simulations conducted at unit-cell scale were used. Blood and dialysate were alternately simulated via an iterative strategy, while appropriate source terms accounted for water and solute exchanges. Several module configurations sharing the same membrane area, but differing in overall geometry and inlet–outlet arrangement, were simulated, including a commercial unit. Although the shell-side Sherwood number increased in almost all the alternative configurations (from 14 to 25 in the best case), none of them outperformed in terms of clearance the commercial one, approaching the latter (257 vs. 255 mL/min) only in the best case. These findings confirmed the effectiveness of the established commercial module design for the currently available membrane properties. Full article
(This article belongs to the Special Issue Honorary Issue for Prof. Dr. Anastasios Karabelas)
Show Figures

Figure 1

38 pages, 12139 KiB  
Review
A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application
by Noresah Said, Woei Jye Lau, Yeek-Chia Ho, Soo Kun Lim, Muhammad Nidzhom Zainol Abidin and Ahmad Fauzi Ismail
Membranes 2021, 11(10), 767; https://doi.org/10.3390/membranes11100767 - 7 Oct 2021
Cited by 62 | Viewed by 17015
Abstract
Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis [...] Read more.
Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis application and to discuss the technical aspects of dialyzer development, including hollow fiber membrane materials, dialyzer design, sterilization processes and flow simulation. The technical challenges of dialyzers are also highlighted in this review, which discusses the research areas that need to be prioritized to further improve the properties of dialyzers, such as flux, biocompatibility, flow distribution and urea clearance rate. We hope this review article can provide insights to researchers in developing/designing an ideal dialyzer that can bring the best hemodialysis treatment outcomes to kidney disease patients. Full article
(This article belongs to the Special Issue Hollow Fiber Membranes and Their Applications)
Show Figures

Figure 1

18 pages, 4186 KiB  
Article
Computational Fluid Dynamics (CFD) Modeling and Simulation of Flow Regulatory Mechanism in Artificial Kidney Using Finite Element Method
by Tuba Yaqoob, Muhammad Ahsan, Arshad Hussain and Iftikhar Ahmad
Membranes 2020, 10(7), 139; https://doi.org/10.3390/membranes10070139 - 3 Jul 2020
Cited by 12 | Viewed by 6254
Abstract
There is an enormous need in the health welfare sector to manufacture inexpensive dialyzer membranes with minimum dialysis duration. In order to optimize the dialysis cost and time, an in-depth analysis of the effect of dialyzer design and process parameters on toxins (ranging [...] Read more.
There is an enormous need in the health welfare sector to manufacture inexpensive dialyzer membranes with minimum dialysis duration. In order to optimize the dialysis cost and time, an in-depth analysis of the effect of dialyzer design and process parameters on toxins (ranging from tiny to large size molecules) clearance rate is required. Mathematical analysis and enhanced computational power of computers can translate the transport phenomena occurring inside the dialyzer while minimizing the development cost. In this paper, the steady-state mass transport in blood and dialysate compartment and across the membrane is investigated with convection-diffusion equations and tortuous pore diffusion model (TPDM), respectively. The two-dimensional, axisymmetric CFD model was simulated by using a solver based on the finite element method (COMSOL Multiphysics 5.4). The effect of design and process parameters is analyzed by solving model equations for varying values of design and process parameters. It is found that by introducing tortuosity in the pore diffusion model, the clearance rate of small size molecules increases, but the clearance rate of large size molecules is reduced. When the fiber aspect ratio (db/L) varies from 900 to 2300, the clearance rate increases 37.71% of its initial value. The results also show that when the pore diameter increases from 10 nm to 20 nm, the clearance rate of urea and glucose also increases by 2.09% and 7.93%, respectively, with tolerated transport of albumin molecules. Full article
Show Figures

Graphical abstract

16 pages, 3563 KiB  
Article
Flux and Passage Enhancement in Hemodialysis by Incorporating Compound Additive into PVDF Polymer Matrix
by Qinglei Zhang, Xiaolong Lu, Qingzhao Zhang, Lei Zhang, Suoding Li and Shaobin Liu
Membranes 2016, 6(4), 45; https://doi.org/10.3390/membranes6040045 - 19 Oct 2016
Cited by 11 | Viewed by 6344
Abstract
In this study, Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS) with compound addtive. The compound additive was made with polyvinyl pyrrolidone (PVP) and Poly ethylene glycol (PEG). The results showed that the modified PVDF membrane [...] Read more.
In this study, Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS) with compound addtive. The compound additive was made with polyvinyl pyrrolidone (PVP) and Poly ethylene glycol (PEG). The results showed that the modified PVDF membrane had better separation performance than virgin PVDF membrane. The UF flux of modified PVDF membrane can reach 684 L·h−1·m−2 and lysozyme (LZM) passage is 72.6% while virgin PVDF membrane is 313 L·h−1·m−2 and 53.2%. At the same time, the biocompatibility of PVDF membranes was also improved. Compared with commercial polysulfone hemodialysis membrane (Fresenius F60S membrane), the modified PVDF membrane had better mechanical and separation performance. The stress and tensile elongation of modified PVDF membrane was 0.94 MPa and 352% while Fresenius F60S membrane was 0.79 MPa and 59%. The LZM passage reached 72.6% while Fresenius F60S membrane was 54.4%. It was proven that the modified PVDF membrane showed better hydrophilicity, antithrombogenicity, less BSA adsorption, and lower hemolytic ratio and adhesion of platelets. Water contact angle and BSA adsorption of the modified PVDF membrane are 38° and 45 mg/m2 while Fresenius F60S membrane are 64° and 235 mg/m2. Prothrombin time (PT) and activated partial thromboplastin time (APTT) of the modified PVDF membrane are 56.5 s and 25.8 s while Fresenius F60S membrane is 35.7 s and 16.6 s. However, further biocompatibility evaluation is needed to obtain a more comprehensive conclusion. Full article
Show Figures

Figure 1

16 pages, 2952 KiB  
Article
Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes
by Qinglei Zhang, Xiaolong Lu, Juanjuan Liu and Lihua Zhao
Membranes 2015, 5(1), 120-135; https://doi.org/10.3390/membranes5010120 - 19 Mar 2015
Cited by 15 | Viewed by 8788
Abstract
In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF [...] Read more.
In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. Full article
(This article belongs to the Section Membrane Chemistry)
Show Figures

Graphical abstract

15 pages, 909 KiB  
Article
Preparation of Polyvinylidene Fluoride (PVDF) Hollow Fiber Hemodialysis Membranes
by Qinglei Zhang, Xiaolong Lu and Lihua Zhao
Membranes 2014, 4(1), 81-95; https://doi.org/10.3390/membranes4010081 - 27 Feb 2014
Cited by 62 | Viewed by 13217
Abstract
In this study, the polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS). The influences of PVDF membrane thickness and polyethylene glycol (PEG) content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was [...] Read more.
In this study, the polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS). The influences of PVDF membrane thickness and polyethylene glycol (PEG) content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was found that membrane thickness and PEG content affected both the structure and performance of hollow fiber membranes. The tensile strength and rejection of bovine serum albumin (BSA) increased with increasing membrane thickness, while the Ultrafiltration flux (UF) flux of pure water was the opposite. The tensile strength, porosity and rejection of BSA increased with increasing PEG content within a certain range. Compared with commercial F60S membrane, the PVDF hollow fiber membrane showed higher mechanical and permeable performance. It was proven that PVDF material had better hydrophilicity and lower BSA adsorption, which was more suitable for hemodialysis. All the results indicate that PVDF hollow fiber membrane is promising as a hemodialysis membrane. Full article
(This article belongs to the Special Issue Selected Papers from AMS8 Conference (July 2013, Xi’an, China))
Show Figures

Figure 1

Back to TopTop