Quantitative Source Identification, Pollution Risk Assessment of Potentially Toxic Elements in Soils of a Diamond Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling, Analysis, and Quality Control
2.3. Statistical Analysis
2.4. Calculations of Contamination Index
2.4.1. Potential Ecological Risk Index (RI)
2.4.2. PMF Model
3. Results
3.1. Descriptive Statistics of Soil Physical–Chemical Properties and PTE Concentrations
3.2. PTEs’ Contamination Levels of Soils
3.3. Multivariate Statistical Analysis Results
3.4. Correlation and Hierarchical Cluster Analysis
3.5. Source Apportionment by PMF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oelofse, S. Mine water pollution–acid mine decant, effluent and treatment: A consideration of key emerging issues that may impact the state of the environment. In Mining: Environment and Health Concerns; The Icfai University Press: Hyderabad, India, 2009; pp. 83–91. [Google Scholar]
- Oyebamiji, A.; Odebunmi, A.; Ruizhong, H.; Rasool, A. Assessment of trace metals contamination in stream sediments and soils in Abuja leather mining, southwestern Nigeria. Acta Geochim. 2018, 37, 592–613. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Zhang, C.S. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ. Pollut. 2006, 142, 501–511. [Google Scholar] [CrossRef]
- Nanos, N.; Rodríguez Martín, J.A. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma 2012, 189, 554–562. [Google Scholar] [CrossRef]
- Bugaeva, G.G.; Kogut, A.V. Environmental risk factors in the area of open mining. Min. Inf. Anal. Bull. 2007, 15, 292–296. [Google Scholar]
- Kalybekov, T. System analysis of geo-ecological risk of technological processes in open-pit mining. Kazakhstan Min. Rep. 2013, 7, 41–43. [Google Scholar]
- Raska, P.; Balej, M.; Raska, M. Differential evolution of rockwall and talus cones in abandoned basalt quarries and its implications for restoration management: Case study from the Radobyl Hill, N Czech Republic. Int. J. Min. Reclam. Environ. 2011, 25, 297–312. [Google Scholar] [CrossRef]
- Edwards, D.P.; Sloan, S.; Weng, L.; Dirks, P.; Sayer, J.; Laurance, W.F. Mining and the African environment. Conserv. Lett. 2014, 7, 302–311. [Google Scholar] [CrossRef]
- Khudyakova, L.I.; Voiloshnikov, O.V. Geocological risks and mitigation in magnesium silicate deposit mining. Min. Inf. Anal. Bull. 2018, 2, 111–117. [Google Scholar] [CrossRef]
- Siegel, F.R. Environmental Geochemistry of Potentially Toxic Metals; Springer: Berlin/Heidelberg, Germany, 2001; 217p. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRS Press: Boca Raton, FL, USA, 2011; 548p. [Google Scholar]
- Lv, J.; Liu, Y.; Zhang, Z.; Dai, J.; Dai, B.; Zhu, Y. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. J. Soils Sediments 2015, 15, 163–178. [Google Scholar] [CrossRef]
- Shi, B.; Yang, X.; Liang, T.; Liu, S.; Yan, X.; Li, J.; Liu, Z. Source apportionment of soil PTE in a northern industrial county using PMF model: Partitioning strategies and uncertainty analysis. Environ. Res. 2024, 252, 118855. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, H.; Han, R. Source Apportionment of Potentially Toxic Elements in Agricultural Soils of Yingtan City, Jiangxi Province, China: A Principal Component Analysis–Positive Matrix Factorization Method. Toxics 2025, 13, 267. [Google Scholar] [CrossRef]
- Huang, S.; Tu, J.; Liu, H.; Hua, M.; Liao, Q.; Feng, J.; Weng, Z.; Huang, G. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos. Environ. 2009, 43, 5781–5790. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, J.; Shi, W. Source apportionment and potential ecological risk assessment of heavy metals in soils on a large scale in China. Environ. Geochem. Health 2023, 45, 1413–1427. [Google Scholar] [CrossRef]
- JV Udachninsky GOK AK «ALROSA» (PJSC). Monitoring of Sustainable Development. Available online: https://monitoring-esg.ru/esg-analitika/analitika-po-kompaniyam/sp-ak-alrosa-pao-udachninskij-gorno-obogatitelnyj-kombinat (accessed on 1 October 2022).
- Legostaeva, Y.B.; Ksenofontova, M.I.; Popov, V.F. Geoecologic situation at site of drainage brine utilization during development of primary deposits in Yakutia pipe. Eurasian Min. 2019, 1, 43–48. [Google Scholar] [CrossRef]
- Mironova, S.I. Plant Successions in the Natural-Technogenic Landscapes of Western Yakutia and their Optimization; Academy of Natural History Publ. House: Moscow, Russia, 2016; p. 140. [Google Scholar]
- Legostaeva, Y.; Kozlova, I.; Popov, V.; Noev, D. Geoecological situation in the area of Aikhal MPD. In Proceedings of the Geology and Mineral Resources of the North-East of Russia, Yakutsk, Russia, 8 April 2020; pp. 482–485. [Google Scholar]
- Gololobova, A.; Legostaeva, Y. An assessment of the impact of the mining industry on soil and plant contamination by potentially toxic elements in boreal forests. Forests 2023, 14, 1641. [Google Scholar] [CrossRef]
- Legostaeva, Y.B.; Gololobova, A.G. Features of the distribution of trace elements in the soils of the background and impact zones at diamond mining sites in the northwest of the Siberian Platform. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2021, 332, 142–153. [Google Scholar] [CrossRef]
- Yannikov, A.M. Hydrogeology of the Daldyn Kimberlite Field: Republic of Sakha (Yakutia); ALROSA: Mirny, Russia, 2023; p. 305. [Google Scholar]
- Yannikov, A.M. Prospects for using permafrost rocks of the daldyn kimberlite field for injection of drainage water of the zarnitsa and udachnaya pipes. Geoecology Eng. Geol. Hydrogeol. Geocryol. 2023, 2, 43–55. [Google Scholar] [CrossRef]
- ISO 10390; Soil Quality-Determination of pH. ISO: Geneva, Switzerland, 2005.
- ISO 14235; Soil Quality-Determination of Organic Carbon by Sulfochromic Oxidation. ISO: Geneva, Switzerland, 1998.
- NF ISO 11261; Dosage de L’azote Total-Methode de Kjeldahl Modifiee; Qualite des Sols. Association Française de Normalization: Paris, France, 1995.
- Ilyin, V.B. Heavy Metals in the Soil-Plant System; Novosibirsk: Nauka, Russia, 1991; p. 150. [Google Scholar]
- Method M 03-07-2014. Measurement of the Mass Fraction of Elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, Zn) in Samples of Soil, Subsoil, Bottom Sediments and Sewage Sludge, FER 16.1:2:2.2:2.3.63-09; Saint Petersburg: Lumex, Russia, 2014. [Google Scholar]
- GSO 2498-83/2500-83; Standard Sample of Composition of Sod-Podzolic Sandy Loam Soil (SDPC set). NPO “TYPHOON”/NIIPF GOU VPO “ISU”: Obninsk, Russia, 2018.
- GSO 2504-83/2506-83; Standard Sample of CARBONATE SERIOZEME SOIL COMPOSITION (set of SSC). NPO “TYPHOON”/NIIPF GOU VPO “ISU”: Obninsk, Russia, 2018.
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986; p. 416. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data; Blackburn Press: Caldwell, NJ, USA, 2003; p. 460. [Google Scholar]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional Data Analysis: Theory and Applications; Wiley: Chichester, UK; West Sussex, UK, 2011; p. 400. [Google Scholar]
- Thio-Henestrosa, S.; Comas, S. CoDaPack V2 User’s Guide University of Girona, Dept. of Computer Science and Applied Mathematics. 2016. Available online: http://ima.udg.edu/codapack/assets/codapack-manual (accessed on 2 February 2021).
- Chen, L.H.; Luo, X.F.; Hasi, Q.G. Pollute situation and correlation analysis of soil heavy metals in oil field. J. North Univ. China 2011, 32, 189–194. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, Y.; Liu, Z.; Zhang, A. Quantitative contributions of the major sources of heavy metals in soils to ecosystem andhuman health risks: A case study of Yulin, China. Ecotoxicol. Environ. Saf. 2018, 164, 261–269. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Fan, Z. Health risk assessment of heavy metal (loid) s in park soils of thelargest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martin, J.A.R.; Ramos-Miras, J.J.; Boluda, R.; Gil, C. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 2013, 200, 180–188. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Chen, L.; Zhao, F.; Sun, L. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Environ. Sci. Pollut. Res. 2019, 26, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Mico, C.; Recatala, L.; Peris, M.; Sanchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Li, J.; He, M.; Han, W.; Gu, Y. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J. Hazard. Mater. 2009, 164, 976–981. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control-a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, G.; Cao, S.; Zhang, Z.; Li, H.; Jiang, G. Characteristics and Potential Ecological Risks of Heavy Metal Content in the Soil of a Plateau Alpine Mining Area in the Qilian Mountains. Land 2023, 12, 1727. [Google Scholar] [CrossRef]
- Ruey-An, D.; Yu-Tin, L. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River Taiwan. Water Res. 2004, 38, 1733–1744. [Google Scholar] [CrossRef]
- Zhuang, W.; Wang, Q.; Tang, L.; Liu, J.; Yue, W.; Liu, Y.; Yongxia, L.; Fengxia, Z.; Qing, C.; Mantang, W. A new ecological risk assessment index for metal elements in sediments based on receptor model, speciation, and toxicity coefficient by taking the Nansihu Lake as an example. Ecol. Indic. 2018, 89, 725–737. [Google Scholar] [CrossRef]
- Kilavi, P.K.; Kaniu, M.I.; Patel, J.P.; Usman, I.T. Assessment of heavy metal pollution in soil and associated risks in the environs adjacent to a heavy mineral sand mine on the south coast of Kenya. Water Air Soil Pollut. 2023, 234, 748. [Google Scholar] [CrossRef]
- U.S. EPA. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; Office of Emergency and Remedial Response: Washington, DC, USA, 2014. [Google Scholar]
- Wang, Y.; Guo, G.; Zhang, D.; Lei, M. An integrated method for source apportionment of heavy metal (loid) s in agricultural soils and model uncertainty analysis. Environ. Pollut. 2021, 276, 116666. [Google Scholar] [CrossRef] [PubMed]
- Legostaeva, Y.B.; Ksenofontova, M.I.; Dyagileva, A.G. Ecological and geochemical monitoring of soil cover in the impact zone of the Nyurbinsky MPD. Mining J. 2014, 4, 117–121. [Google Scholar]
- Gololobova, A.G.; Legostaeva, Y.B. Heavy metals in cryozems of Western Yakutia. In Proceedings of the Water Resources. Forest, Marine and Ocean Ecosystems, Sofia, Bulgaria, 30 June–6 July 2019; pp. 239–246. [Google Scholar] [CrossRef]
- Paatero, P. Least square formulation of robust non-negative factor analysis. Chemometr. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Vorobeva, K.Y.; Prokhorova, N.V. Features of copper pollution of soils of civil engineering facilities in the Samara region. In Ecological Collection 7: Proceedings of Young Scientists; IEVB RAS; «Anna» Publisher: Tolyatti, Russia, 2019; pp. 115–116. [Google Scholar]
- Prokhorova, N.V. Ecological and geochemical role of motor transport in urban environment. Vestnik of Samara University. J. Nat. Sci. 2005, 5, 188–199. [Google Scholar]
- Gololobova, A.G.; Legostaeva, Y.B. The stability of frozen soils in conditions of development of mining industry. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 29 June–5 July 2017; Volume 17, pp. 655–662. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Wang, Y.; Luo, G.; Chen, X.; Yang, X.; Hall, M.H.P.; Guo, R.; Wang, H.; Cui, J.; et al. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma 2013, 192, 50–58. [Google Scholar] [CrossRef]
- Robertson, D.J.; Taylor, K.G.; Hoon, S.R. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Appl. Geochem. 2003, 18, 269–282. [Google Scholar] [CrossRef]
- Nuralykyzy, B.; Wang, P.; Deng, X.; An, S.; Huang, Y. Heavy metal contents and assessment of soil contamination in different land-use types in the Qaidam Basin. Sustainability 2021, 13, 12020. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef]
- Rodríguez, M.J.A.; Arias, M.L.; Corbi, J.M.G. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Appli-cation of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 2006, 144, 1001–1012. [Google Scholar] [CrossRef]
- Gololobova, A.; Legostaeva, Y.; Popov, V.; Makarov, V.; Shadrinova, O. Geochemical characteristics of soils to the impact of diamond mining in Siberia (Russia). Minerals 2022, 12, 1518. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals; Springer: New York, NY, USA, 2001; 867p. [Google Scholar] [CrossRef]
- Yanin, E.P. Dust emissions from enterprises as a source of cadmium pollution of the urban environment. Ecol. Urban Areas 2009, 1, 30–35. [Google Scholar]
- Jiries, A.G.; Hussein, H.H.; Halash, Z. The quality of water and sediments of street runoff in Amman, Jordan. Hydrol. Process. 2001, 15, 815–824. [Google Scholar] [CrossRef]
- Bem, H.; Gallorini, M.; Rizzio, E.; Krzeminska, M. Comparative studies on the concentrations of some elements in the urban air particulate matter in Lodz City of Poland and in Milan, Italy. Environ. Int. 2003, 29, 423–428. [Google Scholar] [CrossRef]
- Nezhad, M.T.K.; Tabatabaii, S.M.; Gholami, A. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. J. Geochem. Explor. 2015, 152, 91–109. [Google Scholar] [CrossRef]
- Huang, C.C.; Cai, L.M.; Xu, Y.H.; Wen, H.H.; Jie, L.; Hu, G.C.; Chen, L.G.; Wang, H.Z.; Xu, X.B.; Mei, J.X. Quantitative analysis of ecological risk and human health risk of potentially toxic elements in farmland soil using the PMF model. Land Degrad. Dev. 2022, 33, 1954–1967. [Google Scholar] [CrossRef]
- Fei, X.F.; Lou, Z.H.; Xiao, R.; Ren, Z.Q.; Lv, X.N. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Hua, C.; He, J.; Zhu, M.; Tian, Y.; Yong, X.; Lijun, R. Pollution assessment and source apportionment of heavy metal(loid)s in soil of Huangshui River basin, Qinghai Province, China. Stoch. Environ. Res. Risk Assess. 2023, 37, 4843–4855. [Google Scholar] [CrossRef]
- Wang, J.; Yu, D.; Wang, Y. Source analysis of heavy metal pollution in agricultural soil irrigated with sewage in Wuqing, Tianjin. Sci. Rep. 2021, 11, 17816. [Google Scholar] [CrossRef]
- Goncalves, A.C.; Nacke, H.; Schwantes, D.; Coelho, G.F. Heavy metal contamination in Brazilian agricultural soils due to application of fertilizers. Environ. Risk Assess Soil Contam. 2014, 4, 105–135. [Google Scholar] [CrossRef]
Index | Physicochemical Properties | Granulometric Fractions, mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Humus, % | SOC, % | TN, % | SOC/TN | 1–0.25 | 0.25–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | <0.001 | <0.01 | >0.01 | |
Mean | 7.62 | 9.88 | 5.73 | 0.81 | 7.06 | 1.04 | 7.65 | 23.45 | 10.34 | 15.83 | 25.21 | 51.38 | 32.14 |
Geometric mean | 7.56 | 7.01 | 4.07 | 0.62 | 6.56 | 0.44 | 6.66 | 22.57 | 10.31 | 15.28 | 24.12 | 51.24 | 31.43 |
Median | 7.80 | 6.20 | 3.60 | 0.76 | 4.72 | 0.34 | 6.26 | 26.62 | 10.19 | 15.72 | 27.92 | 50.02 | 33.08 |
Minimum | 4.32 | 1.10 | 0.64 | 0.03 | 13.80 | 0.05 | 3.00 | 15.61 | 9.55 | 11.67 | 12.70 | 46.55 | 22.14 |
Maximum | 9.30 | 47.00 | 27.26 | 1.98 | 25.52 | 2.81 | 12.19 | 30.86 | 11.55 | 23.66 | 29.74 | 57.71 | 42.59 |
Variance | 0.72 | 72.52 | 24.40 | 0.23 | 106.55 | 1.47 | 18.06 | 47.76 | 0.68 | 24.01 | 49.90 | 18.09 | 55.80 |
Standard deviation | 0.85 | 8.52 | 4.94 | 0.48 | 10.32 | 1.21 | 4.25 | 6.91 | 0.83 | 4.90 | 7.06 | 4.25 | 7.47 |
Element | Background Values | Mean | Geometric Mean | Median | Minimum | Maximum | Variance | Standard Deviation | Standard Error | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
Pb | 1.79 | 2.21 | 1.80 | 1.96 | 0.33 | 6.60 | 1.584 | 1.41 | 0.22 | 1.13 | 1.08 |
Ni | 3.12 | 15.39 | 3.43 | 2.40 | 1.00 | 163.80 | 295.4 | 40.97 | 6.40 | 3.17 | 8.82 |
Mn | 189.0 | 311.63 | 199.98 | 184.90 | 34.76 | 1856.0 | 4242.9 | 415.5 | 64.88 | 3.00 | 8.49 |
Cd | 0.11 | 0.14 | 0.11 | 0.10 | 0.03 | 1.12 | 0.035 | 0.18 | 0.03 | 4.56 | 24.00 |
Co | 2.64 | 4.53 | 2.73 | 2.69 | 0.53 | 34.65 | 53.49 | 6.92 | 1.08 | 3.47 | 12.20 |
Cr | 0.93 | 1.94 | 0.97 | 0.85 | 0.11 | 21.45 | 18.79 | 4.08 | 0.64 | 4.08 | 16.70 |
Zn | 9.47 | 12.10 | 9.36 | 11.46 | 0.05 | 36.46 | 51.78 | 6.99 | 1.09 | 1.17 | 2.53 |
As | 0.13 | 0.22 | 0.12 | 0.20 | 0.03 | 0.84 | 42.22 | 0.21 | 0.03 | 1.03 | 0.62 |
PTE | Raw Data | Clr-Transformed Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shapiro–Wilk | Kolmogorov–Smirnov | Shapiro–Wilk | Kolmogorov–Smirnov | |||||||||
Statistic | p-Value | Decision at Level (5%) | Statistic | p-Value | Decision at Level (5%) | Statistic | p-Value | Decision at Level (5%) | Statistic | p-Value | Decision at Level (5%) | |
Pb | 0.91679 | 0.01 | Reject normality | 0.14706 | 0.38 | Cannot reject normality | 0.97565 | 0.60 | Cannot reject normality | 0.09596 | 0.97 | Cannot reject normality |
Ni | 0.38995 | <0.0001 | Reject normality | 0.46737 | <0.0001 | Reject normality | 0.74921 | <0.0001 | Reject normality | 0.25081 | 0.018 | Reject normality |
Mn | 0.56651 | <0.0001 | Reject normality | 0.29452 | 0.003 | Reject normality | 0.97585 | 0.60 | Cannot reject normality | 0.09874 | 0.93 | Cannot reject normality |
Cd | 0.50433 | <0.0001 | Reject normality | 0.30397 | 0.002 | Reject normality | 0.91881 | 0.011 | Reject normality | 0.13259 | 0.52 | Cannot reject normality |
Co | 0.51187 | <0.0001 | Reject normality | 0.3747 | <0.0001 | Reject normality | 0.96699 | 0.35 | Cannot reject normality | 0.08672 | 1.00 | Cannot reject normality |
Cr | 0.40102 | <0.0001 | Reject normality | 0.40484 | <0.0001 | Reject normality | 0.95914 | 0.20 | Cannot reject normality | 0.12286 | 0.62 | Cannot reject normality |
Zn | 0.93232 | 0.02944 | Reject normality | 0.14168 | 0.43 | Cannot reject normality | 0.80372 | <0.0001 | Reject normality | 0.20528 | 0.08 | Cannot reject normality |
Cu | 0.8423 | 0.0001 | Reject normality | 0.19893 | 0.10 | Cannot reject normality | 0.98455 | 0.88 | Cannot reject normality | 0.07433 | 1.00 | Cannot reject normality |
As | 0.86709 | 0.0005 | Reject normality | 0.18388 | 0.15 | Cannot reject normality | 0.93092 | 0.027 | Reject normality | 0.13363 | 0.51 | Cannot reject normality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gololobova, A.; Legostaeva, Y. Quantitative Source Identification, Pollution Risk Assessment of Potentially Toxic Elements in Soils of a Diamond Mining Area. Soil Syst. 2025, 9, 48. https://doi.org/10.3390/soilsystems9020048
Gololobova A, Legostaeva Y. Quantitative Source Identification, Pollution Risk Assessment of Potentially Toxic Elements in Soils of a Diamond Mining Area. Soil Systems. 2025; 9(2):48. https://doi.org/10.3390/soilsystems9020048
Chicago/Turabian StyleGololobova, Anna, and Yana Legostaeva. 2025. "Quantitative Source Identification, Pollution Risk Assessment of Potentially Toxic Elements in Soils of a Diamond Mining Area" Soil Systems 9, no. 2: 48. https://doi.org/10.3390/soilsystems9020048
APA StyleGololobova, A., & Legostaeva, Y. (2025). Quantitative Source Identification, Pollution Risk Assessment of Potentially Toxic Elements in Soils of a Diamond Mining Area. Soil Systems, 9(2), 48. https://doi.org/10.3390/soilsystems9020048