Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = high-water backfill material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5140 KiB  
Article
Characterization of the Mechanical Properties of Fiber-Reinforced Modified High Water Content Materials
by Bao Song, Jinxing Lyu, Zhiyi Zhang, Zhimeng Song and Songxiang Liu
Buildings 2025, 15(13), 2283; https://doi.org/10.3390/buildings15132283 - 28 Jun 2025
Viewed by 322
Abstract
This research examines the mechanical properties of fiber-reinforced modified high-water content materials intended for mining backfill applications. Conventional high-water content materials encounter several challenges, including brittleness, inadequate crack resistance, and insufficient later-stage strength. Basalt fiber (BF) and polypropylene fiber (PP) were integrated into [...] Read more.
This research examines the mechanical properties of fiber-reinforced modified high-water content materials intended for mining backfill applications. Conventional high-water content materials encounter several challenges, including brittleness, inadequate crack resistance, and insufficient later-stage strength. Basalt fiber (BF) and polypropylene fiber (PP) were integrated into the material system to establish a reinforcing network through interfacial bonding and bridging mechanisms to mitigate these issues. A total of nine specimen groups were developed to assess the influence of fiber type (BF/PP), fiber content (ranging from 0.5% to 2.0%), and water cement ratio (from 1.25 to 1.75) on compressive, tensile, and shear strengths. The findings indicated that basalt fiber exhibited superior performance compared to polypropylene fiber, with a 1% BF admixture yielding the highest compressive strength of 5.08 MPa and notable tensile enhancement attributed to effective pore-filling and three-dimensional reinforcement. Conversely, higher ratios (e.g., 1.75) resulted in diminished strength due to increased porosity, while a ratio of 1.25 effectively balanced matrix integrity and fiber reinforcement. Improvements in shear strength were less significant, as excessive fiber content disrupted interfacial friction, leading to a propensity for brittle failure. In conclusion, basalt fiber-modified high water content materials (with a 1% admixture and a ratio of 1.25) demonstrate enhanced ductility and mechanical performance, rendering them suitable for mining backfill applications. Future investigations should focus on optimizing the fiber matrix interface, exploring hybrid fiber systems, and conducting field-scale validations to promote sustainable mining practices. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 3741 KiB  
Article
Mechanical Properties of Large-Volume Waste Concrete Lumps Cemented by Desert Mortar: Laboratory Tests
by Hui Chen, Zhiyuan Qi, Baiyun Yu and Xinyu Li
Buildings 2025, 15(12), 2060; https://doi.org/10.3390/buildings15122060 - 15 Jun 2025
Viewed by 473
Abstract
In response to the high cost and environmental impact of backfill materials in Xinjiang mines, an eco-friendly, large-volume composite was developed by bonding desert-sand mortar to waste concrete. A rock-filled concrete process produced a highly flowable mortar from desert sand, cement, and fly [...] Read more.
In response to the high cost and environmental impact of backfill materials in Xinjiang mines, an eco-friendly, large-volume composite was developed by bonding desert-sand mortar to waste concrete. A rock-filled concrete process produced a highly flowable mortar from desert sand, cement, and fly ash. Waste concrete blocks served as coarse aggregate. Specimens were cured for 28 days, then subjected to uniaxial compression tests on a mining rock-mechanics system using water-to-binder ratios of 0.30, 0.35, and 0.40 and aggregate sizes of 30–40 mm, 40–50 mm, and 50–60 mm. Mechanical performance—failure modes, stress–strain response, and related properties—was systematically evaluated. Crack propagation was tracked via digital image correlation (DIC) and acoustic emission (AE) techniques. Failure patterns indicated that the pure-mortar specimens exhibited classic brittle fractures with through-going cracks. Aggregate-containing specimens showed mixed-mode failure, with cracks flowing around aggregates and secondary branches forming non-through-going damage networks. Optimization identified a 0.30 water-to-binder ratio (Groups 3 and 6) as optimal, yielding an average strength of 25 MPa. Among the aggregate sizes, 40–50 mm (Group 7) performed best, with 22.58 MPa. The AE data revealed a three-stage evolution—linear-elastic, nonlinear crack growth, and critical failure—with signal density positively correlating to fracture energy. DIC maps showed unidirectional energy release in pure-mortar specimens, whereas aggregate-containing specimens displayed chaotic energy patterns. This confirms that aggregates alter stress fields at crack tips and redirect energy-dissipation paths, shifting failure from single-crack propagation to a multi-scale damage network. These results provide a theoretical basis and technical support for the resource-efficient use of mining waste and advance green backfill technology, thereby contributing to the sustainable development of mining operations. Full article
Show Figures

Figure 1

18 pages, 5459 KiB  
Article
Study on the Effect of Slurry Concentration on the Mechanical Properties and Fluoride Immobilization of Red Mud-Based Backfill Under Phosphogypsum Neutralization
by Qinli Zhang, Jingjing Yang, Bin Liu, Daolin Wang, Qiusong Chen and Yan Feng
Appl. Sci. 2025, 15(11), 6041; https://doi.org/10.3390/app15116041 - 27 May 2025
Viewed by 722
Abstract
Red mud (RM) is a strongly alkaline waste residue produced during alumina production, and its high alkali and fine particle characteristics are prone to cause soil, water, and air pollution. Phosphogypsum (PG), as a by-product of the wet process phosphoric acid industry, poses [...] Read more.
Red mud (RM) is a strongly alkaline waste residue produced during alumina production, and its high alkali and fine particle characteristics are prone to cause soil, water, and air pollution. Phosphogypsum (PG), as a by-product of the wet process phosphoric acid industry, poses a significant risk of fluorine leaching and threatens the ecological environment and human health due to its high fluorine content and strong acidic properties. In this study, RM-based cemented paste backfill (RCPB) based on the synergistic curing of PG and ordinary Portland cement (OPC) was proposed, aiming to achieve a synergistic enhancement of the material’s mechanical properties and fluorine fixation efficacy by optimizing the slurry concentration (63–69%). Experimental results demonstrated that increasing slurry concentration significantly improved unconfined compressive strength (UCS). The 67% concentration group achieved a UCS of 3.60 MPa after 28 days, while the 63%, 65%, and 69% groups reached 2.50 MPa, 3.20 MPa, and 3.40 MPa, respectively. Fluoride leaching concentrations for all groups were below the Class I groundwater standard (≤1.0 mg/L), with the 67% concentration exhibiting the lowest leaching value (0.6076 mg/L). The dual immobilization mechanism of fluoride ions was revealed by XRD, TGA, and SEM-EDS characterization: (1) Ca2⁺ and F to generate CaF2 precipitation; (2) hydration products (C-S-H gel and calixarenes) immobilized F by physical adsorption and chemical bonding, where the alkaline component of the RM (Na2O) further promotes the formation of sodium hexafluoroaluminate (Na3AlF6) precipitation. The system pH stabilized at 9.0 ± 0.3 after 28 days, mitigating alkalinity risks. High slurry concentrations (67–69%) reduced material porosity by 40–60%, enhancing mechanical performance. It was confirmed that the synergistic effect of RM and PG in the RCPB system could effectively neutralize the alkaline environment and optimize the hydration environment, and, at the same time, form CaF2 as well as complexes encapsulating and adsorbing fluoride ions, thus significantly reducing the risk of fluorine migration. The aim is to improve the mechanical properties of materials and the fluorine-fixing efficiency by optimizing the slurry concentration (63–69%). The results provide a theoretical basis for the efficient resource utilization of PG and RM and open up a new way for the development of environmentally friendly building materials. Full article
Show Figures

Figure 1

12 pages, 912 KiB  
Article
Optimizing Backfill Materials for Ground Heat Exchangers: A Study on Recycled Concrete Aggregate and Fly Ash for Enhanced Thermal Conductivity
by Andrzej Głuchowski
Materials 2024, 17(23), 5876; https://doi.org/10.3390/ma17235876 - 30 Nov 2024
Cited by 1 | Viewed by 919
Abstract
This study investigates the potential use of recycled concrete aggregate (RCA), fly ash (FA), and their mixture (RCA+FA) as backfill materials for shallow vertical ground heat exchangers (GHEs). Granulometric, aerometric, and Proctor compaction tests were conducted to determine soil gradation, the void ratio, [...] Read more.
This study investigates the potential use of recycled concrete aggregate (RCA), fly ash (FA), and their mixture (RCA+FA) as backfill materials for shallow vertical ground heat exchangers (GHEs). Granulometric, aerometric, and Proctor compaction tests were conducted to determine soil gradation, the void ratio, and the optimal moisture content (OMC) for maximum dry density. RCA demonstrated efficient compaction at lower moisture levels, while FA required higher moisture to reach maximum density. A 10% FA addition was optimized to fill voids in the RCA soil skeleton without compromising structural stability. Thermal conductivity tests were performed using a TP08 probe in both dry and wet states. The results showed that the RCA+FA mix exhibited a notable increase in thermal conductivity at around 6% moisture content due to the formation of water bridges between particle contacts. FA, in contrast, displayed a more linear relationship between conductivity and moisture. The RCA+FA mix achieved higher thermal conductivity than either material alone, particularly near full saturation, making it a promising option for efficient heat exchange. Thermal conductivity modeling, based on the Woodside and Messmer model, confirmed the RCA+FA mix’s high conductivity and estimated full saturation conductivity values with a small error. The Kersten number (Ke) was employed to predict conductivity across varying moisture levels, with results showing a strong correlation with saturation ratio (Sr). Full article
Show Figures

Figure 1

11 pages, 2635 KiB  
Article
Study on the Properties of All-Solid Waste Fluidized Filling Materials Applied to Mine Void Area Filling Engineering
by Yuting Lu, Junjie Yang, Yalei Wu, Ruifan Lu, Yunhong Li, Lixiang Zhang and Jiangtao Guo
Materials 2024, 17(21), 5154; https://doi.org/10.3390/ma17215154 - 23 Oct 2024
Cited by 1 | Viewed by 1124
Abstract
The extraction of mining resources, as well as processing processes such as ore beneficiation and smelting, generate large amounts of tailings that are difficult to directly utilize. Meanwhile, substantial filling materials are required for the voids formed after mining operations, and the environmental [...] Read more.
The extraction of mining resources, as well as processing processes such as ore beneficiation and smelting, generate large amounts of tailings that are difficult to directly utilize. Meanwhile, substantial filling materials are required for the voids formed after mining operations, and the environmental issues and safety hazards brought on by massive solid waste disposal cannot be ignored. By utilizing solid waste with alkaline and pozzolanic activity as the binder component and gold tailings as filler aggregate to prepare filler material to fill up the void areas, the purpose of waste treatment can be achieved. In this study, salt sludge, steel slag, ground granulated blast furnace slag, and gold tailings were used to prepare all-solid waste fluidized filling material for filling mine void areas, which not only solves the engineering safety problem of easy collapse of the mine airspace in the mining process but also ensures a backfill effect with high strength, which continuously guarantees the uninterrupted progress of the mining project. At the same time, the preparation of fluidized materials can consume a large amount of tailings and other solid waste, solving the problem of their stockpiling. The components of the solid wastes used are all general industrial solid wastes, so the preparation of the fluidized materials will not have an impact on the surrounding environment. The effects of binder ratios on the workability of the filling materials were investigated by means of the slump and slump flow tests. Combined with the unconfined compressive strength test, the change in backfill material strength with curing age and the water–binder ratio was studied. The experimental results showed that the slump and slump flow value of the filling material were positively correlated with the water–binder ratio. The water–binder ratio range satisfying a slump value of 180~260 mm and a slump flow value not less than 400 mm was 0.95~1.106. However, the strength decreased with the increase in the water–binder ratio, conforming to a hyperbolic relationship. The all-solid waste fluidized filling material had strengths not less than 0.22, 1.09, and 1.95 MPa at 3, 7, and 28 d, respectively, meeting the workability requirements. Finally, a method for determining the optimal range of water–binder ratio considering both workability performance and strength is proposed based on the relationship between slump value, slump flow value, unconfined compressive strength, and the water–binder ratio. Full article
Show Figures

Graphical abstract

16 pages, 5492 KiB  
Article
The Effects of Hydroxypropyl Methyl Cellulose and Metakaolin on the Properties of Self-Compacting Solidified Soil Based on Abandoned Slurry
by Liang Tang, Kaijian Huang, Gong Shen, Yixin Miao and Jiansheng Wu
Materials 2024, 17(12), 2960; https://doi.org/10.3390/ma17122960 - 17 Jun 2024
Viewed by 1387
Abstract
As a new type of backfill material, Self-compacting solidified soil (SCSS) takes the abandoned slurry of cast-in-place piles after dewatering and reduction as the main raw material, which brings a problem of coordinating the working performance with the mechanical property under the condition [...] Read more.
As a new type of backfill material, Self-compacting solidified soil (SCSS) takes the abandoned slurry of cast-in-place piles after dewatering and reduction as the main raw material, which brings a problem of coordinating the working performance with the mechanical property under the condition of high mobility. In this paper, hydroxypropyl methyl cellulose (HPMC) and metakaolin were introduced as additives to solve this problem. First, the workability and mechanical properties of SCSS were regulated and optimized by means of the water seepage rate test, the flowability test, and the unconfined compressive strength test. Second, this study also used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to investigate the effects of HPMC and metakaolin on the physical phase and microstructure of SCSS. In this way, the results showed that there was a significant impact on the flowability of SCSS, that is, when the dosage reached 0.3%, the water seepage rate of SCSS was reduced to less than 1%, and the compressive strength at 7 days reached its peak. At the same time, HPMC weakened the strength growth of SCSS in the age period of 7 days to 14 days. However, the addition of metakaolin promoted its compressive strength. XRD analysis showed that the additives had no significant effects on the physical phases. And, from the SEM results, it can be seen that although the water-retaining effect of HPMC makes hydration of cement more exhaustive, more ettringite (AFt) can be observed in the microstructure. In addition, it can be observed that the addition of metakaolin can generate more hydrated calcium silicate (C-S-H) due to the strong surface energy possessed by metakaolin. As a result of the above factors, SCSS filled the voids between particles and improved the interface structure between particles, thus enhanced the compressive strength. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials II)
Show Figures

Figure 1

21 pages, 9604 KiB  
Article
Experimental Investigation on Hydrophobic Alteration of Mining Solid Waste Backfill Material
by Zhiyang Zhao, Liqiang Ma, Ichhuy Ngo, Kunpeng Yu, Yujun Xu, Jiangtao Zhai, Qiangqiang Gao, Chengkun Peng, Dangliang Wang, Saad S. Alarifi and Mahabub Hasan Sajib
Minerals 2024, 14(6), 580; https://doi.org/10.3390/min14060580 - 30 May 2024
Cited by 3 | Viewed by 1378
Abstract
To address the issues of corrosion weakening of solid-waste-based backfill material caused by mine water, a novel hydrophobic solid waste backfill (HSBF) material was developed using polydimethylsiloxane (PDMS) and a silane coupling agent (SCA) as hydrophobic modification additives, and NaOH (SH) and sodium [...] Read more.
To address the issues of corrosion weakening of solid-waste-based backfill material caused by mine water, a novel hydrophobic solid waste backfill (HSBF) material was developed using polydimethylsiloxane (PDMS) and a silane coupling agent (SCA) as hydrophobic modification additives, and NaOH (SH) and sodium silicate (SS) as alkali activators. Fly ash and slag were chosen as the primary raw solid waste materials. The rheological properties of the hydrophobic-treated backfill slurries were measured, and the resulting physicochemical properties were compared with the unmodified reference group. This study reveals that the fresh HSBF slurry follows a Modified Bingham (M-B) model with shear-thinning characteristics. The addition of PDMS causes an increase in the water contact angle of the hardened HSBF material with F8S2 to up to 134.9°, indicating high hydrophobicity. Morphological observations indicated that PDMS mainly attaches to the inorganic particles’ surface through the bridging action of SCA for the hydrophobic modification of the backfill material. The overall strength of the HSBF materials was further ensured via fly ash–slag ratio optimization, and was found to be enhanced up to 98% by increasing slag content from 20% to 50%. This is mainly attributed to the hydration of slag, forming C-S(A)-H gel, which contributes to the increased strength. The novel HSBF material enables the elimination of cement in mine backfilling applications, demonstrating good economic benefits. Its excellent mechanical and hydrophobic properties can not only prevent overburden displacement in goaf areas, but can also mitigate water resource loss from overlying strata and simultaneously reduce the safety risks associated with long-term mine water deterioration. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

16 pages, 3575 KiB  
Article
Experimental Study and Application of Controlled Low-Strength Materials in Trench Backfilling in Suqian City, China
by Jingmin Xu, Qiwu Luo, Yong Tang, Zhibo Zeng and Jun Liao
Materials 2024, 17(4), 775; https://doi.org/10.3390/ma17040775 - 6 Feb 2024
Cited by 6 | Viewed by 1909
Abstract
When backfilling narrow spaces, controlled low-strength materials (CLSM) can be used to achieve an effective backfilling effect. The pipeline engineering in Yahnghe Avenue of Suqian, China, provides a favorable on-site condition for the use of CLSM. However, no guidance exists for the determination [...] Read more.
When backfilling narrow spaces, controlled low-strength materials (CLSM) can be used to achieve an effective backfilling effect. The pipeline engineering in Yahnghe Avenue of Suqian, China, provides a favorable on-site condition for the use of CLSM. However, no guidance exists for the determination of the material mixture ratio of CLSM for this geological condition. Laboratory tests were performed to investigate the basic physical parameters of excavated soil and the optimal mixture ratio of CLSM. Results indicate that the sand and silt account for 29.76% and 57.23% of the weight of excavated soil, respectively. As the water content increases (from 40% to 50%), the flowability of the CLSM approximately shows a linear increase (slumps values from 154.3 mm to 269.75 mm for 9% cement content), while its compressive strength shows a linear decreasing trend (from 875.3 KPa to 468.3 KPa after curing for 28 days); as the cement content increases (from 6% to 12%), the flowability approximately shows a linear decreasing trend (from 238.8 mm to 178.5 mm for 45% water content), while the compressive strength shows a linear increasing trend (from 391.6 KPa to 987.6 KPa after curing for 28 days). By establishing the relationship between compressive strength/flowability and the water–cement ratio, the optimal material ratio is determined to be 9% cement content and 40–43% water content. The engineering application results indicate that the use of CLSM can achieve efficient and high-quality backfilling effects for pipeline trenches. The findings of this research may provide a reference for the application of CLSM in fields with similar geological conditions. Full article
Show Figures

Figure 1

26 pages, 12172 KiB  
Article
Modelling of the Corrosion-Induced Gas Impact on Hydraulic and Radionuclide Transport Properties of Geological Repository Barriers
by Asta Narkuniene, Gintautas Poskas and Gytis Bartkus
Minerals 2024, 14(1), 4; https://doi.org/10.3390/min14010004 - 19 Dec 2023
Viewed by 1390
Abstract
The geological disposal of high-level radioactive waste is the final step in the nuclear fuel cycle. It is realized via isolating the high-level radioactive waste in the geological environment with an appropriate system of engineered barriers. Radionuclides-containing materials must be isolated from the [...] Read more.
The geological disposal of high-level radioactive waste is the final step in the nuclear fuel cycle. It is realized via isolating the high-level radioactive waste in the geological environment with an appropriate system of engineered barriers. Radionuclides-containing materials must be isolated from the biosphere until the radioactivity contained in them has diminished to a safe level. In the case of high-level radioactive waste, it could take hundreds of thousands of years. Within such a long timescale, a number of physical and chemical processes will take part in the geological repository. For the assessment of radionuclide migration from a geological repository, it is necessary to predict the repository’s behavior once placed in the host rock as well as the host-rock response to disturbances due to construction. In this study, the analysis of repository barriers (backfill, concrete, inner excavation disturbed zone (EDZ), outer EDZ, host rock) thermo–hydraulic–mechanical (THM) evolution was performed, and the scope of gas-induced desaturation was analyzed with COMSOL Multiphysics. The analysis was based on modelling of a two-phase flow of miscible fluid (water and H2) considering important phenomena such as gas dissolution and diffusion, advective–diffusive transport in the gaseous phase, and mechanical deformations due to thermal expansion of water and porous media. The importance of proper consideration of temperature-dependent thermodynamic properties of water and THM couplings in the analysis of near-field processes was also discussed. The modelling demonstrated that such activities as 50 years’ ventilation of the waste disposal tunnel in initially saturated porous media, and such processes as gas generation due to corrosion of waste package or heat load from the waste, also led to desaturation of barriers. H2 gas generation led to the desaturation in engineered barriers and in a part of the EDZ close to the gas generation place vanishing soon after finish of gas generation, while the host rock remained saturated during the gas generation phase (50–100,000 years). Radionuclide transport properties in porous media such as effective diffusivity are highly dependent on the water content in the barriers determined by their porosity and saturation. Full article
Show Figures

Figure 1

19 pages, 5475 KiB  
Article
Mechanical Properties and Optimal Mix Design of Phosphogypsum Cement Mineral Admixture Foam Light Soil
by Bin Xu, Aodong Gao, Zhouxiang Chen, Yingxin Zhou, Kaiji Lu and Qi Zheng
Coatings 2023, 13(11), 1861; https://doi.org/10.3390/coatings13111861 - 30 Oct 2023
Cited by 7 | Viewed by 1970
Abstract
With the rapid growth of road transportation, the increase in road subgrade and pavement diseases has become a pressing issue, requiring the development of cost-effective filling materials that meet both strength and economic requirements. Foam lightweight soil, as a novel construction material, offers [...] Read more.
With the rapid growth of road transportation, the increase in road subgrade and pavement diseases has become a pressing issue, requiring the development of cost-effective filling materials that meet both strength and economic requirements. Foam lightweight soil, as a novel construction material, offers excellent characteristics such as adjustability in density and strength, high fluidity, and self-supporting capabilities. It has been widely utilized in various engineering applications, including road subgrade backfilling and retaining wall fillings. However, the conventional application of foam lightweight soil, predominantly cement-based, has raised concerns about pollution and high energy consumption due to large cement dosages. To address this issue, this study proposes the integration of phosphogypsum, a byproduct of wet-process phosphoric acid production, into foam lightweight soil. Phosphogypsum has a significant annual discharge and accumulation, but its comprehensive utilization rate remains relatively low. The research investigates the combination of phosphogypsum and foam lightweight soil by introducing mineral admixtures such as microsilica and slag powder to improve early strength development and reduce the influence of fluoride impurities on early strength. The optimal mix proportions for two types of foam lightweight soil, namely phosphogypsum cement microsilica foam (PGCF) and phosphogypsum cement slag powder foam (PGCS), were determined based on single-factor tests. The key parameters considered for optimization were water–binder ratio, foam content, and phosphogypsum dosage. The findings indicate that both PGCF and PGCS foam lightweight soil possess superior mechanical properties and thermal conductivity. By incorporating phosphogypsum into the mix, the early strength development of foam lightweight soil is effectively improved. Moreover, with suitable mix proportions, the maximum phosphogypsum dosage can be achieved, demonstrating potential economic and environmental benefits. In conclusion, this research provides valuable insights into the effective utilization of phosphogypsum in foam lightweight soil, offering a promising solution for the challenges associated with phosphogypsum disposal and the demand for sustainable construction materials in highway engineering. Full article
Show Figures

Figure 1

21 pages, 3600 KiB  
Article
Research on Sustainable Development of Mining Goaf Management Based on Economic Models
by Chuming Pang, Yongkui Shi and Yang Liu
Sustainability 2023, 15(20), 14772; https://doi.org/10.3390/su152014772 - 11 Oct 2023
Cited by 3 | Viewed by 1374
Abstract
The sustainable development of mines has been the focus of attention in recent years. In China, there are a large number of untreated mined-out areas, and a series of disasters caused by the instability of the goaf will bring heavy blows to people’s [...] Read more.
The sustainable development of mines has been the focus of attention in recent years. In China, there are a large number of untreated mined-out areas, and a series of disasters caused by the instability of the goaf will bring heavy blows to people’s safety and financial resources. Filling treatment will lead to increasing costs and decreasing profits, which will seriously reduce the motivation of mining enterprises and even lead to a moral hazard. Therefore, the analysis of the economic benefits of goaf control plays a vital role in the sustainable construction and long-term development of mines. This paper proposed the mined-out area treatment economic model. The proposed method employs the guiding philosophy of the newsboy model to create a mathematical economy model that provides the basis for a goaf management mode for mines. The following research results were obtained: (1) The economic model of the mined-out area backfilling treatment is constructed, which is classified as three different modes. (2) Combined with mathematical derivation and simulation, the influence of relevant variable parameters on each type of filling mode is discussed. (3) Various types of goaf filling treatment mode are compared with a non-filling scheme (benchmark mode), to provide theoretical support to help mining enterprises choose appropriate filling schemes. The results show that the economic model of mined-out area management provides the optimal mode for mined-out area filling, and the balance of tailings and ultra-high-water filling material procurement is realized, resulting in maximum profits. In this paper, we explain how the use of economic thinking has an important impact on the sustainable development of safety goaf management. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

18 pages, 23730 KiB  
Article
Experimental Research into the Ultrasonic P-Wave Velocity of Coal Slime Based Backfill Material
by Baifu An, Chenghao Cui, Jinfang Ren, Dongda Wang, Jiale Wang and Qiaomei Yi
Appl. Sci. 2023, 13(19), 11043; https://doi.org/10.3390/app131911043 - 7 Oct 2023
Cited by 2 | Viewed by 1494
Abstract
To study the influences of different mix proportions of materials on the ultrasonic p-wave velocity of coal slime based backfill materials, influences of four factors on the p-wave velocity of specimens were investigated by designing orthogonal tests and taking coal slime as the [...] Read more.
To study the influences of different mix proportions of materials on the ultrasonic p-wave velocity of coal slime based backfill materials, influences of four factors on the p-wave velocity of specimens were investigated by designing orthogonal tests and taking coal slime as the principal raw material. The four factors included the following: (A) the mass concentration of coal slime, (B) the content of high-water-content material, (C) cement content, (D) and content of fly ash. Test results revealed the following: (1) the ultrasonic p-wave velocity is in the range of 3.916 to 8.319 km/s and various factors are listed in a descending order as A, D, B, and C according to their influences on the ultrasonic p-wave velocity; (2) the ultrasonic p-wave velocity is positively correlated with the compressive strength and shear strength, with correlation coefficients separately of 0.87 and 0.65; (3) the equations for variations in the ultrasonic p-wave velocity under influences of different factors are fitted. The ultrasonic p-wave velocity has a quadratic polynomial relationship with factor A, while following exponential relationships with factors B, C, and D. A predictive model for characteristic parameters of the ultrasonic p-wave velocity of coal slime based backfill materials jointly influenced by the four factors was established based on the fitting equation for variations of single factors and ultrasonic p-wave velocity. The predictive model was then verified. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

23 pages, 4882 KiB  
Article
Laboratory Testing and Analysis of Clay Soil Stabilization Using Waste Marble Powder
by Ibrahim Haruna Umar, Hang Lin and Awaisu Shafiu Ibrahim
Appl. Sci. 2023, 13(16), 9274; https://doi.org/10.3390/app13169274 - 15 Aug 2023
Cited by 27 | Viewed by 5653
Abstract
Soil stabilization is a critical step in numerous engineering projects, preventing soil erosion, increasing soil strength, and reducing the risk of subsidence. Due to its inexpensive cost and potential environmental benefits, waste materials, such as waste marble powder (WMP), have been used as [...] Read more.
Soil stabilization is a critical step in numerous engineering projects, preventing soil erosion, increasing soil strength, and reducing the risk of subsidence. Due to its inexpensive cost and potential environmental benefits, waste materials, such as waste marble powder (WMP), have been used as additives for soil stabilization in recent years. This study investigates waste marble powder’s effects on unconfined compressive strength (UCS) and clayey soil’s ultrasonic pulse velocity (UPV) at different water contents and curing times, and artificial neural networks (ANNs) are also used to predict the UCS and UPV values based on three input variables (percentage of waste marble dust, curing time, and moisture content). Geo-engineering experiments (Atterberg limits, compaction characteristics, specific gravity, UCS, and UPV) and analytical methods (ANNs) are used. The study results indicate that the soil is high-plasticity clay (CH) using the Unified Soil Classification System (USCS), and adding waste marble powder (WMP) can significantly improve the UCS and UPV of clay soils, especially at optimal water content, curing times of 28 days, and 60% WMP. It is found that the ANN models accurately predict the UCS and UPV values with high correlation coefficients approaching 1. In addition, this study shows that the optimum water content and curing time for stabilized clay soils depend on the grade and amount of waste marble powder utilized. Overall, the study demonstrates the potential of waste marble dust as a soil stabilization additive and the usefulness of ANNs in predicting UCS and UPV values. This study’s results are relevant to engineers and researchers working on soil stabilization projects, such as foundations and backfills. They can contribute to the development of sustainable and cost-effective soil stabilization solutions. Full article
(This article belongs to the Special Issue Recent Research on Tunneling and Underground Engineering)
Show Figures

Figure 1

17 pages, 14051 KiB  
Article
Fluidity and Strength of Loess-Based Quick Consolidated Backfill Material with One High-Water Content
by Chenghao Cui, Baifu An, Heng Cui, Qiaomei Yi and Jiale Wang
Materials 2023, 16(16), 5544; https://doi.org/10.3390/ma16165544 - 9 Aug 2023
Viewed by 1302
Abstract
To study the flow and strength characteristics of loess-based backfill materials, orthogonal tests were used to design a cemented backfill material combining loess, high-water content materials, cement, and fly ash. By using the range, analysis of variance, and multi-variate regression analysis, influences of [...] Read more.
To study the flow and strength characteristics of loess-based backfill materials, orthogonal tests were used to design a cemented backfill material combining loess, high-water content materials, cement, and fly ash. By using the range, analysis of variance, and multi-variate regression analysis, influences of four key factors on the initial setting time, diffusivity, compressive strength, and shear strength of the backfill material were investigated. These four factors included the mass concentration of loess water (A), the content of high-water content materials (B), cement content (C), and content of fly ash (D). The results showed that the initial setting time, diffusivity, compressive strength, and shear strength of the backfill material were 13~33 min, 400~580 mm, 0.917–3.605 MPa, and 0.360–0.722 MPa, respectively, all distributed in wide ranges. For the initial setting time, the four factors were listed in descending order as A > D > B > C according to their influences; for diffusivity, the four factors were listed as A > B > C > D; for the compressive strength, the four factors were ranked as A > C > D > B; for the shear strength, the four factors were ranked such that A > C > D > B. With regard to the comprehensive index, the four factors were such that A > B > D > C. That is, the factors were listed in descending order as the mass concentration of loess water, cement content, the content of fly ash, and content of high-water content materials according to their significance in influencing characteristics of the loess-based backfill material. Comprehensive analysis indicated that the fluidity of the material was mainly influenced by the mass concentration of loess water, and the two were negatively correlated. The hydro-consolidation effect of materials with high-water contents accelerated material solidification. The strength of the backfill material was mainly influenced by the cement content while only slightly affected by contents of other materials. In this way, a prediction model for characteristic parameters, namely, fluidity and strength, of the loess-based backfill material under the action of various factors was established. Full article
Show Figures

Figure 1

18 pages, 9151 KiB  
Article
Preparation a High-Performance of Gangue-Based Geopolymer Backfill Material: Recipes Optimization Using the Taguchi Method
by Sen Yang, Hongguang Zhu, Sen Pang, Zaijie Ruan, Sinuo Lin, Yi Ding, Pengpeng Cao and Zhengyan Shen
Materials 2023, 16(15), 5360; https://doi.org/10.3390/ma16155360 - 30 Jul 2023
Cited by 4 | Viewed by 1648
Abstract
The strip filling method in underground reservoir needs high strength to achieve the requirements of water storage. In order to address the challenges associated with costly and weak filling materials, this study aimed to develop an economically efficient and high-strength gangue-based geopolymer backfill [...] Read more.
The strip filling method in underground reservoir needs high strength to achieve the requirements of water storage. In order to address the challenges associated with costly and weak filling materials, this study aimed to develop an economically efficient and high-strength gangue-based geopolymer backfill material (GBGBM). To achieve this, the Taguchi method was employed to design a series of 25 experiments, each consisting of four factors and five levels. This study focused on investigating the effects of different gangue gradation levels, sand ratios, water binder ratios (w/b), and aggregate binder ratios (a/b) on the working characteristics and unconfined compressive strength (UCS) of the GBGBM. The optimal combination of the GBGBM was determined by employing a signal-to-noise ratio (S/N)-based extreme difference and variance analysis. The results revealed that the w/b ratio exerted the most substantial influence on both the slump and UCS. Specifically, when employing a gradation of 50%, a sand ratio of 55%, an a/b ratio of 2.5, and a w/b ratio of 0.64, the slump measured 251.2 mm, the UCS at 3d reached 5.27 MPa, and the UCS at 28d amounted to 17.65 MPa. These findings indicated a remarkable improvement in early UCS by 131.14% and the late UCS by 49.45% compared to gangue-based cement backfill material (GBCBM). Additionally, this study examined the hydration products and microstructures of both GBGBM and GBCBM using X-ray diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) analyses. Significantly, the GBGBM exhibited notable advantages over the GBCBM, including a 78.16% reduction in CO2 emissions, a 73.45% decrease in energy consumption, and a 24.82% reduction in cost. These findings underscore the potential of GBGBM as a sustainable and cost-effective alternative to GBCBM. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop