Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = highly mineralized mine water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3194 KiB  
Article
Quantitative Source Identification, Pollution Risk Assessment of Potentially Toxic Elements in Soils of a Diamond Mining Area
by Anna Gololobova and Yana Legostaeva
Soil Syst. 2025, 9(2), 48; https://doi.org/10.3390/soilsystems9020048 - 13 May 2025
Viewed by 510
Abstract
Potentially toxic elements (PTEs) are the most important indicators of environmental pollution and represent a potential risk to the ecology and human health in industrial regions. Eight potentially toxic elements (Mn, Ni, Co, Cr, Pb, Zn, Cd, As) in soils formed on the [...] Read more.
Potentially toxic elements (PTEs) are the most important indicators of environmental pollution and represent a potential risk to the ecology and human health in industrial regions. Eight potentially toxic elements (Mn, Ni, Co, Cr, Pb, Zn, Cd, As) in soils formed on the territory of the industrial site of the Udachny Mining and Processing Division were considered in this study. The potential ecological risk index (RI) was calculated to determine environmental risks of soil contamination. The concentrations of PTEs decreased in the following order Mn > Ni > Zn > Co > Pb > Cr > As > Cd. In total, 19.51% of the sites in the study area exhibited a high potential ecological risk for Mn and Ni, while only 4.87% exhibited a low potential ecological risk for other PTEs. The greatest impacts on soil contamination are exerted by the areas of the Udachny and Zarnitsa pipes, tailings ponds, and the area’s highly mineralized water outlet. The results of correlation analysis (CA) and hierarchical cluster analysis (HCA) revealed that the same groups of elements were present: Co-Cr-Ni and Cd-Zn. The PMF findings demonstrate that the five main diverse sources of PTEs in this study area’s soils were natural, mining activities, transportation, and industrialization, as well as highly mineralized waters. Full article
Show Figures

Figure 1

17 pages, 6538 KiB  
Article
The Hydrogeochemical Characteristics and Formation Mechanisms of the High-Salinity Groundwater in Yuheng Mining Area of the Jurassic Coalfield, Northern Shaanxi, China
by Yuanhong Han, Hongchao Zhao, Yongtao Ji, Yue Wang and Liwei Zhang
Water 2025, 17(10), 1459; https://doi.org/10.3390/w17101459 - 12 May 2025
Viewed by 534
Abstract
In the Yuheng mining area (Jurassic coalfield, northern Shaanxi, China), the Yan’an Formation groundwater is characterized by elevated salinity, posing challenges for mine water pollution control and regional water resource management. However, the spatial distribution patterns and formation mechanisms of this high-salinity groundwater [...] Read more.
In the Yuheng mining area (Jurassic coalfield, northern Shaanxi, China), the Yan’an Formation groundwater is characterized by elevated salinity, posing challenges for mine water pollution control and regional water resource management. However, the spatial distribution patterns and formation mechanisms of this high-salinity groundwater remain poorly studied. This study integrates hydrogeochemical data from 18 coal mines, analyzing the spatial salinity variations, major ion compositions and isotopic signatures. Combined with the evolution characteristics of ancient sedimentary environments and the composition analysis of rock salt minerals in the coal rock interlayers, the formation mechanism of high salinity water was explored. The results indicate that the groundwater mineralization degree of the Yan’an Formation in the Jurassic strata encountered in the Yuheng mining area is the highest, showing a decreasing trend upwards. On the plane, the western and northern regions are generally higher than the eastern and southern regions. The highest mineralization level of groundwater can reach 36.25g/L, and the high mineralization hydrochemical type is mainly SO4-Na·Ca type, with occasional Cl-Na type in areas with extremely high mineralization level. The cause analysis shows that the highly mineralized groundwater in the Yuheng mining area comes from atmospheric precipitation, which infiltrates and dissolves salt rocks. In addition, the mining area is located in the arid area of northern Shaanxi, with insufficient water supply and no obvious structural faults, and has good sealing properties, thus exhibiting the characteristics of high mineralization. These mechanisms provide a formation model for the high-salinity groundwater in Jurassic coal-bearing strata, offering critical implications for predictive hydrogeochemical modeling and sustainable water management in arid mining regions. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 2610 KiB  
Article
Formulation of Entomopathogenic Nematodes for Above-Ground Use Against Tomato Leaf Miner, Phthorimaea absoluta
by Bancy W. Waweru, Joelle N. Kajuga, Athanase Hategekimana, Assinapol Ndereyimana, Lydie Kankundiye, Christine Umulisa, Alphonse Nyombayire, Marie Mutumwinka, Primitive M. Ishimwe, Didace Bazagwira, Grace C. Mukundiyabo, Vincent de Paul Bigirimana, Xun Yan, Jozsef Kiss and Stefan Toepfer
Insects 2025, 16(2), 189; https://doi.org/10.3390/insects16020189 - 10 Feb 2025
Cited by 3 | Viewed by 1359
Abstract
The tomato leaf miner Phthorimaea (syn. Tuta) absoluta Meyrick (Lepidoptera: Gelechiidae) is invasive in many agricultural regions. Its larvae feed inside leaf mines or tomato fruits and are difficult to reach with plant protection products. In contrast, entomopathogenic nematodes (EPNs) are highly [...] Read more.
The tomato leaf miner Phthorimaea (syn. Tuta) absoluta Meyrick (Lepidoptera: Gelechiidae) is invasive in many agricultural regions. Its larvae feed inside leaf mines or tomato fruits and are difficult to reach with plant protection products. In contrast, entomopathogenic nematodes (EPNs) are highly virulent and can search for larvae. The challenge is to formulate EPNs to remain protected on a sprayed leaf surface until they enter the mines. We tested 11 formulations, including 2 oils, 4 gels or thickeners, 2 surfactants, 2 UV protectants, water, and combinations with and without the EPN Steinernema carpocapsae (Weiser) RW14-G-R3a-2 (Rhabditida: Steinernematidae), under non-closed low-humidity conditions. Six tomato leaf experiments with 1000 EPNs sprayed per leaf showed that EPNs in 0.25 to 0.5% canola oil or in 5% alkyl polyglycoside surfactant were the most effective (26 to 37%). Other formulations and an insecticide had less or no effect. Seven other bioassays showed that most formulations did not adversely affect EPN survival or pathogenicity. We assume that formulations of EPNs can be further improved, such as with other flowable gels or combinations, and encourage investment in the development of practical and economic protective sprayable formulations of EPNs against leaf miners to reduce reliance on chemical insecticides. Full article
Show Figures

Figure 1

16 pages, 7801 KiB  
Article
Performance Analysis and Novel Cross-Flow Scheme of Low-Temperature Multi-Effect Distillation for Treating High-Mineralized Mine Water
by Yuanhui Tang, Yuanji Bai, Qiang Guo, Xiaolei He, Mingxuan Li, Chunhui Zhang, Lixin Yu, Yakai Lin and Xiaolin Wang
Water 2024, 16(22), 3254; https://doi.org/10.3390/w16223254 - 12 Nov 2024
Cited by 1 | Viewed by 1156
Abstract
Low-temperature multi-effect distillation (LT-MED) can be used to desalinate and demineralize highly mineralized mine water, facilitating the recycling and reuse of water resources. This study conducted a simulation of LT-MED technology for treating highly mineralized mine water using Aspen Plus and proposed a [...] Read more.
Low-temperature multi-effect distillation (LT-MED) can be used to desalinate and demineralize highly mineralized mine water, facilitating the recycling and reuse of water resources. This study conducted a simulation of LT-MED technology for treating highly mineralized mine water using Aspen Plus and proposed a novel cross-flow optimization scheme. Initially, the impact of operational parameters such as process configuration, number of evaporation effects, and steam input on the gained output ratio (GOR) and scaling risk of a conventional LT-MED system was analyzed. It was found that the number of effects and heating steam flow rate had the most significant influence on GOR, while different processes exhibited limitations regarding GOR and scaling trends. To address these issues, this paper introduced a cross-flow operation process that combined forward, backward, and parallel flow. The simulation results indicated that, under conditions of eight effects, a maximum evaporation temperature of 70 °C, a temperature difference between adjacent effects of 4 °C, and a feed temperature of 45 °C, the cross-flow process—where the feed was introduced from the sixth effect—achieved the highest GOR and significantly reduced scaling risks compared to parallel and backward flow configurations. Finally, to further utilize low-pressure exhaust steam from the final effect of the cross-flow LT-MED system, mechanical vapor compression (MVC) and thermal vapor compression (TVC) were integrated into the LT-MED process. The thermodynamic performance of the coupled system was analyzed, and the simulations demonstrated that the coupled system outperformed the standalone use of either TVC or MVC, with the LT-MED-MVC-TVC system showing superior performance overall. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 11301 KiB  
Article
Application of Multiple Geophysical Exploration Methods in the Exploration of Marine Sand Resources in the Northern Offshore Waters of the South China Sea
by Gang Yu, Xichong Hu, Jie Fang, Ying Yang, Yongcong Zhang, Jinhui Lin, Jingyi Liu and Libing Qian
J. Mar. Sci. Eng. 2024, 12(9), 1561; https://doi.org/10.3390/jmse12091561 - 5 Sep 2024
Cited by 2 | Viewed by 1229
Abstract
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local [...] Read more.
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local authorities are required to delineate auctioned sand mining areas after a general survey, commonly referred to as preliminary exploration. Marine sand can be categorized into surface marine sand and buried marine sand. Buried marine sand deposits are buried beneath the sea floor, making it challenging to locate them due to their thin thickness. Consequently, there exist numerous technical difficulties associated with marine sand exploration. We conducted the preliminary research work in the waters off Guangdong Province of the South China Sea, employing a reduced drilling and identifying a potentially extensive deposit of marine sand ore. In this study, various geophysical methods such as sub-bottom profile survey, single-channel seismic survey, and drilling engineering were employed in the northern offshore waters of the South China Sea. As a result, two distinct marine sand bodies were delineated within the study area. Additionally, five reflective interfaces (R1, R2, R3, R4, and R5) were identified from top to bottom. These interfaces can be divided into five seismic sequences: A1, B1, C1, D1, and E1, respectively. Three sets of strata were recognized: the Holocene Marine facies sediment layer (Q4m), the Pleistocene alluvial and pluvial facies sediment layer (Q3al+pl), as well as the Pleistocene Marine facies sedimentary layer (Q3m). In total, two placers containing marine sand have been discovered during this study. We estimated the volume of marine sand and achieved highly favorable results of the concept that we are proposing a geologic exploration approach that does not involve any previous outcropping analogue study. Full article
Show Figures

Figure 1

26 pages, 17778 KiB  
Article
Occurrence and Favorable Enrichment Environment of Lithium in Gaoping Coal Measures: Evidence from Mineralogy and Geochemistry
by Peiliang Han, Fenghua Zhao, Dongna Liu, Qi Zhang, Qinqin Zhang and Shaheed Ullah
Appl. Sci. 2024, 14(16), 7298; https://doi.org/10.3390/app14167298 - 19 Aug 2024
Cited by 3 | Viewed by 1147
Abstract
The Carboniferous-Permian coal measure strata in the Qinshui Basin exhibit highly lithium (Li) enrichment, with substantial exploitation potential. To further explore the enrichment mechanism of lithium in coal measure strata, the No. 15 coal of the Taiyuan Formation from the Gaoping mine is [...] Read more.
The Carboniferous-Permian coal measure strata in the Qinshui Basin exhibit highly lithium (Li) enrichment, with substantial exploitation potential. To further explore the enrichment mechanism of lithium in coal measure strata, the No. 15 coal of the Taiyuan Formation from the Gaoping mine is taken as the research object, and its mineralogical and geochemistry characteristics are evaluated using optical microscopy, X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray fluorescence, and infrared spectral. The results show that the No. 15 coal is semi-anthracite coal with low moisture, low ash, low volatility, and high sulfur. Organic macerals are primarily vitrinite, followed by inertinite, and liptinite is rare; the inorganic macerals (ash) are dominated by clay minerals (predominantly kaolinite, cookeite, illite, and NH4-illite), calcite, pyrite, quartz, siderite, gypsum, and zircon. The average Li content in the coal is 66.59 μg/g, with higher content in the coal parting (566.00 μg/g) and floor (396.00 μg/g). Lithium in coal occurs primarily in kaolinite, illite, cookeite, and is closely related to titanium-bearing minerals. In addition, Li in organic maceral may occur in liptinite. The No. 15 coal was formed in the coastal depositional system, and the deposition palaeoenvironment is primarily a wet–shallow water covered environment in open swamp facies; the plant tissue preservation index is poor, and aquatic or herbaceous plants dominate the plant type. The reducing environment with more terrestrial detritus, an arid climate, and strong hydrodynamic effects is favorable for Li enrichment in coal. The results have important theoretical significance for exploring the enrichment and metallogenic mechanisms of Li in coal. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

15 pages, 7611 KiB  
Article
The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China
by Jian Yang, Wei Zhao, Xiangyang Liang and Feng Xu
Water 2024, 16(16), 2244; https://doi.org/10.3390/w16162244 - 8 Aug 2024
Viewed by 1714
Abstract
The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance [...] Read more.
The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance for zero discharge and the resource utilization of mine water in Northwest China. In this study, a total of 38 groundwater and mine water samples were collected to examine the hydrogeochemical characteristics of high-salinity mine water using Piper diagrams and Gibbs diagrams, as well as isotope analyses and ion ratio coefficients. Additionally, the corresponding mine water treatment recommendations were put forward. The results show that the TDS content of groundwater increases with hydrographic depth. The average TDS concentration of Quaternary, Luohe, and Anding groundwater is 336.87, 308.67, and 556.29 mg/L, respectively. However, the TDS concentration of Zhiluo groundwater and mine water is 2768.57 and 3826.40 mg/L, respectively, which belong to high-salinity water. The Quaternary, Luohe, and Anding groundwater hydrochemical type is predominantly HCO3-Ca type, and the Zhiluo groundwater and mine water hydrochemical type is predominantly the SO4-Na type. Furthermore, there is minimal difference observed in δD and δ18O values among these waters. It can be inferred that the Zhiluo Formation in groundwater serves as the primary source of mine water supply, primarily influenced by the processes of concentration caused by evaporation. The high salinity of mine water is closely related to the high salinity of Zhiluo groundwater. The high salinity of groundwater has evolved gradually under the control of the concentration caused by evaporation and rock-weathering processes. The dissolution of salt rock, gypsum, along with other minerals, serves as the material basis for high-salinity groundwater formation. In addition, the evolution of major ions is also affected by cation exchange. The TDS concentration of mine water ranges from 3435.4 mg/L to 4414.3 mg/L, and the combined treatment process of nanofiltration and reverse osmosis can be selected to remove the salt. After treatment, mine water can be used for productive, domestic, and ecological demands. Full article
Show Figures

Figure 1

19 pages, 3689 KiB  
Article
Hydrochemical Characteristics and Evolution under the Influence of Multiple Anthropogenic Activities in Karst Aquifers, Northern China
by Chao Zhang, Baoxiang Zhang, Wenqing Zhang, Junyu Zou, Ruoyu Jia and Yuesuo Yang
Water 2024, 16(12), 1656; https://doi.org/10.3390/w16121656 - 11 Jun 2024
Cited by 3 | Viewed by 1605
Abstract
The intensification of anthropogenic activities (agriculture, industry, and exploitation of water resources) during urbanization has posed significant challenges to the aquatic environment, particularly in karst regions. Karst aquifers are highly susceptible to surface contaminants and exhibit minimal natural remediation capabilities. Our understanding of [...] Read more.
The intensification of anthropogenic activities (agriculture, industry, and exploitation of water resources) during urbanization has posed significant challenges to the aquatic environment, particularly in karst regions. Karst aquifers are highly susceptible to surface contaminants and exhibit minimal natural remediation capabilities. Our understanding of the anthropogenic activities involved in these sensitive karst systems remains limited. To address this gap, we conducted a comprehensive study, collecting 285 groundwater samples in Feicheng, northern China, from 1996 to 2015. The overexploitation of karst groundwater has resulted in several concerns. The whole dataset was classified into four groups according to land use. Water quality assessments revealed a yearly decline, particularly in industrial and agricultural areas. The water chemistry transitioned from Ca-Mg-HCO3 to Ca-Mg-HCO3-SO4. Such evolution was attributed to natural hydrogeochemical processes, atmospheric precipitation, and anthropogenic inputs. Natural factors included water-rock interactions (the mineral dissolution) and ion exchange. Absolute principal component scores with multiple linear regression (APCS-MLR) were used to quantitatively estimate the sources of pollution. The results showed that hydrogeological settings (recharge, runoff, and discharge) were crucial in the hydrochemistry evolution of karst groundwater systems. In agricultural areas, it is recognized that much of the NO3 accumulation in aquifers came from upstream inputs in the groundwater system, not just irrigation and fertilization. Urban areas were affected by Cl pollution, primarily due to domestic waste. Industrial regions of recharge zones were more susceptible to atmospheric precipitation and industrial waste, with pollutants infiltrating through rainfall and degrading water quality. Mining areas exhibit higher SO42− and lower pH due to the oxidation of sulfur-containing minerals. Therefore, the rapid response and low self-purification capacity of groundwater in karst regions necessitate caution in urban planning to mitigate impacts on these fragile systems. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 3737 KiB  
Article
Microtextural Characteristics of Ultramafic Rock-Forming Minerals and Their Effects on Carbon Sequestration
by Tadsuda Taksavasu, Piyanat Arin, Thanakon Khatecha and Suchanya Kojinok
Minerals 2024, 14(6), 597; https://doi.org/10.3390/min14060597 - 6 Jun 2024
Cited by 2 | Viewed by 2963
Abstract
Ultramafic rocks are promising candidates for carbon sequestration by enhanced carbon dioxide (CO2) mineralization strategies due to their highly CO2-reactive mineral composition and their abundant availability. This study reports the mineralogy and microtextures of a representative ultramafic rock from [...] Read more.
Ultramafic rocks are promising candidates for carbon sequestration by enhanced carbon dioxide (CO2) mineralization strategies due to their highly CO2-reactive mineral composition and their abundant availability. This study reports the mineralogy and microtextures of a representative ultramafic rock from the Ma-Hin Creek in northern Thailand and provides evidence of CO2 mineralization occurring through the interaction between CO2 and the rock in the presence of water under ambient conditions. After sample collection, rock description was determined by optical petrographic analysis. The rock petrography revealed a cumulated wehrlite comprising over 50% olivine and minor amounts of clinopyroxene, plagioclase, and chromian spinel. Approximately 25% of the wehrlite had altered to serpentine and chlorite. A series of CO2 batch experiments were conducted on six different rock sizes at a temperature of 40 °C and pressure of 1 atm over five consecutive days. The post-experimental products were dried, weighed, and geochemically analyzed to detect changes in mineral species. Experimental results showed that product weight and the presence of calcite increased with reducing grain size. Additionally, the modal mineralogy of the wehrlite theoretically suggests potential CO2 uptake of up to 53%, which is higher than the average uptake values of mafic rocks. These findings support the rock investigation approach used and the preliminary assessment of carbon mineralization potential, contributing to enhanced rock weathering techniques for CO2 removal that could be adopted by mining and rock supplier industries. Full article
(This article belongs to the Special Issue Chemical Weathering Studies)
Show Figures

Figure 1

23 pages, 1852 KiB  
Review
Underground Gas Storage in Saline Aquifers: Geological Aspects
by Barbara Uliasz-Misiak and Jacek Misiak
Energies 2024, 17(7), 1666; https://doi.org/10.3390/en17071666 - 30 Mar 2024
Cited by 25 | Viewed by 4343
Abstract
Energy, gases, and solids in underground sites are stored in mining excavations, natural caverns, salt caverns, and in the pore spaces of rock formations. Aquifer formations are mainly isolated aquifers with significant spreading, permeability, and thickness, possessing highly mineralized non-potable waters. This study [...] Read more.
Energy, gases, and solids in underground sites are stored in mining excavations, natural caverns, salt caverns, and in the pore spaces of rock formations. Aquifer formations are mainly isolated aquifers with significant spreading, permeability, and thickness, possessing highly mineralized non-potable waters. This study discusses the most important aspects that determine the storage of natural gas, hydrogen, or carbon dioxide in deep aquifers. In particular, the selection and characterization of the structure chosen for underground storage, the storage capacity, and the safety of the process are considered. The choice of underground sites is made on the basis of the following factors and criteria: geological, technical, economic, environmental, social, political, or administrative–legal. The geological and dynamic model of the storage site is then drawn based on the characteristics of the structure. Another important factor in choosing a structure for the storage of natural gas, hydrogen, or carbon dioxide is its capacity. In addition to the type and dimensions of the structure and the petrophysical parameters of the reservoir rock, the storage capacity is influenced by the properties of the stored gases and the operating parameters of the storage facility. Underground gas storage is a process fraught with natural and technical hazards. Therefore, the geological integrity of the structure under consideration should be documented and verified. This article also presents an analysis of the location and the basic parameters of gas storage and carbon dioxide storage facilities currently operating in underground aquifers. To date, there have been no successful attempts to store hydrogen under analogous conditions. This is mainly due to the parameters of this gas, which are associated with high requirements for its storage. Full article
(This article belongs to the Special Issue Advanced Methods for Hydrogen Production, Storage and Utilization)
Show Figures

Figure 1

24 pages, 6137 KiB  
Article
Biodegradation of 17α-Ethinylestradiol by Strains of Aeromonas Genus Isolated from Acid Mine Drainage
by Tânia Luz Palma and Maria Clara Costa
Clean Technol. 2024, 6(1), 116-139; https://doi.org/10.3390/cleantechnol6010008 - 1 Feb 2024
Cited by 3 | Viewed by 2530
Abstract
17α-ethinylestradiol (EE2), a synthetically derived analogue of endogenous estrogen, is widely employed as a hormonal contraceptive and is recognized as a highly hazardous emerging pollutant, causing acute and chronic toxic effects on both aquatic and terrestrial organisms. It has been included in the [...] Read more.
17α-ethinylestradiol (EE2), a synthetically derived analogue of endogenous estrogen, is widely employed as a hormonal contraceptive and is recognized as a highly hazardous emerging pollutant, causing acute and chronic toxic effects on both aquatic and terrestrial organisms. It has been included in the initial Water Watch List. The aim of this study was to isolate bacteria from consortia recovered from mine sediments and acid mine drainage samples, both considered extreme environments, with the ability to degrade EE2. From the most promising consortia, isolates affiliated with the Aeromonas, Rhizobium, and Paraburkholderia genera were obtained, demonstrating the capability of growing at 50 mg/L EE2. Subsequently, these isolates were tested with 9 mg/L of EE2 as the sole carbon source. Among the isolated strains, Aeromonas salmonicida MLN-TP7 exhibited the best performance, efficiently degrading EE2 (95 ± 8%) and reaching concentrations of this compound below the limits of detection within 7 and 9 days. The final metabolites obtained are in accordance with those of the TCA cycle; this may indicate EE2 mineralization. As far as is known, Aeromonas salmonicida was isolated for the first time and identified in acid mine drainage, demonstrating its capacity to degrade EE2, making it a promising candidate for bioaugmentation and suggesting its possible applicability in low pH environments. Full article
Show Figures

Figure 1

15 pages, 6948 KiB  
Article
Arsenic Removal via the Biomineralization of Iron-Oxidizing Bacteria Pseudarthrobacter sp. Fe7
by Xia Fan, Hanxiao Zhang, Qian Peng, Yongliang Zheng, Kaixiang Shi and Xian Xia
Microorganisms 2023, 11(12), 2860; https://doi.org/10.3390/microorganisms11122860 - 26 Nov 2023
Cited by 2 | Viewed by 1939
Abstract
Arsenic (As) is a highly toxic metalloid, and its widespread contamination of water is a serious threat to human health. This study explored As removal using Fe(II)-oxidizing bacteria. The strain Fe7 isolated from iron mine soil was classified as the genus Pseudarthrobacter based [...] Read more.
Arsenic (As) is a highly toxic metalloid, and its widespread contamination of water is a serious threat to human health. This study explored As removal using Fe(II)-oxidizing bacteria. The strain Fe7 isolated from iron mine soil was classified as the genus Pseudarthrobacter based on 16S rRNA gene sequence similarities and phylogenetic analyses. The strain Fe7 was identified as a strain of Gram-positive, rod-shaped, aerobic bacteria that can oxidize Fe(II) and produce iron mineral precipitates. X-ray diffraction, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy patterns showed that the iron mineral precipitates with poor crystallinity consisted of Fe(III) and numerous biological impurities. In the co-cultivation of the strain Fe7 with arsenite (As(III)), 100% of the total Fe and 99.9% of the total As were removed after 72 h. During the co-cultivation of the strain Fe7 with arsenate (As(V)), 98.4% of the total Fe and 96.9% of the total As were removed after 72 h. Additionally, the iron precipitates produced by the strain Fe7 removed 100% of the total As after 3 h in both the As(III) and As(V) pollution systems. Furthermore, enzyme activity experiments revealed that the strain Fe7 oxidized Fe(II) by producing extracellular enzymes. When 2% (v/v) extracellular enzyme liquid of the strain Fe7 was added to the As(III) or As(V) pollution system, the total As removal rates were 98.6% and 99.4%, respectively, after 2 h, which increased to 100% when 5% (v/v) and 10% (v/v) extracellular enzyme liquid of the strain Fe7 were, respectively, added to the As(III) and As(V) pollution systems. Therefore, iron biomineralized using a co-culture of the strain Fe7 and As, iron precipitates produced by the strain Fe7, and the extracellular enzymes of the strain Fe7 could remove As(III) and As(V) efficiently. This study provides new insights and strategies for the efficient remediation of arsenic pollution in aquatic environments. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
Show Figures

Figure 1

17 pages, 3025 KiB  
Article
Nematofauna of the Natural Park “Devil’s Town”
by Violeta Oro, Boris Pisinov, Nenad Trkulja, Rade Stanisavljevic, Svetlana Belosevic, Marijenka Tabakovic and Zoran Ž. Sekulic
Forests 2023, 14(11), 2241; https://doi.org/10.3390/f14112241 - 14 Nov 2023
Cited by 1 | Viewed by 1847
Abstract
“Devil’s Town” is a natural park dominated by broadleaf deciduous trees, and made up of two rare natural phenomena in the world: earthen statues, as specific forms of relief, and two springs of highly acidic water with high mineralization. Devil’s Town is a [...] Read more.
“Devil’s Town” is a natural park dominated by broadleaf deciduous trees, and made up of two rare natural phenomena in the world: earthen statues, as specific forms of relief, and two springs of highly acidic water with high mineralization. Devil’s Town is a “biodiversity star” with a unique ambient, flora, fauna, and microbiome. The research aimed to: investigate the concentration of chemical parameters in the soil of the natural park, identify nematodes that can survive in extreme conditions, explore feeding habits of nematodes, and infer phylogenetic relationships of nematodes based on 28S rRNA sequences. Soil samples were collected from two sites, designated Soil under vegetation and Saxon mine soil, from which nematodes were discovered. Phylogenetic analyses were performed with 28S rRNA gene primers, using Maximum likelihood and Bayesian inference. The presence of minerals and heavy metals, combined with high acidity created extreme environmental conditions in which specific nematode species can survive. These circumstances favored fast-moving species with teeth and spears, such as mononchids and dorylaimids, enabling them to adopt predatory feeding behavior. In contrast, Acrobeloides, Prismatolaimus, Rhabditis spp. etc., are saprobionts adapted to specific chemical pollutants, and they tolerate high levels of Pb, Zn, Fe, Cu, Cd and As. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Functions of Forest Microorganisms)
Show Figures

Figure 1

13 pages, 1916 KiB  
Article
Grey Systems Model to Assess Water Quality in Mantaro River in Peru
by Alexi Delgado, Joshis Culqui, Marisabel Lazo, Valeria Guerrero and Isabel Delgado
Computation 2023, 11(11), 223; https://doi.org/10.3390/computation11110223 - 4 Nov 2023
Viewed by 2306
Abstract
The section of the Mantaro River that flows through the department of Huancavelica, Peru, has been affected by toxic wastes and mineral residues from industrial and mining activities, which have directly impacted the water quality. In this work, a grey system model, based [...] Read more.
The section of the Mantaro River that flows through the department of Huancavelica, Peru, has been affected by toxic wastes and mineral residues from industrial and mining activities, which have directly impacted the water quality. In this work, a grey system model, based on the grey clustering method, was used to assess water quality. The grey clustering method was applied using the central point of triangular whitening weight functions (CTWF). In addition, the Prati index and the Environmental Quality Standards for water from the Peru government were revised and used for this study. In the case study, six physicochemical parameters, pH, DO, BOD, Cd, As, and Pb, at nine monitoring points were assessed along the Mantaro River. The results showed that the sixth monitoring point (P6), which is influenced by mining activity, was highly contaminated, while the other points were classified as noncontaminated. Finally, the results obtained by applying the grey clustering method can be useful to competent authorities, for decision making on water management in this watershed. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

14 pages, 3179 KiB  
Article
A New Acidity-Based Approach for Estimating Total Dissolved Solids in Acidic Mining Influenced Water
by Ana Barroso, Teresa Valente, Amélia Paula Marinho Reis and Isabel Margarida H. R. Antunes
Water 2023, 15(16), 2995; https://doi.org/10.3390/w15162995 - 19 Aug 2023
Cited by 3 | Viewed by 3969
Abstract
In natural waters, total dissolved solids (TDS) are usually estimated from electrical conductivity (EC) by applying a conversion factor (f). However, defining this conversion factor for mining influenced water is more complex since this type of water is highly mineralized and has complex [...] Read more.
In natural waters, total dissolved solids (TDS) are usually estimated from electrical conductivity (EC) by applying a conversion factor (f). However, defining this conversion factor for mining influenced water is more complex since this type of water is highly mineralized and has complex chemical matrices. So, the present work aimed to establish a new conversion factor to estimate TDS from the classic parameters usually analyzed for the hydrochemical characterization of these contaminated waters. A total of 121 mining influenced water samples were collected in three mining areas representing pollution scenarios, such as acidic streams, acidic lagoons, and pit lakes. The parameters analyzed were pH, EC, sulfate, acidity, and TDS. The statistical analysis showed that TDS and acidity are related, with a high and significant correlation (r ≥ 0.964, ρ < 0.001), suggesting that this parameter could be an appropriate indicator to estimate the TDS. Moreover, although acidity analysis also involves laboratory work, the time and effort required are considerably less than the gravimetric determination of TDS. Hierarchical cluster analysis applied to these samples allowed the definition of seven classes, and their specific fmedian was calculated employing TDS/Acidity. Then, seven conversion factors were obtained for mining influenced water based on sulfate concentration and acidity degree. Full article
Show Figures

Figure 1

Back to TopTop