Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = histone lactylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2229 KiB  
Review
The Roles of Lactate and Lactylation in Diseases Related to Mitochondrial Dysfunction
by Fei Ma and Wei Yu
Int. J. Mol. Sci. 2025, 26(15), 7149; https://doi.org/10.3390/ijms26157149 - 24 Jul 2025
Viewed by 248
Abstract
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, [...] Read more.
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, mitochondrial dysfunction disrupts the energy balance. Lactate, historically perceived as a harmful metabolic byproduct. However, emerging research indicates that lactate has diverse biological functions, encompassing energy regulation, epigenetic remodeling, and signaling activities. Notably, the 2019 study revealed the role of lactate in regulating gene expression through histone and non-histone lactylation, thereby influencing critical biological processes. Metabolic reprogramming is a key adaptive mechanism of cells responding to stresses. The Warburg effect in tumor cells exemplifies this, with glucose preferentially converted to lactate for rapid energy, accompanied by metabolic imbalances, characterized by exacerbated aerobic glycolysis, lactate accumulation, suppressed mitochondrial oxidative phosphorylation, and compromised mitochondrial function, ultimately resulting in a vicious cycle of metabolic dysregulation. As molecular bridges connecting metabolism and epigenetics, lactate and lactylation offer novel therapeutic targets for diseases like cancer and neurodegenerative diseases. This review summarizes the interplay between metabolic reprogramming and mitochondrial dysfunction, while discussing lactate and lactylation’s mechanistic in the pathogenesis of related diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 3999 KiB  
Review
The Role of Lactate in Immune Regulation: A Metabolic Rheostat via Transporters, Receptors, and Epigenetic Modifiers
by Eun Jung Choi, Yoon Young Jang, Eun Joo Choi and Chang Joo Oh
Cells 2025, 14(14), 1096; https://doi.org/10.3390/cells14141096 - 17 Jul 2025
Viewed by 674
Abstract
Lactate, once regarded as a metabolic byproduct, is now recognized as a critical immunometabolic regulator that shapes immune responses in both physiological and pathological contexts. This review examines how lactate accumulation occurs across diverse disease settings, including cancer, sepsis, and diabetes, through mechanisms [...] Read more.
Lactate, once regarded as a metabolic byproduct, is now recognized as a critical immunometabolic regulator that shapes immune responses in both physiological and pathological contexts. This review examines how lactate accumulation occurs across diverse disease settings, including cancer, sepsis, and diabetes, through mechanisms such as hypoxia, mitochondrial dysfunction, and pharmacologic intervention. We then explore how lactate modulates immunity via four integrated mechanisms: transporter-mediated flux, receptor signaling (e.g., GPR81), context-dependent metabolic rewiring, and histone/protein lactylation. Particular emphasis is placed on the dichotomous effects of endogenous versus exogenous lactate, with the former supporting glycolytic effector functions and the latter reprogramming immune cells toward regulatory phenotypes via redox shifts and epigenetic remodeling. The review also highlights how the directionality of lactate transport, and the metabolic readiness of the cell determine, whether lactate sustains inflammation or promotes resolution. After analyzing emerging data across immune cell subsets and disease contexts, we propose that lactate serves as a dynamic rheostat that integrates environmental cues with intracellular metabolic and epigenetic programming. Understanding these context-dependent mechanisms is essential for the rational design of lactate-targeted immunotherapies that aim to modulate immune responses without disrupting systemic homeostasis. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

16 pages, 1588 KiB  
Review
The Role of Lactylation in Virus–Host Interactions
by Gejie Zhao, Jia Zhou, Shutong He, Xiao Fei and Guijie Guo
Int. J. Mol. Sci. 2025, 26(14), 6613; https://doi.org/10.3390/ijms26146613 - 10 Jul 2025
Viewed by 451
Abstract
Lactylation, a novel form of post-translational modifications (PTMs) of protein, particularly within histone proteins, has recently gained attention for its role in regulating gene expression and cellular processes. In recent years, lactylation has been widely studied in cancer, immune diseases, neurological diseases, cardiovascular [...] Read more.
Lactylation, a novel form of post-translational modifications (PTMs) of protein, particularly within histone proteins, has recently gained attention for its role in regulating gene expression and cellular processes. In recent years, lactylation has been widely studied in cancer, immune diseases, neurological diseases, cardiovascular diseases, metabolic diseases, etc. Increasing evidence now suggests that lactylation also plays a significant role in the host’s innate immune response to viruses. Lactylation influences fundamental cellular functions, including transcriptional regulation, signal transduction, cell proliferation and differentiation. It affects protein behavior by modulating their function, stability, subcellular localization and interactions. Studies have shown that many viral infections promote lactate production through enhanced glycolysis, a process that facilitates viral replication. Given that innate immunity serves as the host’s first line of defense against pathogenic invasion, understanding how lactylation regulates antiviral responses offers promising avenues for the development of diagnostic tools and therapeutic strategies against viral diseases. In this review, we provide a comprehensive overview of recent research on the role of lactylation in viral–host interactions. Full article
(This article belongs to the Special Issue Viral Infections and Immune Responses)
Show Figures

Figure 1

24 pages, 1610 KiB  
Review
Lactylation: From Molecular Insights to Disease Relevance
by Yao Xu, Lu Zhang, Dong Shang and Hong Xiang
Biomolecules 2025, 15(6), 810; https://doi.org/10.3390/biom15060810 - 3 Jun 2025
Viewed by 1093
Abstract
Lactylation, referring to the covalent coupling of the lactyl group with lysine residues, is a recently defined post-translational modification. It has been demonstrated that lactylation can alter protein transcription, thereby affecting the transmission of genetic information and ultimately exerting diverse effects on health [...] Read more.
Lactylation, referring to the covalent coupling of the lactyl group with lysine residues, is a recently defined post-translational modification. It has been demonstrated that lactylation can alter protein transcription, thereby affecting the transmission of genetic information and ultimately exerting diverse effects on health and diseases. Here, we review the existing literature and summarize the characteristics and mechanisms of lactylation on both histone and non-histone proteins. We hope to explore lactylation targets for different diseases, thus providing potential clues for new therapeutic strategies. Full article
Show Figures

Graphical abstract

24 pages, 7622 KiB  
Article
Hypoxia Promotes the In Vitro Proliferation of Buffalo Spermatogonial Cells by Increasing Lactate and H3K18la Lactylation Levels
by Mengqi Li, Yanyu Ma, Shenzhi Wang, Haiying Zheng, Chunyan Yang, Anqin Duan, Benliang Zhou, Jianghua Shang, Xingwei Liang and Xiaogan Yang
Cells 2025, 14(11), 832; https://doi.org/10.3390/cells14110832 - 3 Jun 2025
Viewed by 947
Abstract
Hypoxia benefits the proliferation and maintenance of animal spermatogonial cells; however, the underlying mechanism remains incompletely understood. This study aims to investigate the role and mechanism of the hypoxia–glycolysis–histone lactylation axis in the proliferation of buffalo spermatogonial cells (bSCs). bSCs were cultured under [...] Read more.
Hypoxia benefits the proliferation and maintenance of animal spermatogonial cells; however, the underlying mechanism remains incompletely understood. This study aims to investigate the role and mechanism of the hypoxia–glycolysis–histone lactylation axis in the proliferation of buffalo spermatogonial cells (bSCs). bSCs were cultured under different oxygen concentrations to observe changes in cell proliferation. RNA-seq was used to analyze gene expression and signaling pathways. Changes in lactylation were monitored, and CUT&Tag-seq was utilized to determine the regulatory effects of lactylation on gene expression. The glycolytic pathway was regulated to validate the results of the bioinformatic analysis. Oxygen concentrations between 2.5% and 10% support the proliferation of bSCs, with 5% having the most pronounced effect. An amount of 5% oxygen significantly increased the proliferation and pluripotency of bSCs while also promoting glycolysis and lactylation. Inhibition of glycolysis eliminated the proliferative effects of hypoxia. By analyzing genes associated with the key lactylation site H3K18la using CUT&Tag technology, we found that it is closely linked to genes involved in the regulation of proliferation. After inhibition of HK-2 expression, cell proliferation, H3K18la expression, and the expression of these target genes were all suppressed. Hypoxia promotes the proliferation of bSCs via activation of glycolysis, leading to an increase in H3K18la and altered expression of its target genes. Full article
Show Figures

Graphical abstract

18 pages, 5572 KiB  
Article
Identification of Biomarkers Co-Associated with Lactylation and Acetylation in Systemic Lupus Erythematosus
by Zhanyan Gao, Yang Feng, Chenghui Zheng, Fei Li, Zhan Sun, Mengmeng Xiang, Junrong Zhu, Mingyu Chu, Jinhua Xu and Jun Liang
Biomedicines 2025, 13(6), 1274; https://doi.org/10.3390/biomedicines13061274 - 22 May 2025
Viewed by 632
Abstract
Background: Systemic lupus erythematosus (SLE) is an immune-mediated disease with widespread involvement, and its pathogenesis remains incompletely understood. Recent studies suggest that modifications such as acetylation and lactylation play crucial roles in SLE progression, with potential interrelationships between them. This study aimed to [...] Read more.
Background: Systemic lupus erythematosus (SLE) is an immune-mediated disease with widespread involvement, and its pathogenesis remains incompletely understood. Recent studies suggest that modifications such as acetylation and lactylation play crucial roles in SLE progression, with potential interrelationships between them. This study aimed to identify biomarker genes co-associated with both lactylation and acetylation and to explore their potential mechanisms in SLE pathogenesis. Methods: Microarray data from peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls were obtained from the Gene Expression Omnibus (GEO) database. In the training dataset (GSE81622), differential expression analysis was performed to compare SLE samples with healthy controls. Lactate- and acetylation-related genes were used to identify differentially expressed lactate-related genes (LR-DEGs) and acetylation-related genes (AR-DEGs). Genes co-associated with both lactylation and acetylation were further examined. LASSO regression, support vector machine recursive feature elimination (SVM-RFE), and ROC curve analysis were used to identify hub genes. Immune infiltration analysis and a clinical nomogram model were developed for accurate diagnosis and treatment prediction. qPCR was used to validate the hub genes. Results: A total of 1181 differentially expressed genes (DEGs) were identified between SLE and healthy groups. Of these, 33 LR-DEGs and 28 AR-DEGs were identified. Seven genes were found to be co-associated with both lactylation and acetylation. Using LASSO and SVM-RFE, two hub genes, CDCA5 and MCTS1, were identified and validated in the GSE24706 dataset. ROC curve analysis and clinical nomogram revealed significant associations of these biomarkers with SLE pathogenesis. Conclusions: Our study identifies CDCA5 and MCTS1 as potential biomarkers for SLE, potentially influencing its pathogenesis through histone lactylation and acetylation. Experimental validation confirmed their differential expression between SLE patients and healthy controls. These findings underscore the role of epigenetic modifications in SLE, offering new insights into its regulatory mechanisms and immune interactions. Full article
Show Figures

Figure 1

20 pages, 1227 KiB  
Review
Mechanisms for Regulatory Effects of Exercise on Metabolic Diseases from the Lactate–Lactylation Perspective
by Guannan Chen, Jinchao Liu, Yilan Guo and Peng Sun
Int. J. Mol. Sci. 2025, 26(8), 3469; https://doi.org/10.3390/ijms26083469 - 8 Apr 2025
Viewed by 2541
Abstract
Metabolic diseases, including cardiovascular diseases, type 2 diabetes mellitus (T2DM), osteoporosis, and non-alcoholic fatty liver disease (NAFLD), constitute a major global health burden associated with chronic morbidity and mortality. Lactate, once considered as a metabolic byproduct, has emerged as a key regulator of [...] Read more.
Metabolic diseases, including cardiovascular diseases, type 2 diabetes mellitus (T2DM), osteoporosis, and non-alcoholic fatty liver disease (NAFLD), constitute a major global health burden associated with chronic morbidity and mortality. Lactate, once considered as a metabolic byproduct, has emerged as a key regulator of cellular reprogramming through lactylation, a novel post-translational modification (PTM) that dynamically couples metabolic flux to chromatin remodeling. Lactylation exerts dual regulatory roles as a signaling molecule via GPR81/GPR4-mediated pathways and as a substrate for the covalent modification of histones and metabolic enzymes. Pathologically, chronic hyperlactatemia suppresses mitochondrial biogenesis, driving metabolic cardiomyopathy through the epigenetic silencing of oxidative metabolism genes. Conversely, exercise-induced lactate surges transiently enhance insulin sensitivity via AMPK/PGC-1α/GLUT4 signaling, resolve inflammation through GPR81-mediated M2 macrophage polarization, and restore mitochondrial function via lactylation-dependent pathways. This review delineates lactylation as a spatiotemporal rheostat: chronic dysregulation perpetuates metabolic disorders, whereas acute exercise-mediated lactylation remodels transcriptional networks to restore metabolic homeostasis. Future research should integrate multiomics to clarify lactylation’s spatiotemporal dynamics, tissue-specific thresholds, metabolism–immunity interactions, and metabolic–epigenetic crosstalk for the precision management of metabolic diseases. Full article
Show Figures

Figure 1

19 pages, 1118 KiB  
Review
Lactylation in Glioblastoma: A Novel Epigenetic Modifier Bridging Epigenetic Plasticity and Metabolic Reprogramming
by Qingya Qiu, Hui Deng, Ping Song, Yushu Liu and Mengxian Zhang
Int. J. Mol. Sci. 2025, 26(7), 3368; https://doi.org/10.3390/ijms26073368 - 4 Apr 2025
Cited by 4 | Viewed by 1670
Abstract
Glioblastoma, the most common and aggressive primary malignant brain tumor, is characterized by a high rate of recurrence, disability, and lethality. Therefore, there is a pressing need to develop more effective prognostic biomarkers and treatment approaches for glioblastoma. Lactylation, an emerging form of [...] Read more.
Glioblastoma, the most common and aggressive primary malignant brain tumor, is characterized by a high rate of recurrence, disability, and lethality. Therefore, there is a pressing need to develop more effective prognostic biomarkers and treatment approaches for glioblastoma. Lactylation, an emerging form of protein post-translational modification, has been closely associated with lactate, a metabolite of glycolysis. Since the initial identification of lactylation sites in core histones in 2019, accumulating evidence has shown the critical role that lactylation plays in glioblastoma development, assessment of poor clinical prognosis, and immunosuppression, which provides a fresh angle for investigating the connection between metabolic reprogramming and epigenetic plasticity in glioblastoma cells. The objective of this paper is to present an overview of the metabolic and epigenetic roles of lactylation in the expanding field of glioblastoma research and explore the practical value of developing novel treatment plans combining targeted therapy and immunotherapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

23 pages, 2645 KiB  
Review
Lactate and Lactylation: Dual Regulators of T-Cell-Mediated Tumor Immunity and Immunotherapy
by Zhi-Nan Hao, Xiao-Ping Tan, Qing Zhang, Jie Li, Ruohan Xia and Zhaowu Ma
Biomolecules 2024, 14(12), 1646; https://doi.org/10.3390/biom14121646 - 21 Dec 2024
Cited by 12 | Viewed by 4577
Abstract
Lactate and its derivative, lactylation, play pivotal roles in modulating immune responses within the tumor microenvironment (TME), particularly in T-cell-mediated cancer immunotherapy. Elevated lactate levels, a hallmark of the Warburg effect, contribute to immune suppression through CD8+ T cell functionality and by [...] Read more.
Lactate and its derivative, lactylation, play pivotal roles in modulating immune responses within the tumor microenvironment (TME), particularly in T-cell-mediated cancer immunotherapy. Elevated lactate levels, a hallmark of the Warburg effect, contribute to immune suppression through CD8+ T cell functionality and by promoting regulatory T cell (Treg) activity. Lactylation, a post-translational modification (PTM), alters histone and non-histone proteins, influencing gene expression and further reinforcing immune suppression. In the complex TME, lactate and its derivative, lactylation, are not only associated with immune suppression but can also, under certain conditions, exert immunostimulatory effects that enhance cytotoxic responses. This review describes the dual roles of lactate and lactylation in T-cell-mediated tumor immunity, analyzing how these factors contribute to immune evasion, therapeutic resistance, and immune activation. Furthermore, the article highlights emerging therapeutic strategies aimed at inhibiting lactate production or disrupting lactylation pathways to achieve a balanced regulation of these dual effects. These strategies offer new insights into overcoming tumor-induced immune suppression and hold the potential to improve the efficacy of cancer immunotherapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 1297 KiB  
Review
Progress in Lactate Metabolism and Its Regulation via Small Molecule Drugs
by Jin Liu, Feng Zhou, Yang Tang, Linghui Li and Ling Li
Molecules 2024, 29(23), 5656; https://doi.org/10.3390/molecules29235656 - 29 Nov 2024
Cited by 3 | Viewed by 5266
Abstract
Lactate, once viewed as a byproduct of glycolysis and a metabolic “waste”, is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent [...] Read more.
Lactate, once viewed as a byproduct of glycolysis and a metabolic “waste”, is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes. Targeting lactate production, transport, and lactylation may offer therapeutic potential for multiple diseases, yet a systematic summary of the small molecules modulating lactate and its metabolism in various diseases is lacking. This review outlines the sources and clearance of lactate, as well as its roles in cancer, liver fibrosis, sepsis, ischemic stroke, myocardial infarction, and acute kidney injury, and summarizes the effects of small molecules on lactate regulation. It aims to provide a reference and direction for future research. Full article
Show Figures

Figure 1

25 pages, 34298 KiB  
Article
Establishment and Verification of a Novel Gene Signature Connecting Hypoxia and Lactylation for Predicting Prognosis and Immunotherapy of Pancreatic Ductal Adenocarcinoma Patients by Integrating Multi-Machine Learning and Single-Cell Analysis
by Ying Zheng, Yang Yang, Qunli Xiong, Yifei Ma and Qing Zhu
Int. J. Mol. Sci. 2024, 25(20), 11143; https://doi.org/10.3390/ijms252011143 - 17 Oct 2024
Cited by 5 | Viewed by 3474
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has earned a notorious reputation as one of the most formidable and deadliest malignant tumors. Within the tumor microenvironment, cancer cells have acquired the capability to maintain incessant expansion and increased proliferation in response to hypoxia via metabolic reconfiguration, [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has earned a notorious reputation as one of the most formidable and deadliest malignant tumors. Within the tumor microenvironment, cancer cells have acquired the capability to maintain incessant expansion and increased proliferation in response to hypoxia via metabolic reconfiguration, leading to elevated levels of lactate within the tumor surroundings. However, there have been limited studies specifically investigating the association between hypoxia and lactic acid metabolism-related lactylation in PDAC. In this study, multiple machine learning approaches, including LASSO regression analysis, XGBoost, and Random Forest, were employed to identify hub genes and construct a prognostic risk signature. The implementation of the CERES score and single-cell analysis was used to discern a prospective therapeutic target for the management of PDAC. CCK8 assay, colony formation assays, transwell, and wound-healing assays were used to explore both the proliferation and migration of PDAC cells affected by CENPA. In conclusion, we discovered two distinct subtypes characterized by their unique hypoxia and lactylation profiles and developed a risk score to evaluate prognosis, as well as response to immunotherapy and chemotherapy, in PDAC patients. Furthermore, we indicated that CENPA may serve as a promising therapeutic target for PDAC. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 3935 KiB  
Article
Oxygen Glucose Deprivation-Induced Lactylation of H3K9 Contributes to M1 Polarization and Inflammation of Microglia Through TNF Pathway
by Lu He, Rui Yin, Weijian Hang, Jinli Han, Juan Chen, Bin Wen and Ling Chen
Biomedicines 2024, 12(10), 2371; https://doi.org/10.3390/biomedicines12102371 - 17 Oct 2024
Cited by 4 | Viewed by 2625
Abstract
Background: Hypoxia-induced M1 polarization of microglia and resultant inflammation take part in the damage caused by hypoxic-ischemic encephalopathy (HIE). Histone lactylation, a novel epigenetic modification where lactate is added to lysine residues, may play a role in HIE pathogenesis. This study investigates the [...] Read more.
Background: Hypoxia-induced M1 polarization of microglia and resultant inflammation take part in the damage caused by hypoxic-ischemic encephalopathy (HIE). Histone lactylation, a novel epigenetic modification where lactate is added to lysine residues, may play a role in HIE pathogenesis. This study investigates the role of histone lactylation in hypoxia-induced M1 microglial polarization and inflammation, aiming to provide insights for HIE treatment. Methods: In this study, we assessed the effects of hypoxia on microglial polarization using both an HIE animal model and an oxygen–glucose deprivation cell model. Histone lactylation at various lysine residues was detected by Western blotting. Microglial polarization and inflammatory cytokines were analyzed by immunofluorescence, qPCR, and Western blotting. RNA sequencing, ChIP-qPCR, and siRNA were used to elucidate mechanisms of H3K9 lactylation. Results: H3K9 lactylation increased due to cytoplasmic lactate during M1 polarization. Inhibiting P300 or reducing lactate dehydrogenase A expression decreased H3K9 lactylation, suppressing M1 polarization. Transcriptomic analysis indicated that H3K9 lactylation regulated M1 polarization via the TNF signaling pathway. ChIP-qPCR confirmed H3K9 lactylation enrichment at the TNFα locus, promoting OGD-induced M1 polarization and inflammation. Conclusions: H3K9 lactylation promotes M1 polarization and inflammation via the TNF pathway, identifying it as a potential therapeutic target for neonatal HIE. Full article
(This article belongs to the Special Issue Neuroinflammation and Neuroprotection)
Show Figures

Figure 1

17 pages, 24599 KiB  
Article
Histone Lactylation Is Involved in Mouse Oocyte Maturation and Embryo Development
by Diqi Yang, Haoyi Zheng, Wenjie Lu, Xueqi Tian, Yanyu Sun and Hui Peng
Int. J. Mol. Sci. 2024, 25(9), 4821; https://doi.org/10.3390/ijms25094821 - 28 Apr 2024
Cited by 12 | Viewed by 3744
Abstract
Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, [...] Read more.
Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality. Full article
(This article belongs to the Special Issue Molecular Genetic Biology in Embryonic Development)
Show Figures

Figure 1

26 pages, 1661 KiB  
Review
An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions
by Laura Lossi, Claudia Castagna and Adalberto Merighi
Int. J. Mol. Sci. 2024, 25(7), 3881; https://doi.org/10.3390/ijms25073881 - 30 Mar 2024
Cited by 25 | Viewed by 8198
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in [...] Read more.
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer’s or Parkinson’s disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction. Full article
(This article belongs to the Special Issue Stress Signaling and Programmed Cell Death 2.0)
Show Figures

Figure 1

18 pages, 1078 KiB  
Review
Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases
by Shabnam Nohesara, Hamid Mostafavi Abdolmaleky and Sam Thiagalingam
Biomedicines 2024, 12(2), 457; https://doi.org/10.3390/biomedicines12020457 - 18 Feb 2024
Cited by 8 | Viewed by 4198
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer’s disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated [...] Read more.
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer’s disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

Back to TopTop