Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVDF Hollow Fiber Membranes
2.3. Membranes Characterization
2.3.1. Morphology, Max Pore Size and Porosity
2.3.2. Mechanical Properties, UF Flux of Pure Water and Rejection of BSA
2.4. Dialysis Performance Test
2.4.1. Selection of Standard Dialysis Solution
2.4.2. Dialysis Simulation
2.4.3. Rejection of BSA and Clearance Rate of LZM and Urea
3. Results and Discussion
3.1. Morphology and Structure of PVDF Membranes
3.1.1. Morphology and Structure of Different PEG Molecular Weight
Membrane Label | Porosity (%) | Bursting pressure (MPa) | Viscosity (mPa∙s) |
---|---|---|---|
M-1 | 88.9 | 0.395 | 3136 |
M-2 | 87.3 | 0.375 | 3421 |
M-3 | 85.1 | 0.625 | 3976 |
M-4 | 87.8 | 0.465 | 7352 |
3.1.2. Morphology and Structure of Different PEG Content
3.2. Mechanical and Separation Performance of PVDF Membranes
3.2.1. Mechanical and Separation Performance of PVDF Membranes with Different PEG Molecular Weight
Membrane label | UF flux of pure water (L∙h−1∙m−2) | Rejection of BSA (%) | Water contact angle (°) |
---|---|---|---|
M-1 | 45.2 | 4.4 | 57 ± 3 |
M-2 | 35.4 | 40.9 | 54 ± 2 |
M-3 | 108.2 | 82.3 | 52 ± 2 |
M-4 | 124.8 | 8.8 | 42 ± 2 |
3.2.2. Mechanical and Separation Performance of PVDF Membranes with Different PEG Content
Membrane label | Porosity (%) | Bursting pressure (MPa) | Viscosity (mPa.s) |
---|---|---|---|
M-14.8 | 88.8 | 0.495 | 2736 |
M-16.8 | 87.3 | 0.605 | 3124 |
M-3 | 85.1 | 0.625 | 3976 |
M-20.8 | 87.5 | 0.510 | 2846 |
Membrane label | UF flux of pure water (L∙h−1∙m−2) | Rejection of BSA (%) | Water contact angle (°) |
---|---|---|---|
M-14.8 | 45.5 | 60.6 | 59 ± 3 |
M-16.8 | 65.4 | 66.2 | 56 ± 2 |
M-3 | 108.2 | 82.3 | 52 ± 2 |
M-20.8 | 106.6 | 70.2 | 43 ± 2 |
3.3. Contrast of PVDF and F60S Membranes
3.3.1. Morphology
3.3.2. Mechanical and Separation Properties
Membrane label | Bursting pressure (MPa) | Rejection of BSA (%) | UF flux of pure water(L∙h−1m−2) |
---|---|---|---|
M-3 | 0.625 | 82.3 | 108.2 |
M-0 | 0.645 | 69.2 | 98.7 |
F60S | 0.475 | 78.2 | 78.6 |
3.4. Research of PVDF Dialyzer
3.4.1. UF Coefficient of PVDF Dialyzer
3.4.2. Dialysis Performance of PVDF Dialyzer
Area (m2) | Concentration of BSA /mg∙L−1 | Concentration of LZM /mg∙L−1 | Concentration of Urea /mg∙L−1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre dialysis | After dialysis | Rejection (%) | Pre dialysis | After dialysis | Clearance (%) | Pre dialysis | After dialysis | Clearance (%) | |
0.43 | 934 | 767 | 82.1 | 36.2 | 13.4 | 63.0 | 2080 | 442 | 78.8 |
0.69 | 934 | 770 | 83.1 | 36.2 | 12.4 | 66.8 | 2080 | 283 | 87.7 |
0.95 | 934 | 781 | 83.6 | 36.2 | 11.8 | 57.4 | 2080 | 364 | 82.5 |
3.4.3. Dialysis Performance of Different Simulation Fluid Flow Rate
Flow rate (mL/min) | Concentration of BSA /mg∙L−1 | Concentration of LZM /mg∙L−1 | Concentration of Urea /mg∙L−1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre dialysis | After dialysis | Rejection (%) | Pre dialysis | After dialysis | Clearance (%) | Pre dialysis | After dialysis | Clearance (%) | |
100 | 934 | 765 | 82.0 | 36.2 | 14.1 | 61.0 | 2080 | 326 | 84.3 |
150 | 934 | 762 | 81.6 | 36.2 | 13.5 | 62.7 | 2080 | 320 | 84.6 |
200 | 934 | 770 | 83.1 | 36.2 | 12.4 | 66.8 | 2080 | 283 | 87.7 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dahe, G.J.; Teotia, R.S.; Kadam, S.S. The biocompatibility and separation performance of antioxidative polysulfone/vitamin ETPGS composite hollow fiber membranes. Biomaterials 2011, 32, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Lu, X.L.; Zhao, L.H. Preparation of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes. Membranes 2014, 4, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Li, L.L.; Cheng, C.; Xiang, T.; Tang, M.; Zhao, W.; Sun, S.; Zhao, C. Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. J. Membr. Sci. 2012, 405–406, 261–274. [Google Scholar] [CrossRef]
- Zhao, C.S.; Liu, T.; Lu, Z.P.; Cheng, L.P.; Huang, J. An evaluation of polyethersulfone hollow fiber plasma separator by animal experiments. Artif. Org. 2001, 25, 60–63. [Google Scholar]
- Zhao, C.S.; Liu, X.D.; Nomizu, M.; Nishi, N. Blood compatible aspects of DNA-modified polysulfone membrane—Protein adsorption and platelet adhesion. Biomaterials 2003, 24, 3957–3755. [Google Scholar]
- Ran, F.; Nie, S.Q.; Zhao, W.F.; Li, J.; Su, B.; Sun, S.; Zhao, C. Biocompatibility of modified polyethersulfone membranes by blending amphiphilic triblock copolymer of poly(vinylpyrrolidone)–b-poly(methylmethacrylate)–b-poly(vinylpyrrolidone). Acta Biomater. 2011, 7, 3370–3381. [Google Scholar] [CrossRef]
- Ishihara, K.; Hasegawa, T.; Watanabe, J.; Iwasaki, Y. Protein adsorption-resistant hollow fibers for blood purification. Artif. Org. 2002, 26, 1014–1019. [Google Scholar] [CrossRef]
- Chae, S.R.; Yamamura, H.; Ikeda, K.; Watanabe, Y. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using precoagulation/sedimentation, sand filtration, and chlorination. Water Res. 2008, 42, 2029–2042. [Google Scholar] [CrossRef]
- Tan, X.; Tan, S.P.; Teo, W.K.; Li, K. Polyvinylidene fluoride (PVDF) hollow fiber membranes for ammonia removal from water. J. Membr. Sci. 2006, 271, 59–68. [Google Scholar] [CrossRef]
- Deshwal, B.R.; Jo, H.D.; Park, H.H.; Lee, H.K.; Kim, I.W.; Choi, W.K. Absorption of nitrogen dioxide by PVDF hollow fiber membranes in a G-L contactor. Desalination 2009, 243, 52–64. [Google Scholar] [CrossRef]
- Khayet, M.; Khulbe, K.C.; Matsuura, T. Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process. J. Membr. Sci. 2004, 238, 199–211. [Google Scholar] [CrossRef]
- Bottino, A.; Capannelli, G.; Comite, A. Novel porous poly (vinylidene fluoride) membranes for membrane distillation. Desalination 2005, 183, 375–382. [Google Scholar] [CrossRef]
- Bouaziz, A.; Richert, A.; Caprani, A. Vascular endothelial cell responses to different electrically charged poly (vinylidene fluoride) Supports under static and oscillating flow conditions. Biomaterials 1997, 18, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Wee, K.H.; Bai, R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J. Membr. Sci. 2010, 362, 326–333. [Google Scholar] [CrossRef]
- Asatekin, A.; Menniti, A.; Kang, S.; Elimelech, M.; Morgenroth, E.; Mayes, A.M. Antifouling nanofiltration membranes for membrane bioreactors from self assembling graft copolymers. J. Membr. Sci. 2006, 285, 81–89. [Google Scholar] [CrossRef]
- Hyun, J.; Jang, H.; Kim, K.; Na, K.; Tak, T. Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains. J. Membr. Sci. 2006, 282, 52–59. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Zhu, B.K.; Kong, L.; Xu, Y.Y. Improving hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer. Langmuir 2007, 23, 5779–5786. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Qian, Y.L.; Pang, D.X.; Zhu, B.K.; Xu, Y.Y. Porous membranes modified by hyperbranched polymers II.: Effect of the arm length of amphiphilic hyperbranched-star polymers on the hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes. J. Membr. Sci. 2007, 304, 138–147. [Google Scholar] [CrossRef]
- Lu, X.L. Discuss about the measure methods for performance of hollow fiber porous membranes. Membr. Sci. Technol. 2011, 32, 1–6. [Google Scholar]
- Idris, A.; Yet, L.K. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J. Membr. Sci. 2006, 280, 920–927. [Google Scholar] [CrossRef]
- Kesting, R.E. Nature of Pores in Integrally Skinned Phase Inversion, Membranes; National Research Council of Canada: Ottawa, ON, Canada, 1964. [Google Scholar]
- Xu, Z.L.; Qusay, F.A. Polyethersulfone (PES) hollow fiber ultra filtration membranes prepared by PES/non-solvent/NMP solution. J. Membr. Sci. 2004, 233, 101–111. [Google Scholar] [CrossRef]
- Yuan, J.H.; Shang, P.P.; Wu, H.S. Effects of polyethylene glycol on morphology, thermo mechanical properties and water vapor permeability of cellulose acetate-free films. Pharm. Technol. 2001, 31, 62–73. [Google Scholar]
- Jung, B.; Yoon, J.K.; Kim, B.; Rhee, H.W. Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J. Membr. Sci. 2004, 243, 45–57. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, K.H. Effect of PEG additive on membrane formation by phase inversion. J. Membr. Sci. 1998, 138, 153–163. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Lu, X.; Liu, J.; Zhao, L. Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes. Membranes 2015, 5, 120-135. https://doi.org/10.3390/membranes5010120
Zhang Q, Lu X, Liu J, Zhao L. Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes. Membranes. 2015; 5(1):120-135. https://doi.org/10.3390/membranes5010120
Chicago/Turabian StyleZhang, Qinglei, Xiaolong Lu, Juanjuan Liu, and Lihua Zhao. 2015. "Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes" Membranes 5, no. 1: 120-135. https://doi.org/10.3390/membranes5010120
APA StyleZhang, Q., Lu, X., Liu, J., & Zhao, L. (2015). Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes. Membranes, 5(1), 120-135. https://doi.org/10.3390/membranes5010120