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Abstract: Epigenetic changes are changes in gene expression that do not involve alterations to the
DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which
and when genes are activated, thus orchestrating gene regulation and playing a central role in
development, health, and disease. The brain, being mostly formed by cells that do not undergo
a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal
death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic
modifications that have been described in the brain, with particular attention on those related
to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in
old age. DNA methylation and several types of histone modifications (acetylation, methylation,
phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players
in these processes. They are directly or indirectly involved in the onset of neurodegeneration
in Alzheimer’s or Parkinson’s disease. Therefore, this review briefly describes the roles of these
epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the
most important factors dynamically regulating or contributing to these changes, such as oxidative
stress, inflammation, and mitochondrial dysfunction.
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1. Introduction

Understanding the cellular and molecular mechanisms underlying aging is of paramount
importance due to the profound impact that aging has on human health and society. From
this perspective, epigenetics provides a crucial framework for comprehending its molecular
underpinnings. The genetic code, inscribed within the DNA sequence, serves as the
blueprint for life. Yet, within each cell, an additional layer of information, the epigenetic
code, dictates which and when genes are activated, thus orchestrating gene regulation and
playing a central role in development, health, and disease.

Epigenetics, a term coined by the British developmental biologist Conrad Waddington
in the mid-20th century [1], is the study of changes in gene expression that do not involve
alterations to the underlying DNA sequence. Epigenetic changes can be influenced by a
variety of factors, which may be intrinsic to the organisms, such as developmental pro-
cesses, but also extrinsic, i.e., environmental exposures and lifestyle choices. Remarkably,
various extrinsic factors have been recognized as potential modifiers of epigenetic patterns,
including nutrition, obesity, physical activity, tobacco smoking, alcohol use, exposure to
environmental contaminants, psychological stress, and working night shifts [2,3]. Over
time, epigenetic modifications can accumulate, leading to the establishment of an “epi-
genetic landscape” unique to an individual’s aging process. During aging, changes in
these epigenetic marks can lead to alterations in gene expression patterns, contributing to
age-related phenotypes and diseases. Among the several types of epigenetic modifications,
specific DNA methylation patterns correlate with chronological age. On these premises,
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researchers have developed a series of so-called epigenetic clocks that provide a molecular
measure of aging and can be used to assess the biological age of an individual, which may
differ from their chronological age [4]. Understanding the epigenetic changes associated
with aging opens avenues for potential interventions to slow down or reverse age-related
conditions [5,6]. Starting from this understanding, epigenetic therapies are being explored
to rejuvenate tissues and combat age-related diseases [7,8].

1.1. Literature Search Strategy

If one searches for the string “epigenetic changes in the brain” in PubMed, filtering for
reviews or systematic reviews in the last ten years, more than 1200 papers are retrieved. In
writing this paper, we aimed to focus on the studies describing, histologically and func-
tionally, the main epigenetic modifications in the mammalian brain during development,
adulthood, and old age. We also took into consideration the more important findings
related to the most diffused neurodegenerations, i.e., Alzheimer’s disease (AD) and Parkin-
son’s disease (PD). We used PubMed as a starting database but also made direct Internet
searches of exact phrases (in double quotes) related to the most important topics to be
addressed. The keywords used were “epigenetic”, “brain”, “neurons”, “development”,
“aging”, and “mammals”. These terms were first identified in the PubMed database and
their synonyms were recognized in the thesaurus. Variations in search terms were also
considered. The search was primarily focused on the last 10 years, but older relevant papers
were also included.

1.2. Types of Epigenetic Modifications

Today, there is no consensus in the field regarding the definition of epigenetic mod-
ifications. In his Nature paper of 2007 entitled Perceptions of Epigenetics, Adrian Bird
emphasized that, for epigeneticists, there is no obvious ‘epigene’ [9]. He proposed defin-
ing epigenetics as the structural adaptation of chromosomal regions to register, signal, or
perpetuate altered activity states, by this means implicitly depicting epigenetic markings
as reactive rather than proactive. Later, in 2008, a different definition was proposed in a
meeting on chromatin-based epigenetics hosted by the Banbury Conference Center and
Cold Spring Harbor Laboratory, defining an epigenetic trait as a stably heritable phenotype
resulting from changes in a chromosome without alterations in the DNA sequence [10].
Thus, there is no consensus as to whether or not non-coding RNAs could be regarded as
participating in epigenetics. Yet Shelley Berger and colleagues, in providing their view
and interpretation of the proceedings at the meeting, considered non-coding RNAs among
epigenetic initiators [10]. Since non-coding RNAs, as discussed later in this paper, have
been described as participating in several brain epigenetic modifications, we will consider
them as a third category of these modifications.

There are three main groups of epigenetic modifications (Figure 1). DNA methylation
and histone modifications are described initially. These two processes affect gene expression
by acting on the chemical structure of the DNA or the histones, respectively. In more recent
times, many modification processes of RNAs leading to the synthesis of so-called non-
coding RNAs were acknowledged to introduce a new level to the gene regulation process,
resulting in novel RNA epigenetics [11].
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Figure 1. Schematic representation of the three main groups of epigenetic modifications in mammalian
cells: DNA methylation, histone epigenetic modifications, and non-coding RNAs. DNA methylation
acts as an off-switch to block translation and occurs at CpG sites that are observed across the genome.
Methylation can occur in intergenic regions, CpG islands, and the gene body. Nevertheless, CpG
islands that are considered normal exhibit a lack of methylation throughout all stages of development.
This lack of methylation enables the transcription of the specific gene, provided that the necessary
transcription factors are present, and the chromatin structure is accessible to these factors. Histone
modifications are chemical alterations, which can have profound effects on gene expression and,
consequently, various cellular processes. These modifications form an epigenetic code that imparts
a distinct feature on chromatin architecture. The enzymes that catalyze these modifications can be
classified as writers, readers, and erasers. Writers are enzymes that are responsible for the acetylation,
methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation of histones.
Among them, KMTs and HATs are of relevance. Readers are responsible for the recognition of the
epigenetic marks on histones. Among readers are the readers of methyl- and acetyl-lysine residues.
Among erasers are histone demethylases and deacetylases. Non-coding RNAs are divided into short
and long non-coding RNAs. For simplicity, only the miRNA generation pathway is represented. Non-
coding RNAs can interact with DNA, RNA, and protein molecules to modulate gene transcription,
contribute to RNA inhibition or degradation, or serve as molecular guides, scaffolds, or decoys for
specific proteins, such as transcription factors. These many functions occur either in the nucleus or
the cell cytoplasm. Abbreviations: AC = acetylation; Ex = exon; lncRNA = long non-coding RNA;
Me = methylation, demethylation, or trimethylation; miRNA = microRNA; NXF1 = nuclear RNA
export factor 1; pre-miRNA; precursor miRNApri-mi RNA = hairpin-containing primary transcripts;
Su = sumoylation; and XPO5 = exportin 5. Created with BioRender.com.
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• DNA Methylation:

The addition of a methyl group to a cytosine base in the DNA, typically occurring
in the context of CpG dinucleotides, is known as DNA methylation [12,13]. CpG DNA
methylation plays a crucial role in regulating gene expression and often leads to gene
silencing. DNA methylation is a primordial mechanism observed in all realms of life. While
the enzymes responsible for methylation have stayed mostly the same, DNA methylation
has evolved to serve many purposes over time, such as protecting against transposable
elements and regulating gene expression. Human disorders, including neurodegenerative
diseases, are associated with abnormalities in DNA methylation [14]. CpG sites, also known
as CG sites, refer to certain regions inside the DNA molecule where a cytosine nucleotide is
immediately followed by a guanine nucleotide in the linear arrangement of bases along
its 5′ → 3′ orientation. CpG sites are found at a high frequency inside genomic areas
known as CpG islands, also referred to as CG islands. CpG islands are characterized by
having a GC content of over 50%, an observed CpG ratio (Obs/Exp) greater than 0.6, and
a length of over 200 base pairs. When CpG sites cluster into islands, they are generally
protected from DNA methylation. However, some islands within genes (referred to as
intragenic CpG islands) defy this repression and remain transcriptionally active. Intragenic
CpG islands influence mRNA isoform length, thereby expanding transcriptome diver-
sity [15]. Remarkably, the differential DNA methylation of CpG islands in normal human
adult somatic tissues allows for the distinction between neural and non-neural tissues [16],
and a database of DNA methylation profiles in the brain has been published [17]. DNA
methylation acts as a molecular “off switch” by preventing transcription factors and RNA
polymerase from accessing the promoter region of the gene, thereby inhibiting gene expres-
sion [18]. DNA methyltransferases (DNMTs), methyl-CpG binding proteins (MBPs), and
ten-eleven translocation proteins enable the maintenance, interpretation, and removal of
DNA methylation [19] (Table 1). Different forms of methylation, including 5-methylcytosine
(5 mC), 5-hydroxymethylcytosine, and other oxidized forms, have been detected by recently
developed sequencing technologies. Another form of DNA methylation occurs on adenine.
In DNA biology, only three forms of adenine methylation are considered physiologically
significant. These compounds, 1-methyladenine (1 mA) and 3-methyladenine (3 mA), are
considered by many to be the result of alkylation damage in DNA and, thus, are significant
in the study of genome stability and DNA repair [20]. Recent developments in detection
methods have shown DNA N6-methyl deoxyadenosine (6 mA) as a methylation alteration
at the sixth position of adenine in DNA, with an impact on neurodegeneration [21].

• Histone Modifications:

Histone modifications are central regulators of gene expression, as they determine
which genes are turned on or off in each cell or tissue, affecting cellular function [22] and, in
the general frame of this paper, contributing to the aging phenotype. Histones are protein
spools around which DNA is wound. Chemical modifications, such as acetylation [23],
methylation [24], lysine di-methylation and tri-methylation [25,26], phosphorylation [27],
ubiquitination [28], sumoylation [29], lactylation [30], serotonylation [31], and crotonyla-
tion [32] can alter the structure of histones and, consequently, regulate DNA transcription.
The interplay of these modifications at specific histone residues creates a dynamic “chro-
matin landscape” that can either promote or inhibit gene transcription. Thus, by modifying
the chromatin structure and accessibility, the different types of histone modifications
provide a complex regulatory framework that governs gene expression. The precise com-
binations of these modifications at specific histone residues create a “histone code” that
can be read and interpreted by various cellular machinery to dictate gene transcription
outcomes [33].

• Non-coding RNAs (ncRNAs):

ncRNAs are functional RNA molecules transcribed from DNA but not translated into
proteins. They were initially thought to regulate gene expression, primarily at the post-
transcriptional level. However, recent research has revealed that various classes of ncRNAs
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participate in epigenetic control. Small RNA molecules, like microRNAs (miRNAs) and
long non-coding RNAs (lncRNAs), can bind to messenger RNAs (mRNAs) and inhibit
their translation or promote their degradation. This post-transcriptional gene regulation is
a fundamental part of epigenetic control [34].

1.2.1. DNA Methylation

Remarkably, the brain exhibits a notable concentration of DNA methylation, but it is
important to note that 5 mC only constitutes around 1% of the total nucleic acids present in
the mammalian genome, which, in general, shows a scarcity of CpG sites. CpG sites that
are observed across the genome exhibit a significant level of methylation, except in CpG
islands. It is noteworthy that non-CpG methylation has been observed in both mouse and
human embryonic stem cells. However, it is important to note that this methylation is not
present in mature tissues [12].

Table 1. Proteins acting on DNA methylation in the nervous tissue. For abbreviations see the list at
the end of the main text.

Protein Family Family Members Main Functions

DNMTs

DNMT1
DNMT3A
DNMT3B

DNMT1 is the switch from neurogenesis to gliogenesis during NSC
differentiation [35].
DNMT3A regulates NSC proliferation and differentiation [36] and
controls adult hippocampal neurogenesis of GABAergic neurons [37].
DNMT3B is required for the proper timing of neuronal differentiation
and maturation [38].

MBD proteins
MBD1–5
2MeCP2

MBD1 deficiency causes the accumulation of NSCs and the impairment
of neuronal lineage differentiation [39–41] and contributes to the
genesis of acute pain by epigenetic gene silencing in primary sensory
neurons [42].
MBD2 and MBD3 are crucial for ESC differentiation to neural cells [43].
MBD4 intervenes in selective gene expression profiles in cortical
neurons [44].
MBD5 controls neurite outgrowth and is responsible for 2Iq23.1
microdeletion syndrome [45].
2MeCP2 controls neuronal maturation and dendritic arborization
during development [46] and in the adult brain [47].

MBPs

Zinc finger/Kaiso proteins
Kaiso/ZBTB33

ZBTB4
ZBTB38

Kaiso/ZBTB33 intervenes in the neuronal commitment of NSCs [48].
ZBTB4 controls gene expression in different types of neurons
(hippocampus, olfactory pathways, motor nuclei of the brainstem, and
granular layer of the cerebellum) [49] and is associated with
age-at-onset AD [50].
ZBTB38 can repress transcription by binding to methylated DNA. It
leads to early embryonic death via the suppression of the transcription
factors Nanog and Sox2 [51].

SRA proteins
UHRF1
UHRF2

UHRF1 is critical for the maintenance of DNA methylation through cell
division and is involved in DNA damage repair. It regulates the
proliferation of NSCs [52].
UHRF2 is involved in cell cycle progression and controls the transition
from RPCs to differentiated cells by regulating the cell cycle, epigenetic
modifications, and gene expression [53].

Recent research has provided a more comprehensive examination of the murine frontal
cortex. This investigation has demonstrated that, while the bulk of methylation events take
place at CpG sites, a notable proportion of methylation also happens at non-CpG sites.

Significantly, the impact of DNA methylation on gene activity can vary depending
on the specific genomic areas and the underlying genetic sequence. DNA methylation can
occur in intergenic regions, CpG islands, and the gene body [12,54–57]. An estimated 45%
of the mammalian genome comprises transposable and viral elements, which are rendered
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inactive by the process of bulk methylation in the DNA intergenic regions. The potential
danger of these elements lies in their ability to cause gene disruption and DNA mutation
when replicated and inserted. A significant proportion of gene promoters (frequently of
housekeeping genes), around 70%, are located within CpG islands. CpG islands, particu-
larly those linked to promoters, exhibit a significant degree of conservation across both mice
and humans. The presence and conservation of CpG islands over evolutionary time suggest
that these genomic areas hold significant functional significance. It has been possible to
predict the methylation status of CpG islands in the human brain using a bioinformatic
approach reaching an 84.65% specificity and an 84.32% sensitivity [58]. An examination
of DNA methylation conservation between humans and mice revealed that there is no
correlation between DNA methylation and sequence conservation. On the contrary, there
is a positive correlation between a higher CpG density and a greater conservation of DNA
methylation. Furthermore, the conservation and alteration markers of DNA methylation
throughout mammalian brain evolution are strongly influenced by genomic context, in
addition to CpG abundance [59]. Remarkably, when the CpG methylation landscapes of
adult mouse neurons in the hippocampal dentate gyrus before and after synchronous neu-
ronal activity were compared, approximately 1.4% of the 219,991 CpGs that were assessed
exhibited fast active demethylation or new methylation [60]. Certain alterations stayed
unchanged for a minimum of 24 h. The CpGs that were modified by the activity showed a
wide distribution across the genome, with notable concentrations in places with a low CpG
density. These modified CpGs were linked to genes that are particular to the brain and
are involved in neural plasticity [60]. The gene body is commonly defined as the region of
the gene that extends beyond the initial exon, as it has been observed that methylation of
the first exon, like promoter methylation, can result in the suppression of gene expression.
Multiple studies have provided evidence indicating that the process of DNA methylation
occurring within the gene body is positively correlated with an increased level of gene
expression in cells undergoing division [61]. Nevertheless, in cells that divide at a slow
rate or do not divide at all, such as those found in the brain, it has been observed that gene
body methylation does not correlate with the upregulation of gene expression [12]. Many
genes exhibiting unique methylation patterns specific to certain cell types were detected
after a DNA methylation analysis on purified neurons and glia from postmortem human
brain tissues [62]. Specifically, distinct changes in methylation patterns related to aging,
particularly in neurons, such as CLU, SYNJ2, and NCOR2, as well as in glia, including RAI1,
CXXC5, and INPP5A, were observed. In addition, unique connections between neurons or
glial cells and the progression of AD Braak stages were discovered in genes such as MCF2L,
ANK1, MAP2, LRRC8B, STK32C, and S100B. DNA methylation has also been involved
in the epigenetics of aging [63]. Studies on anti-aging therapies in mice, such as caloric
restriction, dwarfism, and rapamycin treatment, provide the most compelling evidence
that age-related alterations in DNA methylation contribute to the aging process. These
anti-aging treatments slow down epigenetic clocks and can correct or prevent from 20 to
40% of age-related alterations in DNA methylation [54].

1.2.2. Histone Epigenetic Modifications

Histones are proteins found in the cell nucleus that play a critical role in packaging
and organizing DNA into a compact structure called chromatin. Epigenetic modifications
of histones involve chemical alterations to these proteins, which can have profound effects
on gene expression and, consequently, various cellular processes. These modifications
are essential for the regulation of gene activity and have far-reaching implications in
development, health, and disease.

Several key histone modifications have been extensively studied. These include acety-
lation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, crotonyla-
tion, and serotonylation (Table 2 and Figures 1 and 2).

Acetylation, the addition of an acetyl group, typically on lysine residues on histone
tails, is generally associated with gene activation. Acetyl groups are added to histones by
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histone acetyltransferases (HATs). This process neutralizes the positive charge on histones,
leading to a relaxed chromatin structure that is more open and accessible to transcription
factors and RNA polymerase [64]. The ensuing changes affect the accessibility of DNA to
cellular machinery [65].

Methylation, the addition of 1–3 methyl groups to lysine or arginine residues on histone
proteins, is carried out by histone methyltransferases (HMTs) [66] and can be associated
with both gene activation (by recruiting chromatin-modifying complexes) and repression
(forming barriers to inhibit transcription), depending on the specific histone residue and
the degree of methylation [24].

Phosphorylation is associated with changes in chromatin structure during various
cellular processes, including DNA replication, repair, and mitosis. Histone phosphorylation
is the addition of phosphate groups to serine, tyrosine, or threonine residues on histone
tails. This modification can alter the chromatin structure and facilitate gene activation or
repression [67].

Ubiquitination, the addition of ubiquitin molecules to specific lysine residues on histone
tails, is carried out by ubiquitin ligases. Ubiquitination can affect gene expression, as it alters
the chromatin structure by recruiting proteins that either activate or repress transcription.
It plays a role in transcriptional regulation and DNA repair [68].

Sumoylation, the addition of small ubiquitin-like modifier (SUMO) proteins to spe-
cific lysine residues on histone tails, is catalyzed by SUMO ligases. Sumoylation can
affect the chromatin structure and gene expression by recruiting proteins that modulate
transcriptional activity and contribute to genome stability [69].

Lactylation is the addition of lactate to histone molecules. Lactylation can accelerate
transcription and promote gene expression. It has been implicated in several disease model
molecules [70].

Table 2. Histone modifications and their biological effects. Amino acid residues are indicated by
one-letter notation [71]. Abbreviations: Ac = acetylation; Cr = crotonylation; La = lactylation; Me =
methylation; P = phosphorylation; Ser = serotonylation; Su = sumoylation; and Ub = ubiquitination.

Histone Type of Modification Residue(s) Biological Effect

H1 Su K17, K21, K34 Gene repression, chromatin compaction, and
restriction of embryonic cell fate identity [72]

H2A

Ac K5 Gene activation [73]

P S1 Mitosis [74]

P T120 Mitosis, gene activation [27]

Su K127 Gene repression, chromatin compaction [75]

Ub K119 Gene repression [76]

H2AX
P S139 DNA repair [77]

Su K5, K9, K13, K15, K118, K119,
K127, K133, K134 Gene repression, chromatin compaction [78]

H2B

Ac K5, K12, K15, K20 Gene activation [79]

P S14 Apoptosis [80,81]

Su K16 Gene repression, chromatin compaction [82]

Ub K12 Gene activation [83]

H3

Ac K4, K9, K14, K18, K23, K27,
K36 Gene activation [84]

Ac K56 Histone deposition [85]

Cr K9 DNA repair [32]

Cr K4, K14, K18, K27 Gene activation [86]

La K4, K18, K79 Gene activation [30]

Me K9, K27 Gene repression [87]
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Table 2. Cont.

Histone Type of Modification Residue(s) Biological Effect

H3

Me R2, R8, R17, R26 Gene activation [88]

P T6 Gene activation [89]

P S10, S28, T3, T11 Mitosis, DNA repair [90,91]

P T45 DNA replication, response to DNA damage [92]

Ser Q5 Gene activation [93]

Su K18 Gene repression, chromatin compaction [94]

Ub K23 Maintenance of DNA methylation [95]

H4

Me R3 Gene activation [96]

P S1 Mitosis, gene activation [74]

Ac K12, K91 Histone deposition [97]

Ac K5, K8, K12, K16 Gene activation [98]

Me K20 Gene repression [99]

Su K5, K8, K12, K16, K20 Gene repression, chromatin compaction [100]

Crotonylation is the addition of crotonyl groups to histone lysine residues. Crotonyla-
tion plays a role in DNA damage and repair, and gene activation [101].

Serotonylaton was discovered in 2019 when it was demonstrated that serotonin can be
covalently attached to histone H3 by transglutaminase 2 (TGM2) [102]. The identification of
histone serotonylation uncovered a fascinating prospect in which small molecules engaged
in intercellular communication might be directly associated with chromatin, introducing
an extra layer of intricacy to both chromatin regulation and neurotransmitter-dependent
signaling networks [103].
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known to play critical roles in chromatin regulation (see text). The linker histone H1 has a three-
domain structure consisting of a short N-terminal tail, a central globular domain, and a long, extremely
basic C-terminal tail [104]. Only the N-terminal tail is shown here. Aminoacidic residues are indicated
by one-letter notation [71]. Amino lysine acid residues (K) undergoing epigenetic changes so far
described in the old brain are indicated in red font. Sequences specific to H2AX are indicated by light
orange circles. Abbreviations: AC = acetylation; Cr = crotonylation; Las = lactylation; Me = methyla-
tion; P = phosphorylation; Ser = serotonylation; Su = sumoylation; and Ub = ubiquitination. Created
with BioRender.com.

The above histone modifications are pivotal for gene regulation and genome stability.
They contribute to various cellular processes, including gene expression, cell differentiation,
and DNA repair, and, thus, are crucial in cell fate determination during development,
contributing to the establishment of lineage-specific gene expression patterns. Remark-
ably, some histone modifications can be passed on to daughter cells during cell division,
contributing to the so-called “epigenetic inheritance” [105]. Epigenetic inheritance was
first described in mice upon the demonstration of a modification of the Kit gene in the
progeny of heterozygotes with the null mutant Kit(tm1Alf) and relevant loss-of-function
pigmentation phenotypes, affecting adult phenotypes in multiple following generations of
mice. This gene modification was associated with the zygotic transfer of RNA molecules,
similar to the paramutation induced in plants by cross-talk between allelic loci [106]. Later,
the same group demonstrated that the paramutation mechanism was of relevance to patho-
physiology by injecting fertilized mouse eggs with RNAs targeting Cdk9, a key regulator
of cardiac growth, and obtaining cardiac hypertrophy in the progeny [107].

1.2.3. ncRNAs

ncRNAs that do not undergo translation to produce proteins can be categorized
into two main groups: housekeeping ncRNAs and regulatory ncRNAs [108–110]. RNA
molecules with regulatory functions can be broadly classified into two main categories
according to their size: short-chain non-coding RNAs, which encompass small interfering
RNAs (siRNAs), miRNAs, and PIWI-interacting RNAs (piRNAs), and lncRNAs [109,111].
siRNAs have a size of 19–24 bp, derive from double-stranded DNA, and silence gene
transcription [112]. The same function is accomplished by miRNAs that are 19–24 bp long
and originate from hairpin-containing primary transcripts (pri-miRNA) [112]. Notably,
miRNAs have been associated with the regulation of neural stem cell (NSC) differentiation,
apoptosis, and some neurodegenerative disorders [113,114]. piRNAs are of a larger size
(26–31 bp), derive from long-chain size precursors, and repress transposons via transcrip-
tional or post-transcriptional mechanisms [115]. lncRNAs have a size of more than 200 bp,
derive from multiple sources, and regulate gene expression in various ways, including
epigenetic, transcriptional, post-transcriptional, translational, and protein location mecha-
nisms [109]. Remarkably lncRNAs have been implicated in the early response of neurons
to BDNF stimulation [116].

2. Epigenetic Regulation in the Developing and Mature Brain

Epigenetic modifications are central players in the intricate processes of brain devel-
opment and function. The dynamic interplay between genetics and epigenetics shapes
the complexity of the brain and its ability to adapt to a constantly changing environ-
ment. Broadly speaking, epigenetic and epitranscriptomic changes, i.e., the RNA editing
that affects mRNA functions, regulates neuronal lineage, differentiation, and connectivity,
with obvious consequences on the structure and function of synapses. In addition, both
types of changes have been associated with several neurodevelopmental disorders [117].
Interestingly, the dysregulation of epigenetic processes has been implicated in autism spec-
trum disorder (ASD) and intellectual disabilities, further highlighting the significance of
epigenetics in brain development and maturation [118].

BioRender.com
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In the developing mammalian cortex, radial glial cells (RGCs) act as primary NSCs
and give rise to a variety of neurons and glial cells following intricate developmental
programs with astounding spatiotemporal accuracy. Controlling RGCs’ temporal compe-
tency is a crucial mechanism for the cerebral cortex’s highly preserved and predictable
structure. Remarkably, the pattern of gene expression of RGCs is largely shaped by several
epigenetic controls, including DNA methylation, histone modifications such as H3K4me3
and H3K27me3, and 3D chromatin architecture [119]. Epitranscriptomic changes, such as
m6A-eRNA methylation and m5C RNA methylation, also control the function and turnover
of cell-type-specific transcripts, which, in turn, regulates the temporal pre-patterning of
RGCs [119]. DNA methylation patterns have a well-recognized role in NSC proliferation
and differentiation and help to establish and maintain the specific identity of neurons,
contributing to the diversity of neuronal subtypes in the brain [19,120]. It has been demon-
strated that, during the transition from fetal to young adult development, there is a sig-
nificant rearrangement of the methylome, which is closely associated with the process of
synaptogenesis. During this temporal phase, there is a notable accumulation of highly
conserved non-CG methylation (mCH) specifically in neurons, but glial cells do not exhibit
a similar pattern [120]. Consequently, mCH emerged as the prevailing form of methylation
within the human neuronal genome. Other studies have provided comprehensive and high-
resolution maps of 5-hydroxymethylcytosine (hmC) at the single-base level. These maps
have revealed that hmC is present in the genomes of fetal brain cells, specifically marking
sites that are believed to be involved in regulatory processes [120]. Growing evidence
also suggests that DNA cytosine and hydroxyl cytosine methylation carried by DNMTs
and/or MBPs plays a pivotal role in neurogenesis, neuronal differentiation, synaptogenesis,
learning, and memory [121] (Table 2). It has also been recently demonstrated that DNA
methylation regulates the differentiation of oligodendrocytes and Schwann cells during
development and repair [122]. Remarkably, experience-dependent DNA methylation can
modify gene expression and contribute to the brain’s ability to adapt to environmental
challenges [123]. On the other hand, the mechanisms of deviant DNA methylation in neu-
rodegenerative diseases continue to be unclear. Remarkably, DNA methylation modified
and potentially restored youthful gene expression patterns in one study, as drugs targeting
this epigenetic modification, such as 5-azacytidine and decitabine, can reverse age-related
neurodegeneration [124]. However, a later study reported the opposite effects, as exposure
to 5-azacytidine for one day during development caused neurodegeneration in newborn
mice and led to neurobehavioral impairments in adult animals [125]. The therapeutic
potential of these and other epigenetic drugs for the treatment of brain pathologies has
very recently been reviewed [126].

Histone methylation and acetylation guide the differentiation of NSCs into various
neural cell types, including neurons and glial cells [127]. In contrast to the reversible
and dynamic nature of acetylation, which is primarily linked to the expression of specific
genes, histone methylation is characterized by its stability and potential involvement in
the long-term maintenance of specific genomic areas [127]. Histone methylation is critical
for the regulation of neurodevelopmental processes, synaptic plasticity, and the formation
of long-term memories [128]. In particular, lysine methylation is a direct contributor to
epigenetic inheritance and H3K4me has been found to promote transcriptional activation,
while H3K9me is related to transcriptional suppression [127] (Table 1). Histone acetylation,
particularly at genes associated with synaptic plasticity, plays a critical role in memory
formation and the ability of neurons to strengthen or weaken their connections [129]. Pre-
vious research demonstrated that there was an elevation in histone acetylation inside the
hippocampus following training, in contrast to untrained control subjects, and a reduction
in histone acetylation was observed in other brain areas, such as the cortex (reviewed
in [129]). Lysine deacetylase (KDAC) inhibitors, such as trichostatin A (TSA) and sodium
butyrate (NaB), have been shown to augment long-term potentiation (LTP). Additionally,
the administration of NaB through systemic injection has been demonstrated to enhance
memory in vivo. The administration of TSA through intrahippocampal injection immedi-
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ately following the learning process leads to improvements in long-term memory, while
having no impact on short-term memory. This finding suggests that histone acetylation
plays a crucial role in the consolidation of memory. Research has also indicated that the
administration of NaB can promote the consolidation of long-term memory in response
to mild stimuli and prolong the persistence of long-term memory. Therefore, it can be
inferred that histone acetylation plays a significant part in the process of long-term memory
formation [129]. Remarkably, histone acetylation, which has been associated with the
establishment of long-term memory and synaptic plasticity, may take place at many lysine
residues located within the four core histone proteins. It is worth noting that alterations
in histone acetylation are associated with AD and may serve as potential diagnostic and
therapeutic targets [130].

Histone phosphorylation is associated with synaptic plasticity and learning, contribut-
ing to the regulation of immediate early genes in response to neuronal activity, which is
crucial for memory consolidation [131]. Histone H2B ubiquitination recruits H3K4me3
and plays a role in the regulation of several genes involved in neurodevelopment and
synaptic plasticity [132]. Histone sumoylation contributes to the epigenetic regulation of
genes involved in neuronal differentiation and synaptic plasticity by modulating N-methyl-
D-aspartate (NMDA) receptors and L- and N-type voltage-gated calcium channels [133].
Crotonylation is another epigenetic modification that has been demonstrated in NSCs. This
type of epigenetic mark is involved in NSC self-renewal and differentiation (by protecting
pluripotency factors), as well as telomere protection [101].

ncRNAs, including miRNAs, regulate gene expression at synapses, influencing synap-
tic plasticity and learning processes [134]. Among the regulated genes is cAMP response
element binding protein 2 (CREB2), which is crucial for long-term synaptic plasticity.
The identification of distinctive DNA non-coding regulatory sequences that are impor-
tant in brain cell differentiation, maturity, and plasticity has also been made possible by
genome-wide analyses of epigenetic changes. Genomic enhancer elements are brief DNA
regulatory sequences that bind transcription factors and work with gene promoters to
increase transcriptional activity. This mechanism regulates gene expression programs
crucial for determining the fate and function of neurons and is linked to many brain
disease states [135]. Neurons are mostly rich in enhancers, which undergo bidirectional
transcription to generate non-coding enhancer RNAs (eRNAs) and underlie dynamic gene
expression patterns and cell-type specificity [135]. A list of references on the enhancers
linked to neuronal development can be found in Supplementary Table S1 from [135].

Dynamic Regulation of Epigenetic Modifications in Response to Environmental Factors

DNA methylation is a stable epigenetic modification; however, it can be dynamically
altered in response to environmental factors such as diet, stress, toxins, and early-life
experiences [136]. Studies have, e.g., shown that maternal diet during pregnancy can
lead to changes in DNA methylation patterns in offspring, affecting long-term health
outcomes [137].

Histone modifications can also be dynamically regulated in response to environmental
factors, a phenomenon known as epigenetic plasticity. This process allows the genome
to adapt to changing conditions and underscores the interaction between genes and the
environment. Positive environmental factors, such as cognitive stimulation and physical
activity, can promote histone modifications associated with synaptic plasticity and learn-
ing. Studies in rodents have shown that environmental enrichment can lead to increased
histone acetylation and improved cognitive function [138]. On the other hand, exposure
to drugs and environmental toxins also affects histone acetylation [139]. Chronic expo-
sure to addictive substances, such as cocaine, can lead to changes in histone acetylation
patterns in reward-related brain regions, contributing to addiction-related behaviors [140].
Histone methylation can also be dynamically regulated by stressors, including physical
and psychological stress. Stress-induced changes in histone methylation can affect gene
expression patterns in several areas of the brain [141], and chronic stress can lead to alter-
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ations in histone methylation in genes associated with mood regulation, contributing to the
development of mood disorders [142].

3. Epigenetic Modifications in the Aging Brain

The decline in physiological functions that characterize aging is particularly apparent
in the brain, which is mainly populated by postmitotic neurons that cannot be renewed and
are, therefore, at risk of alterations leading to neurodegenerative disorders and/or neuronal
death. One of the hallmark structural changes in the aging brain is a decrease in brain vol-
ume (atrophy), particularly in regions associated with memory and higher-order cognition,
such as the hippocampus and the prefrontal cortex, which are critical for recall and execu-
tive function. While not as dramatic as in neurodegenerative diseases, the physiologically
aging brain, particularly in selected regions, experiences some degree of downregulation of
genes associated with synaptic and mitochondrial function, neuronal loss, and impaired
microglial function, which can all contribute to the cognitive deficits observed in older
people [143,144]. More specifically, a series of epigenetic modifications occur at the Bdnf
gene, resulting in reduced levels of BDNF mRNA in the hippocampi of aged mice [145,146].
In addition, an altered NAD+/NADH ratio impacts the function of NAD+-dependent
HDAC in aged neurons [147]. The activity of sirtuins declines gradually with age due to
the drop in NAD+ levels in cells. SIRT1 can control axonal development, synaptic processes
related to cognitive function, and synaptic plasticity in aged individuals [147–149]. Re-
duced SIRT1 function in aged neurons could hinder cognitive abilities in older individuals.
Hippocampal CA1 neurons lacking Sirt1 exhibited reduced synaptophysin levels, poor LTP,
and a decreased dendritic density [149]. Sirt1-deficient animals exhibit decreased CREB
levels, leading to impaired CREB binding to BDNF and potentially causing reduced BDNF
levels in the brain [150]. SIRT1 influences the creation of connections between neurons and
their ability to change to control the process of memory formation. Another prominent
feature of brain aging is the ability of dendritic spines to change their structure. Age-related
reductions in spine number and maturity, as well as changes in synaptic transmission, may
be a direct result of abnormal neural plasticity that affects the aged brain [151].

In addition, age-related alterations in the white matter, including demyelination and
reduced integrity of white matter tracts, can lead to slowed information processing and
cognitive decline [152].

Functional changes comprise cognitive decline with a reduction in processing speed,
working memory, which is responsible for temporarily holding and manipulating infor-
mation [153], episodic memory, which involves the ability to recall specific events and
details [154], and changes in attention, including a reduced ability to filter out irrelevant
information, which can affect task performance [155]. Other functional alterations dis-
turb neurotransmitter systems, particularly the decline in dopamine and acetylcholine
levels [156], and functional connectivity patterns within the brain’s networks, altering
information processing and integration [157].

Aging has an obvious impact on neurological disorders, being the primary risk factor
for neurodegenerative disorders such as AD and PD. Recent research has shown that
epigenetic changes, specifically modifications to histones and DNA, play a pivotal role in
the aging process and the development of age-related neurological conditions [158]. Aging
also increases susceptibility to stroke and cerebrovascular diseases due to vascular changes,
including reduced cerebral blood flow and the development of small vessel disease [159].
There are several ways in which epigenetic modifications can contribute to age-related
cognitive decline. As mentioned in the previous section, the influence of epigenetic marks
on the expression of genes associated with neuroplasticity and synaptic function may be
effective in old age, leading, broadly speaking, to the impairment of brain structure and
function [160]. For example, alterations in histone acetylation and DNA methylation are
associated with AD and may serve as potential diagnostic and therapeutic targets [130].
Likewise, H3K27cr has been observed in AD to regulate exocytotic mechanisms of amyloid
β clearance [161], and H4K12la is specifically activated in plaques of the 5XFAD mouse [30].
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Epigenetic modifications in the aging brain can also serve as biomarkers for predicting
age-related cognitive decline and the risk of developing neurodegenerative disorders [162].
Epigenetic clocks, which estimate biological age based on DNA methylation patterns,
have shown promise in this regard [163]. Epigenetic clocks have, indeed, revealed that
the epigenetic age of brain tissues can differ from chronological age and that at least
certain areas of the brain may undergo accelerated aging [164]. Remarkably, single-cell
transcriptomes from the neurogenic area of the subventricular zone in mice spanning
various ages were recently obtained, and using regression models based on single cells, both
the chronological and biological age (calculated from brain stem cell proliferation capability)
were calculated, concluding that these aging clocks can be applied to several groups of
mice, different brain areas, and other animal species [165]. In addition, heterochronic
parabiosis (blood pairing of mice of dissimilar ages) and exercise were found to counteract
transcriptome aging in neurogenic areas, although through distinct mechanisms to show
that these clocks may be used to measure transcriptome rejuvenation. Therefore, epigenetic
clocks have been linked to longevity and age-related health outcomes, and further research
in the field may provide insights into the mechanisms underlying healthy aging [166].

An important feature of epigenetic modifications is that they are reversible, making
them attractive targets for therapy [167]. Therefore, developing drugs or interventions
that can modify epigenetic marks may offer avenues for slowing down the aging process
or mitigating age-related neurodegenerative diseases [126]. Also of importance is that
epigenetic changes in the aging brain are influenced by environmental factors, including
diet, physical activity, and stress. Thus, understanding how these factors impact epigenetic
modifications can inform lifestyle interventions that promote healthy brain aging [168].

Oxidative stress [169], chronic inflammation [170], changes in chromatin remodel-
ing [171], dysregulation of the enzymes involved in histone regulation [172], senescent
cells [173], and telomere shortening [174] are among the several factors that may contribute
to histone epigenetic changes in the aging brain.

3.1. Contribution of Oxidative Stress to Epigenetic Changes in the Aging Brain

Oxidative stress is a prominent factor in the aging process and a hallmark of aging.
Among its several consequences, oxidative stress may lead to different types of epigenetic
changes, from DNA methylation to histone modifications and non-coding RNA profiles that
can influence gene expression and contribute to age-related neurodegenerative conditions.
Overall, oxidative-stress-induced DNA damage can impair the enzymes responsible for
maintaining the epigenetic marks, leading to their dysregulation [175]. DNA damage can
trigger changes in histone modifications, including increased histone H3K9 acetylation,
which is associated with DNA repair processes [176]. Several effects have been described
because of oxidative stress, including the aberrant methylation of CpG sites, resulting in
DNA hypomethylation or hypermethylation. This can, in turn, affect the expression of
genes involved in neuroprotection, synaptic plasticity, and inflammation [177]. Oxidative
stress can also disrupt the balance of histone modifications. For instance, increased levels
of oxidative stress may reduce acetylation and promote deacetylation, leading to the
transcriptional repression of neuroprotective genes [178]. Oxidative stress can, likewise,
influence the expression of non-coding RNAs, including miRNAs and lncRNAs. These
non-coding RNAs can regulate the expression of genes associated with neurodegenerative
processes [179].

3.2. Contribution of Inflammation to Epigenetic Changes in the Aging Brain

Inflammation is a central feature of aging-related neurodegenerative diseases, and it
is increasingly being recognized as a contributor to epigenetic changes in the aging brain.
Epigenetic modifications, including DNA methylation and histone acetylation, can regulate
the expression of pro-inflammatory genes and trigger a vicious circle that contributes to
the sustained activation of inflammatory pathways [180].
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Alterations in DNA methylation patterns may affect the regulation of genes involved
in immune responses, oxidative stress, and neuroinflammation [181]. Chronic inflamma-
tion sustained by pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα),
can lead to histone modifications that promote gene expression changes associated with
inflammatory responses [182]. Thus, inflammation can increase histone acetylation at pro-
inflammatory gene promoters, with sustained activation of inflammatory pathways [142].
Inflammatory processes can also alter the expression of miRNAs that target genes involved
in neuroinflammation and neurodegeneration [183].

Another source of inflammation in the aging brain derives from senescent cells. Cells
undergo a process known as cellular senescence, in which they alter their normal phe-
notype in response to stress and enter a prolonged cell cycle arrest state accompanied
by a distinctive secretory phenotype [184], referred to as senescence-associated secre-
tory phenotype (SASP), with the secretion, among others, of pro-inflammatory cytokines,
growth factors, matrix-remodeling enzymes, and miRNAs. Additionally, senescent cells
exhibit an altered morphology and proteostasis, a decreased propensity to undergo apop-
tosis, impaired autophagy, the accumulation of lipid droplets, and increased activity of
senescence-associated-galactosidase (SA-gal). It is worth noting that SASP components can
influence epigenetic changes such as DNA methylation, chromatin remodeling, and histone
post-translational modifications in nearby cells [185], and that senolytic drugs selectively
targeting and eliminating senescent cells have the potential to reduce inflammation and
oxidative stress [151].

3.3. Contribution of Mitochondrial Dysfunction to Epigenetic Changes in the Aging Brain

Mitochondrial dysfunction, including mitochondrial stress, increased oxidative dam-
age, and reduced ATP production, can lead to alterations in DNA methylation patterns.
These changes may affect the regulation of genes involved in energy metabolism, oxidative
stress responses, and neuronal survival [186]. Mitochondrial dysfunction can also lead to
the altered expression of non-coding RNAs, including miRNAs and lncRNAs. Dysregulated
non-coding RNAs can target genes involved in mitochondrial biogenesis, oxidative stress
responses, and neuronal maintenance [187]. Epigenetic modifications regulate the expres-
sion of mitochondrial genes. These modifications can affect the efficiency of mitochondrial
energy production and oxidative stress responses [188]. Mitochondrial dysfunction can
lead to the release of mitochondrial-derived signals, such as reactive oxygen species (ROS)
and mitochondrial DNA fragments. These signals can influence epigenetic changes in
nearby cells, including neurons, leading to altered gene expression patterns [189].

3.4. Other Factors Contributing to Epigenetic Changes in the Aging Brain

Age-related changes in chromatin remodeling complexes can influence histone modifi-
cations. For instance, reduced activity of ATP-dependent chromatin remodeling complexes
can lead to changes in histone acetylation and methylation patterns [190]. Likewise, the
age-related dysregulation of enzymes responsible for adding (writers) or removing (erasers)
histone modifications can result in imbalanced histone marks. For example, altered activity
of HATs or histone deacetylases (HDACs) can affect histone acetylation levels [191]. In
keeping with these observations, small molecules targeting epigenetic enzymes, such as
DNMTs and HDACs, are being investigated as potential interventions to reverse age-related
epigenetic changes and restore youthful gene expression patterns [192]. As mentioned
previously, cellular senescence may induce epigenetic changes such as alterations in DNA
methylation [193], histone-associated epigenetic mechanisms [194], chromatin remodel-
ing [195], and non-coding RNA expression [195]. Senescence-associated epigenetic changes
interact with the networks that regulate senescence and result in different phenotypes of
cell senescence. Telomere shortening, a characteristic of aging, can also trigger chromatin
alterations and changes in histone modifications at telomeric regions. These alterations can
affect gene expression near telomeres [196]. This is because telomeres and subtelomeres,
i.e., the regions of transition between chromosome-specific DNA and the telomere, possess
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histone and DNA modifications that are also highly concentrated in constitutive heterochro-
matin regions, such as pericentric heterochromatin [197]. Telomere shortening to a critically
low length results in the development of epigenetic abnormalities at mammalian telomeres
and subtelomeres [198]. These abnormalities are characterized by reduced levels of histone
and DNA methylation, as well as elevated levels of histone acetylation. Age-related disor-
ders such as accelerated aging syndromes are marked by extremely short telomeres, which
might impact the epigenetic conditions of telomeres and subtelomeres [199].

4. Histone Modifications and Brain Aging

Recent research has shed light on the specific histone modifications linked to brain
aging (Table 3). Studies have shown that a decrease in histone acetylation, particularly at
genes associated with memory and synaptic plasticity, is associated with cognitive decline
in aging individuals [200]. Age-related changes in histone methylation patterns have been
observed in the brains of older individuals, and alterations in methylation at specific genes
are linked to neurodegenerative diseases and cognitive decline [201]. We recently showed
that, in the old mouse brain, histone H2AXγ phosphorylation is associated with caspase-
dependent cell death and abortive cell cycle re-entry [202,203]. Developing small molecules
that selectively target specific histone modifications, such as H3K4me3 or H3K27me3,
may allow for precise modulation of gene expression relevant to cognitive function and
neuroprotection [204]. It is worth mentioning that most studies examine bulk brain tissue,
which may mask cell-type-specific epigenetic changes. Investigating histone modifications
at the cellular level, especially in specific neuronal subtypes, can provide further insights
into their roles in brain aging. In addition, much of the focus of current research has been
on promoter regions, but understanding the role of histone modifications in enhancers,
non-coding RNAs, and other non-coding regions is crucial for a comprehensive view of
epigenetic regulation in brain aging [135].

Table 3. Epigenetic marks in the old brain. Aminoacidic residues are indicated by one-letter nota-
tion [71]. For abbreviations see the list at the end of the paper.

Epigenetic Mark Biological Effects Brain Region Target

Reduction of H3K9ac
Lowered expression of key

genes to neuronal and
synaptic development
Decrease in age-related

memory and learning capacity

Hippocampus IEGs [205]

Reduction of H3K14ac Hippocampus IEGs [205]

Reduction of H3K27ac Prefrontal cortex
Hippocampus GATA3, BDNF [146]

Reduction of H4K12ac Hippocampus Synaptic function-related
genes [144]

Increase in H3K9me2 Aging Cerebral cortex
Hippocampus Excitatory neurons [206]

Increase of H3K9me3

Reduction in dendritic growth
and stability

Cerebral cortex
Hippocampus BDNF [207]

Memory deficit Hippocampus BDNF [208]
IEGs [209]

Learning and memory ability
decline

Brain tissue from AD patients
and mouse models

Mitochondrial
function-related genes [210]

Increase of H3K4me2

Increased expression of
related stress response
proteins and inducing
cognitive impairment

Prefrontal cortex Stress-related genes [211]

Increase of H3K27me3 Activation of stress and
immune inflammation Brain Stress-related genes [212,213]

Reduction of H3K36me3 Impaired memory function Cerebral cortex
Hippocampus BDNF [214]
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As mentioned, the dysregulation of histone modifications has been implicated in
neurodegenerative diseases such as AD and PD, which display a typical old-age onset.
However, the exact role of histone modifications in disease pathogenesis and progression
is not fully understood [215]. Studies have revealed alterations in histone modifications
in the brains of individuals with AD. These changes include global reductions in histone
acetylation levels and alterations in histone methylation patterns [200]. In AD, reduced
histone acetylation, particularly at genes associated with memory and synaptic function, is
linked to cognitive decline, and aberrant histone acetylation and methylation patterns are
associated with disease progression [216]. Epigenetic drugs, such as histone deacetylase
inhibitors (HDACIs), have shown promise in preclinical studies for their ability to reverse
cognitive deficits and reduce amyloid-beta levels in animal models of AD [216]. The use
of HDACIs to restore histone acetylation levels is, thus, a potential therapeutic approach
to mitigating cognitive deficits in AD [217]. Aberrant histone methylation patterns are
associated with tau pathology, one of the hallmarks of AD. Histone methylation marks have
been found at specific tau gene promoters, affecting tau protein expression [218]. Targeting
the HMTs involved in tau regulation could, thus, represent another potential therapeutic
strategy to reduce tau pathology.

Emerging evidence suggests that epigenetic dysregulation, including histone modifica-
tions, also contributes to the pathogenesis of PD. These changes can affect gene expression
patterns in the brain, influencing dopaminergic neuronal function and survival [219].
Altered histone acetylation patterns have been observed in animal models and the post-
mortem brains of PD patients. These changes can affect the expression of genes involved in
neuroinflammation and mitochondrial dysfunction, contributing to PD pathogenesis [220].
Sirtuin 1 (SIRT1), a histone deacetylase, plays a crucial role in regulating aging-related
processes. SIRT1 can be activated through compounds like resveratrol, which may promote
neuroprotection and cognitive function [221]. As in the case of AD, targeting HDACs to
modulate histone acetylation levels is being explored as a potential therapeutic approach
for PD [222]. Interestingly, aberrant histone methylation patterns have been linked to
alpha-synuclein aggregation, a hallmark of PD, as they influence the expression of genes
associated with alpha-synuclein metabolism and protein clearance [220]. Epigenetic modu-
lators, such as HDACIs and HMT inhibitors, have shown promise in preclinical models of
PD. These compounds can mitigate neuroinflammation, enhance protein clearance mecha-
nisms, and protect dopaminergic neurons [223]. HDACIs such as vorinostat and valproic
acid were reported to increase histone acetylation, promoting gene expression associated
with synaptic plasticity and memory formation [224].

5. Epigenetic Clocks and Their Relevance for Aging

Epigenetic clocks have gained significant attention in the field of aging research due
to their precision in predicting an individual’s biological age, which may differ from their
chronological age [4]. DNA-methylation-based clocks, such as the Horvath and Hannum
clocks, use specific patterns of DNA methylation at CpG sites to estimate biological age.
These clocks have been validated in various tissues and populations [225]. Epigenetic clocks
have been associated with health outcomes, including the risk of age-related diseases, such
as cardiovascular disease and cancer, as well as overall mortality [226]. Epigenetic clocks
can also measure “age acceleration,” which indicates whether individuals are aging faster
or slower than expected based on their chronological age. Epigenetic clocks may serve
as valuable tools for assessing the effectiveness of anti-aging interventions. They can be
used to monitor changes in biological age in response to lifestyle modifications or medical
treatments [227], as factors such as diet and exercise can influence age acceleration [166].
Despite their promise, there are challenges and debates surrounding the use of epigenetic
clocks, including their biological interpretation and accuracy. Ongoing research aims to
refine these clocks and enhance their predictive power [228].
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6. Conclusions

The brain epigenetic landscape is emerging as a very important factor in the regulation
of brain structure and function from development to old age. Although much progress has
been made in understanding the roles of the main epigenetic modifications in the brain
under normal and pathological conditions, most molecular changes have been discovered
using biochemical and immunochemical approaches that have not always permitted linking
these changes to specific brain areas and/or cell types. This will be the primary challenge
in future research aiming to further proceed toward the translational use of these results in
clinical practice.
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List of Abbreviations
1 mA 1-methyladenine
2 MeCP2 methyl-CpG-binding protein 2
3 mA 3-methyladenine
5 mC 5-methylcytosine
6 mA N6-methyl deoxyadenosine
AD Alzheimer’s disease
ASD autism spectrum disorder
BDNF brain-derived neurotrophic factor
CREB2 cAMP response element binding protein 2
DNMT1 DNA methyltransferase 1
DNMT3A DNA methyltransferase 3A
DNMT3B DNA methyltransferase 3B
DNMTs DNA methyltransferases
eRNAs enhancer RNAs
ESC embryonic stem cells
GATA3 GATA binding protein 3
HAT histone acetyltransferase
HDACs histone deacetylases
HDACIs histone deacetylase inhibitors
hmC 5-hydroxymethylcytosine
HMT histone methyltransferase
IEGs immediate early genes
KDAC lysine deacetylase
KMT histone lysine methyltransferase
lncRNAs long non-coding RNAs
LTP long-term potentiation
MBPs methyl-CpG binding proteins
mCH non-CG methylation
MBD methyl-binding domain
MBD1–5 Methyl-CpG-binding domain protein 1 to 5
mRNA messenger RNA
miRNAs microRNAs
NaB sodium butyrate
ncRNAs non-coding RNAs
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NMDA N-methyl-D-aspartate
NSCs neural stem cells
PD Parkinson’s disease
piRNAs PIWI-interacting RNAs
pri-miRNA hairpin-containing primary transcripts
RGCs radial glial cells
ROS reactive oxygen species
RPCs retinal precursor cells
SA-gal senescence-associated-galactosidase
SASP senescence-associated secretory phenotype
siRNAs small interfering RNAs
SIRT1 sirtuin 1
SRA SET- and RING-associated domain proteins
SUMO small ubiquitin-like modifier
TGM2 transglutaminase 2
TNFα tumor necrosis factor α
TSA trichostatin A
UHRF1 ubiquitin-like containing PHD ring finger 1
UHRF1 ubiquitin-like containing PHD ring finger 1
ZBTB4 zinc finger and BTB domain-containing protein 4
ZBTB33 zinc finger and BTB domain-containing protein 33
ZBTB 38 zinc finger and BTB domain-containing protein 38
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