Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = high-rise residences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5068 KiB  
Article
Estimating Household Green Space in Composite Residential Community Solely Using Drone Oblique Photography
by Meiqi Kang, Kaiyi Song, Xiaohan Liao and Jiayuan Lin
Remote Sens. 2025, 17(15), 2691; https://doi.org/10.3390/rs17152691 - 3 Aug 2025
Viewed by 145
Abstract
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total [...] Read more.
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total area of the residential community while ignoring the difference in the amount of green space enjoyed by household residents in high-rise and low-rise buildings. Therefore, it is meaningful to estimate household green space and its spatial distribution in residential communities. However, there are frequent difficulties in obtaining specific green space area and household number through ground surveys or consulting with property management units. In this study, taking a composite residential community in Chongqing, China, as the study site, we first employed a five-lens drone to capture its oblique RGB images and generated the DOM (Digital Orthophoto Map). Subsequently, the green space area and distribution in the entire residential community were extracted from the DOM using VDVI (Visible Difference Vegetation Index). The YOLACT (You Only Look At Coefficients) instance segmentation model was used to recognize balconies from the facade images of high-rise buildings to determine their household numbers. Finally, the average green space per household in the entire residential community was calculated to be 67.82 m2, and those in the high-rise and low-rise building zones were 51.28 m2 and 300 m2, respectively. Compared with the green space ratios of 65.5% and 50%, household green space more truly reflected the actual green space occupation in high- and low-rise building zones. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Viewed by 892
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

23 pages, 3620 KiB  
Article
Temperature Prediction at Street Scale During a Heat Wave Using Random Forest
by Panagiotis Gkirmpas, George Tsegas, Denise Boehnke, Christos Vlachokostas and Nicolas Moussiopoulos
Atmosphere 2025, 16(7), 877; https://doi.org/10.3390/atmos16070877 - 17 Jul 2025
Viewed by 356
Abstract
The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temperatures across urban neighbourhoods, [...] Read more.
The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temperatures across urban neighbourhoods, dense networks of in situ measurements offer more precise data at the street scale. In this work, the Random Forest technique was used to predict street-scale temperatures in the downtown area of Thessaloniki, Greece, during a prolonged heatwave in July 2021. The model was trained using data from a low-cost sensor network, meteorological fields calculated by the mesoscale model MEMO, and micro-environmental spatial features. The results show that, although the MEMO temperature predictions achieve high accuracy during nighttime compared to measurements, they exhibit inconsistent trends across sensor locations during daytime, indicating that the model does not fully account for microclimatic phenomena. Additionally, by using only the observed temperature as the target of the Random Forest model, higher accuracy is achieved, but spatial features are not represented in the predictions. In contrast, the most reliable approach to incorporating spatial characteristics is to use the difference between observed and mesoscale temperatures as the target variable. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

25 pages, 9513 KiB  
Article
The Healthy City Constructed by Regional Governance and Urban Villages: Exploring the Source of Xiamen’s Resilience and Sustainability
by Lan-Juan Ding, Su-Hsin Lee and Shu-Chen Tsai
Buildings 2025, 15(14), 2499; https://doi.org/10.3390/buildings15142499 - 16 Jul 2025
Viewed by 415
Abstract
China’s rapid urbanization has given rise to the phenomenon of “urban villages”, which are often regarded as chaotic fringe areas in traditional studies. With the rise of the concept of resilient cities, the value of urban villages as potential carriers of sustainable development [...] Read more.
China’s rapid urbanization has given rise to the phenomenon of “urban villages”, which are often regarded as chaotic fringe areas in traditional studies. With the rise of the concept of resilient cities, the value of urban villages as potential carriers of sustainable development has been re-examined. This study adopted research methods such as field investigations, in-depth interviews, and conceptual sampling. By analyzing the interlinked governance relationship between Xiamen City and the urban villages in the Bay Area, aspects such as rural housing improvement, environmental governance, residents’ feedback, geographical pattern, and spatial production were evaluated. A field investigation was conducted in six urban villages within the four bays of Xiamen. A total of 45 people in the urban villages were interviewed, and the spatial status of the urban villages was recorded. This research found that following: (1) Different types of urban villages have formed significantly differentiated role positionings under the framework of regional governance. Residential community types XA and WL provide long-term and stable living spaces for migrant workers in Xiamen; tourism development types DS, HX, BZ, and HT allow the undertaking of short-term stay tourists and provide tourism services. (2) These urban villages achieve the construction of their resilience through resisting risks, absorbing policy resources, catering to the expansion of urban needs, and co-construction in coordination with planning. The multi-cultural inclusiveness of urban villages and their transformation led by cultural shifts have become the driving force for their sustainable development. Through the above mechanisms, urban villages have become the source of resilience and sustainability of healthy cities and provide a model reference for high-density urban construction. Full article
(This article belongs to the Special Issue Research on Health, Wellbeing and Urban Design)
Show Figures

Figure 1

24 pages, 2388 KiB  
Article
Structural Equation Modeling for Analyzing Innovation Adoption in Residential Condominium Projects
by Kongkoon Tochaiwat, Vitoon Pawanacharurn and Patcharida Seniwong
Buildings 2025, 15(14), 2467; https://doi.org/10.3390/buildings15142467 - 14 Jul 2025
Viewed by 196
Abstract
The aim of this study was to analyze innovation acceptance in condominiums using structural equation modeling (SEM) based on latent variables derived from a second-order confirmatory factor analysis (CFA). The authors focused on four groups of latent variables, namely, the characteristics of innovation [...] Read more.
The aim of this study was to analyze innovation acceptance in condominiums using structural equation modeling (SEM) based on latent variables derived from a second-order confirmatory factor analysis (CFA). The authors focused on four groups of latent variables, namely, the characteristics of innovation adopters (CHARACTER), desired innovation categories (CATEGORY), trust in developers (TRUST), and innovation adoption (ADOPTION), collected from an intensive literature review. Data were gathered from 400 residents of high-rise condominiums across twenty-one central districts of Bangkok via purposive sampling. The analysis revealed that only the desired innovation categories had a direct effect on innovation adoption. In contrast, the characteristics of buyers and trust in developers did not have direct effects on innovation adoption but exerted indirect effects through the desired innovation categories. The findings illustrate how SEM can be applied to study the adoption of innovation by real estate buyers. In practical applications, project developers and designers should study which innovations are desired by buyers. This involves considering the buyers’ characteristics and level of trust in the developers. Such an analysis would enable them to design projects that maximize their responsiveness to buyers’ needs and would not impose excessive cost burdens as well as enhancing income opportunities and achieving sustainable competitive advantages. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

15 pages, 2184 KiB  
Article
First-Principles Study on Interfacial Triboelectrification Between Water and Halogen-Functionalized Polymer Surfaces
by Taili Tian, Bo Zhao, Yimin Wang, Shifan Huang, Xiangcheng Ju and Yuyan Fan
Lubricants 2025, 13(7), 303; https://doi.org/10.3390/lubricants13070303 - 11 Jul 2025
Viewed by 395
Abstract
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical [...] Read more.
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical processes. Recently, with the rise of triboelectric nanogenerator (TENG) technology, solid–liquid contact electrification has demonstrated vast application potential, sparking considerable interest in its underlying mechanisms. Emerging experimental evidence indicates that at water–polymer CE interfaces, the process involves not only traditional ion adsorption but also electron transfer. Halogen-containing functional groups in the solid material significantly enhance the CE effect. To elucidate the microscopic mechanism of water–polymer CE, this study employed first-principles density functional theory (DFT) calculations, simulating the interfacial electrification process using unit cell models of water contacting polymers. We systematically and quantitatively investigated the charge transfer characteristics at interfaces between water and three representative polymers with similar backbones but different halogen-functionalized (F, Cl) side chains: fluorinated ethylene propylene (FEP), polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE), focusing on evaluating halogen’s influence and mechanism on interfacial electron transfer. The results reveal that electron transfer is primarily governed by the energy levels of the polymer’s lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). Halogen functional groups modulate the material’s electron-donating/accepting capabilities by altering these frontier orbital energy levels. Consequently, we propose that the critical strategy for polymer chemical modification resides in lowering the LUMO energy level of electron-accepting materials. This study provides a novel theoretical insight into the charge transfer mechanism at solid–liquid interfaces, offers guidance for designing high-performance TENG interfacial materials, and holds significant importance for both the fundamental theory and the development of advanced energy devices. Full article
Show Figures

Figure 1

21 pages, 6165 KiB  
Article
Hydrological Transformation and Societal Perception of Urban Pluvial Flooding in a Karstic Watershed: A Case Study from the Southern Mexican Caribbean
by Cristina C. Valle-Queb, David G. Rejón-Parra, José M. Camacho-Sanabria, Rosalía Chávez-Alvarado and Juan C. Alcérreca-Huerta
Environments 2025, 12(7), 237; https://doi.org/10.3390/environments12070237 - 10 Jul 2025
Viewed by 976
Abstract
Urban pluvial flooding (UPF) is an increasingly critical issue due to rapid urbanization and intensified precipitation driven by climate change that yet remains understudied in the Caribbean. This study analyzes the effects of UPF resulting from the transformation of a natural karstic landscape [...] Read more.
Urban pluvial flooding (UPF) is an increasingly critical issue due to rapid urbanization and intensified precipitation driven by climate change that yet remains understudied in the Caribbean. This study analyzes the effects of UPF resulting from the transformation of a natural karstic landscape into an urbanized area considering a sub-watershed in Chetumal, Southern Mexican Caribbean, as a case study. Hydrographic numerical modeling was conducted using the IBER 2.5.1 software and the SCS-CN method to estimate surface runoff for a critical UPF event across three stages: (i) 1928—natural condition; (ii) 1998—semi-urbanized (78% coverage); and (iii) 2015—urbanized (88% coverage). Urbanization led to the orthogonalization of the drainage network, an increase in the sub-watershed area (20%) and mainstream length (33%), flow velocities rising 10–100 times, a 52% reduction in surface roughness, and a 32% decrease in the potential maximum soil retention before runoff occurs. In urbanized scenarios, 53.5% of flooded areas exceeded 0.5 m in depth, compared to 16.8% in non-urbanized conditions. Community-based knowledge supported flood extent estimates with 44.5% of respondents reporting floodwater levels exceeding 0.50 m, primarily in streets. Only 43.1% recalled past flood levels, indicating a loss of societal memory, although risk perception remained high among directly affected residents. The reported UPF effects perceived in the area mainly related to housing damage (30.2%), mobility disruption (25.5%), or health issues (12.9%). Although UPF events are frequent, insufficient drainage infrastructure, altered runoff patterns, and limited access to public shelters and communication increased vulnerability. Full article
Show Figures

Figure 1

21 pages, 852 KiB  
Article
Technological Progress and Chinese Residents’ Willingness to Pay for Cleaner Air
by Xinhao Liu and Guangjie Ning
Sustainability 2025, 17(13), 6143; https://doi.org/10.3390/su17136143 - 4 Jul 2025
Viewed by 317
Abstract
This study examines whether China’s rapid spread of internet and mobile information technologies has translated into greater household support for government air-quality programs. Using nationally representative data from the Chinese General Social Survey (2018), this study estimates the causal impact of digital media [...] Read more.
This study examines whether China’s rapid spread of internet and mobile information technologies has translated into greater household support for government air-quality programs. Using nationally representative data from the Chinese General Social Survey (2018), this study estimates the causal impact of digital media use on residents’ willing to pay (WTP) each month for one additional “good-air” day. Ordinary least squares shows that individuals who rely primarily on the internet or mobile push services are willing to contribute CNY 1.9–2.7 more—about 43 percent above the sample mean of CNY 4.41. To address potential endogeneity, we instrumented digital media adoption using provincial computer penetration; two-stage least squares yielded roughly CNY 10.5, confirming a causal effect. Mechanism tests showed that digital access lowers complacency about local air quality, strengthens anthropogenic attribution of pollution, and heightens the moral norm that economic sacrifice is legitimate, jointly mediating the rise in WTP. Heterogeneity analyses revealed stronger effects among high-income households and renters, while extended tests showed that (i) the impact intensifies when the promised environmental gain rises from one to three or five clean-air days, (ii) attention to international news can crowd out local WTP, and (iii) digital media raise not only the likelihood of paying but also the amount paid among existing contributors. The findings suggest that targeted digital outreach—especially messages with concrete, locally salient goals—can substantially enlarge the fiscal base for air-quality initiatives, helping China advance its ecological-civilization and dual-carbon objectives. Full article
(This article belongs to the Special Issue Innovation and Low Carbon Sustainability in the Digital Age)
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
Evaluation of Environmentally Important Elements from Glacial Ice-Water and Associated Glacial Sediments
by Kashmala Jadoon, Syeda Fazoon Kazmi, Sidra Arshad, Noor ul Huda Sajid, Adnan Ahmad Tahir, Özgür Doğan, Alidehou Jerrold Agbankpe and Rashid Nazir
Earth 2025, 6(3), 71; https://doi.org/10.3390/earth6030071 - 2 Jul 2025
Viewed by 837
Abstract
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of [...] Read more.
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of glacial ice has been forecasted to cause problems such as sea level rise, changes in water availability, and release of contaminants that reside in the surfaces of glaciers or within them. In this regard, mineralogical sediments play a significant role in the geochemistry of glaciers and element cycling. This study analyzed elemental pollutants found in the glaciers of Pakistan and investigated the diverse bacterial communities residing therein. Samples of ice and sediments were collected from the Gilgit, Hunza, and Swat glaciers in northern Pakistan. Nine elements, including co-factors, heavy metals, and nutrients, were assessed using atomic absorption spectrophotometry. The research findings indicate higher concentrations of the elements K, Fe, Cu, and Cr in Hunza glacier ice (Hgi) and Ni, Zn, As, and Cd in Gilgit glacier ice (Ggi). In terms of glacier sediments, Swat (Sgs), Gilgit (Ggs), and Hunza (Hgs) samples showed the highest concentrations of K, Cu, Ni, Zn, As, Pb, Cd, and, respectively, of Fe, and Cr. The amount of Cu and Cr is the same in Swat glacier ice and Swat glacier foot. However, the concentration of some elements (As, K, Pb, Zn) is higher in Swat glacier ice, while the amount of some elements (Cd, Ni) is greater in Swat glacier foot. Furthermore, microbial cultivation techniques revealed diverse bacterial communities inhabiting the sampled glaciers. Phylogenetic analysis of the bacterial isolates, based on 16S rRNA gene sequences, showed high homology (99–100%) with previously reported species. The resultant phylogenetic tree grouped the bacterial isolates, such as Serratia marcescens, Cupriavidus sp., and Bacillus cereus, with closely related species known for their roles in nutrient cycling, environmental resilience, and metal tolerance. These findings highlight the ecological significance and adaptive potential of microbial communities in glacier environments, emphasizing their role in elemental cycling and environmental resilience. Full article
Show Figures

Figure 1

24 pages, 316 KiB  
Article
Orthorexia Nervosa Tendencies in Two Cohorts of Polish Young Adults: A Comparative Analysis of Prevalence, Correlates, and Comorbidity
by Izabela Łucka, Artur Mazur, Anna Łucka, Julia Trojniak and Marta Kopańska
Nutrients 2025, 17(13), 2208; https://doi.org/10.3390/nu17132208 - 2 Jul 2025
Viewed by 335
Abstract
Background: The rising focus on dietary choices has contributed to maladaptive eating patterns, including orthorexia nervosa (ON)—a pathological preoccupation with healthy eating. This study investigated ON prevalence and correlates in two Polish young adult cohorts to address inconsistencies in the existing literature and [...] Read more.
Background: The rising focus on dietary choices has contributed to maladaptive eating patterns, including orthorexia nervosa (ON)—a pathological preoccupation with healthy eating. This study investigated ON prevalence and correlates in two Polish young adult cohorts to address inconsistencies in the existing literature and ON’s ambiguous nosological status. We explored its complex interplay with specific lifestyle and sociodemographic factors. Methods: The study sample consisted of 412 young adults, comprising Group 1 (G1; n = 136; 95 women, 38 men, and 3 non-binary individuals) and Group 2 (G2; n = 264; 194 women, 65 men, and 5 non-binary individuals). Data collection utilized a proprietary questionnaire for sociodemographic and health, the ORTO-15 questionnaire (cut-off < 35 points) for ON risk, and the EAT-26 for eating disorder (ED) risk. Depression was self-assessed. An analysis of sociodemographic, clinical, and lifestyle data was conducted to explore the association with orthorexia risk. Results: ON risk was identified in 26.5% of participants in G1 and 76.8% in G2. Logistic regression analysis identified different, independent predictors of ON risk for each group. In G1, these were depressive symptoms (OR = 2.52) and a co-occurring risk of eating disorders (ED) (OR = 11.37). In contrast, for G2, the predictors were smoking (OR = 2.14) and, inversely, a lower ED risk (OR = 0.16). No consistent associations were found with ON risk and age, gender, education, residence, or occupational status. Conclusions: This study confirms a strong link between ON and other eating disorders. The high ON prevalence in G2, combined with low internal consistency of ORTO-15, suggests tool limitations in specific populations. These findings highlight the need for more precise ON diagnostic tools and further research into its correlates, including body image, specific lifestyle factors, and its role within eating pathology. Full article
(This article belongs to the Special Issue Research on Eating Disorders, Physical Activity and Body Image)
30 pages, 62635 KiB  
Article
Correlation Between Outdoor Microclimate and Residents’ Health Across Different Residential Community Types in Wuhan, China: A Case Study of Hypertension
by Ke Li, Kun Li, Stephen Siu Yu Lau, Hao Ji, Maohui Feng and Fei Li
Buildings 2025, 15(13), 2210; https://doi.org/10.3390/buildings15132210 - 24 Jun 2025
Viewed by 526
Abstract
The spatial layout of residential communities has a significant impact on the local microclimate. These microclimate changes subtly affect the daily feelings and health status of residents. This study takes hypertension as a case to simulate the outdoor microclimate characteristics of different types [...] Read more.
The spatial layout of residential communities has a significant impact on the local microclimate. These microclimate changes subtly affect the daily feelings and health status of residents. This study takes hypertension as a case to simulate the outdoor microclimate characteristics of different types of communities, and to analyze the potential correlation between spatial design and the health of residents, providing a scientific basis for the design of health-oriented communities. Initially, the microclimate characteristics of communities are obtained through computational fluid dynamics (CFD) simulation. Subsequently, the correlation between the outdoor microclimate and the incidence of hypertension in communities is discussed. The study area covers communities within a 4 km radius of Zhongnan hospital. The results indicate that microclimatic factors, such as temperature, Predicted Mean Vote (PMV), and Universal Thermal Climate Index (UTCI), are significantly negatively correlated with the incidence of hypertension in communities of different building heights. For temperature, the absolute value of the correlation coefficient for multi-story communities is 0.431, slightly lower for mid-rise communities at 0.323, and further drops to 0.296 for high-rise communities. Correspondingly, the values for PMV are 0.434, 0.336, and 0.306, respectively. The values for UTCI are 0.442, 0.310, and 0.303, respectively. This effect gradually weakens as building heights increase. Fluctuations in wind speed appear to weakly influence the incidence of hypertension. These results provide a scientific basis for health-oriented urban planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 13781 KiB  
Article
Research on the Method of Automatic Generation and Multi-Objective Optimization of Block Spatial Form Based on Thermal Comfort Demand
by Zhenhua Xu, Hao Wu, Cong Han and Jiaying Chang
Buildings 2025, 15(12), 2098; https://doi.org/10.3390/buildings15122098 - 17 Jun 2025
Cited by 1 | Viewed by 286
Abstract
Urban thermal environment challenges in China have made outdoor thermal comfort a key factor in evaluating spatial quality and livability. Building layout not only affects internal performance but also shapes the microclimate of surrounding outdoor spaces. The climatic characteristics of temperate monsoon climate [...] Read more.
Urban thermal environment challenges in China have made outdoor thermal comfort a key factor in evaluating spatial quality and livability. Building layout not only affects internal performance but also shapes the microclimate of surrounding outdoor spaces. The climatic characteristics of temperate monsoon climate regions significantly impact residents’ outdoor activities. Most existing studies focus solely on either the external thermal environment or the buildings themselves in isolation. This study focuses on Beijing, a representative city in the temperate monsoon climate zone, and explores block-scale spatial optimization using computational typology. The objective is to balance architectural performance with outdoor thermal comfort in both winter and summer. Optimization targets include the Universal Thermal Climate Index (UTCI), winter sunshine duration, and summer solar radiation. Results show winter UTCI can be optimized to −6.13 °C to −1.18 °C and summer UTCI to 28.19 °C to 29.17 °C, with greater optimization potential in winter (23.5% higher). Synergistic relationships are observed between winter comfort and sunshine duration (coefficient: 0.777) and between summer comfort and solar radiation (coefficient: 0.947). However, trade-offs exist between seasonal comfort indicators, with strong conflicts between winter and summer objectives. Two distinct form types—“low-south-high-north enclosed” for winter and “high-rise point-type low-density” for summer—are identified as effective for seasonal adaptation. The study proposes an integrated method combining data-driven generation, multi-objective optimization, and clustering-based decision-making. This approach moves beyond traditional empirical design, offering a quantitative and adaptable strategy for climate-responsive urban block planning and supporting low-carbon urban transformation. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 1176 KiB  
Article
Risk Communication in Coastal Cities: The Case of Naples, Italy
by Salvatore Monaco
Land 2025, 14(6), 1288; https://doi.org/10.3390/land14061288 - 16 Jun 2025
Viewed by 629
Abstract
Coastal cities are increasingly exposed to the risks posed by climate change, including rising sea levels, intensified storms, and coastal erosion. In this context, risk communication plays a crucial role, as it can shape public perception, promote preparedness, and influence both emergency responses [...] Read more.
Coastal cities are increasingly exposed to the risks posed by climate change, including rising sea levels, intensified storms, and coastal erosion. In this context, risk communication plays a crucial role, as it can shape public perception, promote preparedness, and influence both emergency responses and long-term mitigation strategies. This study investigated how disaster-related risks are framed in the media, focusing on the case of Naples, Italy, following a severe coastal storm surge that struck the city’s waterfront on December 2020. Using Dynamic Latent Dirichlet Allocation (DLDA), the research analyzed 297 newspaper articles published between 2020 and 2024 to examine the evolution of media narratives over time. The findings reveal four dominant patterns: (1) a prevailing economic discourse centered on financial damages and compensations, with limited references to resilience planning; (2) a temporal framing that presents the storm as a sudden, exceptional event, disconnected from historical precedents or future climate projections; (3) a lack of emphasis on the social experiences and vulnerabilities of local residents; and (4) minimal discussion of tourists’ exposure to risk, despite their presence in high-impact areas. These results highlight key limitations of media-driven risk communication and underscore the need for more inclusive, forward-looking narratives to support urban resilience and climate adaptation in coastal cities. This research offers valuable insights for urban planners, policymakers, journalists, and disaster risk reduction professionals, helping them to better align communication strategies with long-term adaptation goals and the needs of diverse urban populations. Full article
(This article belongs to the Special Issue Impact of Climate Change on Land and Water Systems)
Show Figures

Figure 1

22 pages, 1419 KiB  
Article
Can Public Environmental Concern Drive Changes in Residents’ Green Consumption Behavior?
by Jing Zhao, Yaya Li, Tian Wu and Wen Jiang
Sustainability 2025, 17(12), 5352; https://doi.org/10.3390/su17125352 - 10 Jun 2025
Viewed by 549
Abstract
Enhancing residents’ green consumption is essential to fostering high-quality economic advancement. This study constructs an indicator system for residents’ green consumption based on three subsystems: green manufacturing processes, sustainable lifestyles, and environmental ecosystems. A regression model analyzes how public environmental concern affects residents’ [...] Read more.
Enhancing residents’ green consumption is essential to fostering high-quality economic advancement. This study constructs an indicator system for residents’ green consumption based on three subsystems: green manufacturing processes, sustainable lifestyles, and environmental ecosystems. A regression model analyzes how public environmental concern affects residents’ green consumption, using panel data from 30 provinces and cities in China over the period 2011–2023. Additionally, analyses of mechanisms and heterogeneity are carried out. The study results are presented below: First, public environmental concern (PEC) can significantly enhance residents’ green consumption (RGC), with an increase of 1% in PEC leading to a 0.261% rise in RGC. Second, green technological innovation (GTI) and market-based incentive environmental regulation (MER) mediate the relationship between PEC and RGC. However, the role of command-and-control environmental regulation (CER) as a mediator is insignificant. Third, there is heterogeneity in RGC based on region, pollution emissions, and innovation foundations. The impact of PEC is notably greater in central-western regions, areas with higher pollution emissions, and regions with better innovation foundations. Therefore, this study proposes policy recommendations from three aspects: improving public environmental concern, strengthening green technological innovation in enterprises, and formulating region-specific industrial upgrading paths to promote residents’ green consumption. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

18 pages, 3009 KiB  
Article
Lipopolysaccharide Induces Mitochondrial Fragmentation and Energetic Shift in Reactive Microglia: Evidence for a Cell-Autonomous Program of Metabolic Plasticity
by Marcelle Pereira dos Santos, Vitor Emanuel Leocadio, Lívia de Sá Hayashide, Mariana Marques, Clara Fernandes Carvalho, Antonio Galina and Luan Pereira Diniz
Toxins 2025, 17(6), 293; https://doi.org/10.3390/toxins17060293 - 9 Jun 2025
Viewed by 932
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play essential roles in maintaining brain homeostasis. While transient activation is protective, chronic microglial reactivity contributes to neuroinflammatory damage and neurodegeneration. The mitochondrial mechanisms underlying this shift remain poorly understood. Here, we [...] Read more.
Microglia, the resident immune cells of the central nervous system (CNS), play essential roles in maintaining brain homeostasis. While transient activation is protective, chronic microglial reactivity contributes to neuroinflammatory damage and neurodegeneration. The mitochondrial mechanisms underlying this shift remain poorly understood. Here, we investigated whether lipopolysaccharide (LPS) induces coordinated mitochondrial and metabolic alterations in BV-2 microglial cells. LPS stimulation (100 ng/mL, 24 h) induced a reactive phenotype, with increased Iba1 (+82%), F4/80 (+132%), and Cd68 (+44%), alongside elevated hydrogen peroxide (~6-fold) and nitrite (~45-fold). Cytotoxicity increased by 40% (LDH assay), and cell viability dropped to ~80% of the control (MTT). Extracellular lactate increased, indicating glycolytic reprogramming. However, LPS-primed cells showed greater ATP depletion under antimycin A challenge, reflecting impaired metabolic flexibility. Hoechst staining revealed a ~4-fold increase in pyknotic nuclei, indicating apoptosis. Mitochondrial dysfunction was confirmed by a 30–40% reduction in membrane potential (TMRE, JC-1), a ~30% loss of Tomm20, and changes in dynamics: phospho-Drp1 increased (+23%), while Mfn1/2 decreased (33%). Despite a ~70% rise in Lamp2 signal, Tomm20–Lamp2 colocalization decreased, suggesting impaired mitophagy. High-resolution respirometry revealed decreased basal (−22%), ATP-linked (24%), and spare respiratory capacity (41%), with increased non-mitochondrial oxygen consumption. These findings demonstrate that LPS induces mitochondrial dysfunction, loss of metabolic adaptability, and increased apoptotic susceptibility in microglia. Mitochondrial quality control and energy flexibility emerge as relevant targets to better understand and potentially modulate microglial responses in neuroinflammatory and neurodegenerative conditions. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

Back to TopTop