Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = high-rise office buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 179
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

29 pages, 5719 KiB  
Article
Cross-Floor Vibration Wave Propagation in High-Rise Industrial Buildings Under TMD Control
by Ruoyang Zhou and Xiaoxiong Zha
Infrastructures 2025, 10(7), 169; https://doi.org/10.3390/infrastructures10070169 - 3 Jul 2025
Viewed by 332
Abstract
High-rise industrial buildings are particularly susceptible to vibration-induced comfort issues, which can negatively impact both the health and productivity of workers and office staff. Unlike most existing studies that focus on local structural components, this study proposes and validates a wave propagation analysis [...] Read more.
High-rise industrial buildings are particularly susceptible to vibration-induced comfort issues, which can negatively impact both the health and productivity of workers and office staff. Unlike most existing studies that focus on local structural components, this study proposes and validates a wave propagation analysis (WPA) method to predict peak accelerations of the floor caused by excitations located on different floors. The method is validated through on-site vibration tests conducted on a high-rise industrial building with shared factory and office space. A simplified regression-based propagation equation is further developed to facilitate practical design applications. The regression parameters are fitted using theoretical calculation results, enabling rapid prediction of peak acceleration responses on the same or different floors. To enhance vibration control, tuned mass dampers (TMDs) are installed on selected floors, and additional tests are conducted with the TMDs activated. An insertion loss-based correction is introduced into the WPA framework to account for the TMD’s frequency-dependent attenuation effects. The extended method supports both accurate prediction of vibration reduction and optimisation of TMD placement across multiple floors in high-rise industrial buildings. Full article
Show Figures

Figure 1

18 pages, 4823 KiB  
Article
A New Approach to Expanding Interior Green Areas in Urban Buildings
by Chyi-Gang Kuo, Chien-Wei Chiu and Pei-Shan Chung
Buildings 2025, 15(12), 1965; https://doi.org/10.3390/buildings15121965 - 6 Jun 2025
Viewed by 514
Abstract
Countries worldwide have implemented regulations on the green coverage ratio of new buildings to address the urban heat island effect. For example, Taipei City mandates that the green coverage rate of new buildings must be between 40% and 70%, while Singapore requires a [...] Read more.
Countries worldwide have implemented regulations on the green coverage ratio of new buildings to address the urban heat island effect. For example, Taipei City mandates that the green coverage rate of new buildings must be between 40% and 70%, while Singapore requires a green coverage rate of 100% or higher. Consequently, building greening is now a regulatory requirement rather than a preference. This study focuses on developing an indoor light-emitting-diode (LED) hydroponic inverted planting system to utilize ceiling space for expanding green areas in buildings. The light source of this system is suitable for both plant growth and daily lighting, thereby reducing electricity costs. The watertight planting unit does not require replenishment of the nutrient solution during a planting cycle for small plants, which can reduce water consumption and prevent indoor humidity. The modular structure allows various combinations, enabling interior designers to create interior ceiling scapes. Additionally, it is possible to grow aromatic plants and edible vegetables, facilitating the creation of indoor farms. Consequently, this system is suitable for high-rise residential buildings, office buildings, underground shopping malls, and indoor areas with limited or no natural light. It is also applicable to hospitals, clinics, wards, and care centers, where indoor plants alleviate psychological stress and enhance mental and physical health. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 3663 KiB  
Article
Simulation-Based Prediction of Office Buildings Energy Performance Under RCP Scenarios Across All U.S. Climate Zones
by Sepideh Niknia and Mehdi Ghiai
Architecture 2025, 5(2), 34; https://doi.org/10.3390/architecture5020034 - 29 May 2025
Cited by 1 | Viewed by 1439
Abstract
Buildings account for a significant portion of global energy consumption and are increasingly vulnerable to the adverse effects of climate change, including rising greenhouse gas emissions and shifting weather patterns. These disruptions significantly impact energy demand, necessitating proactive measures to ensure buildings remain [...] Read more.
Buildings account for a significant portion of global energy consumption and are increasingly vulnerable to the adverse effects of climate change, including rising greenhouse gas emissions and shifting weather patterns. These disruptions significantly impact energy demand, necessitating proactive measures to ensure buildings remain functional, sustainable, and energy efficient. This study offers a novel contribution by systematically comparing the energy performance of office building prototypes using a simulation-based method across all U.S. climate zones under projected Representative Concentration Pathways (RCPs) 4.5 (moderate emissions) and 8.5 (high emissions) for the years 2050 and 2080. This multi-scale and multi-scenario simulation provides a nationally comprehensive view of how building size and climate conditions interact to influence vulnerability to future energy demand shifts. The findings reveal that medium-sized office buildings are the most vulnerable to climate change, with an average Energy Unit Intensity (EUI) increase of 12.5% by 2080 under RCP 8.5, compared to a 7.4% rise for large office buildings and a slight decline of 2.5% for small office buildings. Hot and humid cities such as Miami, FL, experience the highest increases, with EUI projected to rise by 21.2% for medium offices, while colder regions like Fairbanks, AK, show reductions of up to 18.2% due to decreasing heating demands. These results underscore the urgent need for climate-compatible building design strategies, particularly in high-risk areas. As climate change intensifies, integrating resilience-focused policies will safeguard energy systems and ensure long-term occupant comfort. Full article
Show Figures

Figure 1

18 pages, 4020 KiB  
Article
Research on Energy-Saving Optimization of Green Buildings Based on BIM and Ecotect
by Mengxue Zhao, Yuetao Yang and Shan Dong
Buildings 2025, 15(11), 1819; https://doi.org/10.3390/buildings15111819 - 26 May 2025
Viewed by 477
Abstract
Based on the resource conservation requirements of GB/T 50378-2019 “Green Building Evaluation Standard”, this study constructed a BIM–Ecotect collaborative analysis model and proposed a “four-dimensional integration” green performance optimization method. Taking a high-rise office building in Wuhan as an example, a LOD 300-level [...] Read more.
Based on the resource conservation requirements of GB/T 50378-2019 “Green Building Evaluation Standard”, this study constructed a BIM–Ecotect collaborative analysis model and proposed a “four-dimensional integration” green performance optimization method. Taking a high-rise office building in Wuhan as an example, a LOD 300-level Revit building information model was established, and a multidisciplinary collaborative analysis was achieved through gbXML data interaction. The lighting simulation results show that the average natural lighting coefficient of the office area facing south is 2.4 (the standard 85%), while in the meeting room area, due to the optimized design of the curtain wall, the average natural lighting coefficient has increased to 2.6 (the standard 92%). In terms of energy-saving renovation, a three-dimensional collaborative design strategy was adopted. Through the optimization of the envelope structure, the cooling load of the air conditioning system was reduced by 25.3%, and the heat load was reduced by 23.6% (the u value of the exterior wall was reduced by 56.3%, the SHGC of the exterior windows was reduced by 42.9%, and the thermal resistance of the roof was increased by 150%). The ventilation optimization adopts the CFD flow field reverse design, adjusting the window opening rate of the exterior windows from 15% to 20% to form a turbulent diffusion effect. Therefore, the air change rate in the office area reached 2.5 times per hour, and the CO2 concentration decreased by up to 27.1% at most. The innovative adoption of the “composite sound insulation curtain wall” technology in acoustic environment control has increased the indoor noise compliance rate by 27 percentage points (from 65% to 92%). The above research data indicate that digital collaborative design can achieve an overall energy-saving rate of over 20% for buildings, providing a replicable technical path for enhancing the performance of green buildings. Full article
Show Figures

Figure 1

22 pages, 4890 KiB  
Article
Machine Learning-Based Cost Estimation Models for Office Buildings
by Guolong Chen, Simin Zheng, Xiaorui He, Xian Liang and Xiaohui Liao
Buildings 2025, 15(11), 1802; https://doi.org/10.3390/buildings15111802 - 24 May 2025
Viewed by 525
Abstract
With the increasing trend of office buildings towards high-rise, multifunctional, and structurally complex architecture, the difficulty of engineering cost management has increased. Accurately estimating costs during the decision-making stage is crucial for ensuring the overall project’s financial viability. Therefore, finding straightforward and efficient [...] Read more.
With the increasing trend of office buildings towards high-rise, multifunctional, and structurally complex architecture, the difficulty of engineering cost management has increased. Accurately estimating costs during the decision-making stage is crucial for ensuring the overall project’s financial viability. Therefore, finding straightforward and efficient methods for cost estimation is essential. This paper explores the application of algorithm-optimized back propagation neural networks and support vector machines in predicting the costs of office buildings. By employing grey relational analysis and principal component analysis to simplify indicators, six prediction models are developed: BPNN, GA-BPNN, PSO-BPNN, GA-SVM, PSO-SVM, and GSA-SVM models. After considering accuracy, stability, and computation time, the PCA-GSA-SVM model is identified as the most suitable for office building cost prediction. It achieves stable and rapid results, with an average mean square error of 0.024, a squared correlation coefficient of 0.927, and an average percentage error of 5.52% in experiments. Thus, the model proposed in this paper is both practical and reliable, offering valuable insights for decision-making in office building projects. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

30 pages, 46758 KiB  
Article
Research on the Optimization Design of High-Rise Office Building Performance Based on a Multi-Objective Genetic Algorithm
by Zhaohui Yuan, Jiajie Pan, Xing Chen and Yiyan Peng
Buildings 2025, 15(10), 1636; https://doi.org/10.3390/buildings15101636 - 13 May 2025
Viewed by 530
Abstract
Office buildings often consume a large amount of energy during their operational phase, primarily due to insufficient consideration of the coordination among energy consumption, thermal comfort, and visual comfort in the design process. This study employs a multi-objective genetic algorithm to optimize the [...] Read more.
Office buildings often consume a large amount of energy during their operational phase, primarily due to insufficient consideration of the coordination among energy consumption, thermal comfort, and visual comfort in the design process. This study employs a multi-objective genetic algorithm to optimize the overall performance of office buildings by parameterizing seven key design variables: floor plan aspect ratio, building orientation angle, window-to-wall ratios (WWRs) in all directions, shading strategy, shading device orientation, shading device length, and shading device spacing. A building performance simulation model was established to conduct a global optimization search, with simultaneous analysis across the east, south, west, and north façades to obtain a set of Pareto-optimal solutions that satisfy multiple performance objectives. The results indicate that optimal comprehensive performance across energy use, thermal comfort, and visual comfort can be achieved under the following conditions: a floor plan aspect ratio of 0.67–1, building rotation of 0–20° clockwise, an east-facing WWR of 0.4, south- and west-facing WWRs of 0.2–0.4, and a north-facing WWR of 0.4–0.6. For shading, horizontal devices with a length of 0.8–1.0 m, downward tilt angle of 10–30°, and spacing of 0.6–1.2 m are recommended. These findings provide scientific parameter references and optimization pathways for the design of high-performance office buildings in various climate conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 14209 KiB  
Article
Machine-Learning-Enhanced Building Performance-Guided Form Optimization of High-Rise Office Buildings in China’s Hot Summer and Warm Winter Zone—A Case Study of Guangzhou
by Xie Xie, Yang Ni and Tianzi Zhang
Sustainability 2025, 17(9), 4090; https://doi.org/10.3390/su17094090 - 1 May 2025
Viewed by 756
Abstract
Given their dominant role in energy expenditure within China’s Hot Summer and Warm Winter (HSWW) zone, high-fidelity performance prediction and multi-objective optimization framework during the early design phase are critical for achieving sustainable energy efficiency. This study presents an innovative approach integrating machine [...] Read more.
Given their dominant role in energy expenditure within China’s Hot Summer and Warm Winter (HSWW) zone, high-fidelity performance prediction and multi-objective optimization framework during the early design phase are critical for achieving sustainable energy efficiency. This study presents an innovative approach integrating machine learning (ML) algorithms and multi-objective genetic optimization to predict and optimize the performance of high-rise office buildings in China’s HSWW zone. By integrating Rhino/Grasshopper parametric modeling, Ladybug Tools performance simulation, and Python programming, this study developed a parametric high-rise office building model and validated five advanced and mature machine learning algorithms for predicting energy use intensity (EUI) and useful daylight illuminance (UDI) based on architectural form parameters under HSWW climatic conditions. The results demonstrate that the CatBoost algorithm outperforms other models with an R2 of 0.94 and CVRMSE of 1.57%. The Pareto optimal solutions identify substantial shading dimensions, southeast orientations, high aspect ratios, appropriate spatial depths, and reduced window areas as critical determinants for optimizing EUI and UDI in high-rise office buildings of the HSWW zone. This research fills a gap in the existing literature by systematically investigating the application of ML algorithms to predict the complex relationships between architectural form parameters and performance metrics in high-rise building design. The proposed data-driven optimization framework provides architects and engineers with a scientific decision-making tool for early-stage design, offering methodological guidance for sustainable building design in similar climatic regions. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

11 pages, 5199 KiB  
Proceeding Paper
Monitoring and Control of Nutrient Feed and Environmental Condition of Hydroponic Vegetable Plants
by Nur Rohman and Fajar Suryawan
Eng. Proc. 2025, 84(1), 81; https://doi.org/10.3390/engproc2025084081 - 21 Mar 2025
Viewed by 516
Abstract
The expansion of residential zones and a surge in agricultural land evictions to make room for building construction, offices, and shopping centers are on the rise. As farmland shrinks, one mitigation strategy involves exploring alternative planting methods, like hydroponics. Hydroponic growing media eliminate [...] Read more.
The expansion of residential zones and a surge in agricultural land evictions to make room for building construction, offices, and shopping centers are on the rise. As farmland shrinks, one mitigation strategy involves exploring alternative planting methods, like hydroponics. Hydroponic growing media eliminate the necessity for soil as the primary medium for plant growth. Hydroponic farming relies on high-quality water nutrients to sustain fertility. Therefore, monitoring and controlling water quality continuously is crucial, ideally in real-time and through automated processes whenever feasible. This study advances automatic water quality control by employing an Arduino Mega microcontroller alongside a range of sensors. The displayed data represent measurements taken by the sensor, which will subsequently inform actuator control commands. The processed data will also be transmitted to the Wi-Fi module (and sent to a smartphone device) for monitoring purposes. Testing includes response-time tests for each sensor, disturbance test, and field test. The system performed the automation process as intended. Full article
Show Figures

Figure 1

26 pages, 3923 KiB  
Article
Loss and Downtime Assessment of RC Dual Wall–Frame Office Buildings Toward Resilient Seismic Performance
by Marco F. Gallegos, Gerardo Araya-Letelier, Diego Lopez-Garcia and Carlos Molina Hutt
Sustainability 2025, 17(3), 1200; https://doi.org/10.3390/su17031200 - 2 Feb 2025
Viewed by 1192
Abstract
This study quantitatively assesses the impact of seismic design strategies on the performance of reinforced concrete (RC) dual wall–frame office buildings by comparing direct and indirect economic losses and downtime in life-cycle terms. A high-rise archetype building located in Santiago, Chile, on stiff [...] Read more.
This study quantitatively assesses the impact of seismic design strategies on the performance of reinforced concrete (RC) dual wall–frame office buildings by comparing direct and indirect economic losses and downtime in life-cycle terms. A high-rise archetype building located in Santiago, Chile, on stiff soil was evaluated as a benchmark case study. Three design strategies to potentially enhance the seismic performance of a building designed conventionally were explored: (i) incorporating fluid viscous dampers (FVDs) in the lateral load-resisting structure; (ii) replacing conventional non-structural components with enhanced ones (ENCs); and (iii) a combination of the previous two strategies. First, probabilistic structural responses were estimated through incremental dynamic analyses using three-dimensional nonlinear models of the archetypes subjected to a set of hazard-consistent Chilean ground motions. Second, FEMA P-58 time-based assessment was conducted to estimate expected annual losses (EALs) for economic loss estimation. Finally, for downtime assessment, a novel probabilistic framework, built on the FEMA P-58 methodology and the REDi guidelines, was employed to estimate the expected annual downtimes (EADs) to achieve specific target recovery states, such as reoccupancy (RO) and functional recovery (FR). Results revealed that seismically enhancing RC dual wall–frame buildings with FVDs significantly improves resilience by reducing loss and downtime. For example, the enhanced building with FVDs achieved an EAL of 0.093% and EAL of 8.6 days for FR, compared to the archetype base building without design improvements, which exhibited an EAL of 0.125% and an EAD of 9.5 days for FR. In contrast, the impact of ENCs alone was minor, compared to the effect of FVDs, with an EAL of 0.106% and an EAD of 9.1 days for FR. With this detailed recovery modeling, probabilistic methods, and a focus on intermediate recovery states, this framework represents a significant advancement in resilience-based seismic design and recovery planning. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

20 pages, 4222 KiB  
Article
A Study on Carbon Emission Reduction in the Entire Process of Retrofitting High-Rise Office Buildings Based on the Extraction of Typical Models
by Yixuan Chen, Zhenyu Wang and Zhen Peng
Sustainability 2024, 16(19), 8506; https://doi.org/10.3390/su16198506 - 29 Sep 2024
Cited by 3 | Viewed by 1680
Abstract
The building sector is one of the largest contributors to carbon emissions globally, with high-rise office buildings being a major source due to their energy-intensive operations. This study aims to address the critical issue of carbon emission reductions through the retrofitting of existing [...] Read more.
The building sector is one of the largest contributors to carbon emissions globally, with high-rise office buildings being a major source due to their energy-intensive operations. This study aims to address the critical issue of carbon emission reductions through the retrofitting of existing high-rise office buildings, focusing on the entire life cycle of these buildings, including the embodied, operational, and demolition phases. Existing research has primarily concentrated on energy consumption and carbon emissions during the operational phase, neglecting the carbon impact of the retrofitting process itself. This research seeks to fill that gap by quantifying the carbon reduction benefits of retrofitting across all life-cycle stages. Using data from 100 high-rise office buildings in Hangzhou’s Gongshu District, five typical models were extracted based on their construction eras and architectural features. Retrofitting strategies tailored to these models were developed, and the carbon reduction benefits were calculated using the carbon emission factor method. The primary findings indicated that the shape and orientation of buildings are crucial factors influencing the carbon reduction benefits of retrofitting. Buildings oriented east–west tend to exhibit greater carbon reductions after retrofitting. During the embodied and demolition phases, retrofitting emissions remain similar for models constructed in the same era due to consistent material inputs. However, emissions vary for models from different eras, primarily due to differences in envelope materials and subsequent material consumption. High-rise office buildings constructed between 2007 and 2021 demonstrate higher overall retrofit carbon reduction rates compared to those built before 2007, despite the latter achieving greater reductions during the operational phase. The shorter remaining lifespans of pre-2007 buildings diminish their life-cycle carbon reduction advantages. Notably, complex-shaped buildings from the same era do not necessarily exhibit lower overall retrofit carbon reduction rates compared with rectangular or L-shaped buildings, with comparable reductions per unit area. This suggests that complex-shaped buildings should not be disregarded for retrofitting based solely on shape considerations. Furthermore, the remaining lifespan of a building significantly impacts its post-retrofitting carbon reduction benefits; longer lifespans result in greater benefits, and vice versa. In practical engineering applications, structural reinforcement measures can be implemented prior to retrofitting to extend a building’s structural lifespan, ultimately enhancing its carbon reduction benefits. Full article
Show Figures

Figure 1

29 pages, 5562 KiB  
Article
On the Necessity for Improving Water Efficiency in Commercial Buildings: A Green Design Approach in Hot Humid Climates
by A. Chandana Hemantha J. Thebuwena, S. M. Samindi M. K. Samarakoon and R. M. Chandima Ratnayake
Water 2024, 16(17), 2396; https://doi.org/10.3390/w16172396 - 26 Aug 2024
Cited by 4 | Viewed by 4778
Abstract
Water, a fundamental and indispensable resource necessary for the survival of living beings, has become a pressing issue in numerous regions worldwide due to scarcity. Urban areas, where the majority of the global population resides, witness a substantial consumption of blue water, particularly [...] Read more.
Water, a fundamental and indispensable resource necessary for the survival of living beings, has become a pressing issue in numerous regions worldwide due to scarcity. Urban areas, where the majority of the global population resides, witness a substantial consumption of blue water, particularly in commercial buildings. This study investigates the potential for enhancing water efficiency within an ongoing high-rise office building construction situated in a tropical climate. The investigation utilizes the green building guidelines of leadership in energy and environmental design (LEED) through a case-study-based research approach. Strategies included using efficient plumbing fixtures (such as high air–water ratio fixtures and dual-flush toilets), the selection of native plants, implementing a suitable irrigation system, introducing a rainwater harvesting system (RWHS) and improving the mechanical ventilation and air conditioning (MVAC) system. The results showed a 55% reduction in water use from efficient fixtures, a 93% reduction in landscaping water needs and a 73% overall water efficiency with a RWHS from the baseline design. Additionally, efficient cooling towers and the redirection of condensed water into the cooling tower make-up water tank improved the overall water efficiency to 38%, accounting for the water requirements of the MVAC system. The findings of this study can contribute to more sustainable and water-efficient urban development, particularly in regions facing water scarcity challenges. The significance of these findings lies in their potential to establish industry standards and inform policymakers in the building sector. They offer valuable insights for implementing effective strategies aimed at reducing blue water consumption across different building types. Full article
(This article belongs to the Special Issue Water-Sensitive and Sustainable Urban Development)
Show Figures

Figure 1

20 pages, 8476 KiB  
Article
Vibration and Wave Propagation in High-Rise Industrial Buildings
by Ruoyang Zhou, Shujing Zhou and Xiaoxiong Zha
Buildings 2024, 14(8), 2340; https://doi.org/10.3390/buildings14082340 - 29 Jul 2024
Cited by 1 | Viewed by 1270
Abstract
Investigations and conclusions. In the Guangdong–Hong Kong–Macao Greater Bay Area, several high-rise industrial buildings exceeding 100 meters in height are under construction. These structures uniquely combine industrial production facilities and office spaces within a single architectural entity. This study investigates the vibration-related comfort [...] Read more.
Investigations and conclusions. In the Guangdong–Hong Kong–Macao Greater Bay Area, several high-rise industrial buildings exceeding 100 meters in height are under construction. These structures uniquely combine industrial production facilities and office spaces within a single architectural entity. This study investigates the vibration-related comfort challenges arising from the transmission of vibrational waves across different sections of these towering complexes. Using a real-world, under-construction high-rise industrial building as a reference, a detailed structural model was developed with advanced finite-element software. Human-induced vibratory loads were applied on a designated floor, and the resulting vibration time-history data were analyzed to understand wave propagation characteristics. To validate the model’s accuracy, a combination of on-site experimental tests and theoretical calculations was conducted. Vibration-time-history data were extracted from a specific building level and analyzed in both the time and frequency domains. Comparative examination of experimental results, theoretical computations, and finite-element simulations confirmed the precision of the finite-element model. The study concludes that vibration-wave propagation in high-rise industrial structures follows a discernible pattern, and a linear regression equation encapsulating these dynamics was formulated. Full article
Show Figures

Figure 1

37 pages, 2209 KiB  
Article
Identification of Sources of Complexity in Various Types of Building Projects in India Based on Design and Performance Attributes
by Jagadeesh Babu Ramanathan and Archana Rathore
Buildings 2024, 14(8), 2331; https://doi.org/10.3390/buildings14082331 - 27 Jul 2024
Viewed by 1207
Abstract
Building projects as sub-sect of construction projects are complex and different in design and performance attributes. The prominent classes of building projects are high-rise residential buildings, hospitals, hotels, general offices, retail buildings/malls, educational institutions, and warehouses. In this study, building projects have been [...] Read more.
Building projects as sub-sect of construction projects are complex and different in design and performance attributes. The prominent classes of building projects are high-rise residential buildings, hospitals, hotels, general offices, retail buildings/malls, educational institutions, and warehouses. In this study, building projects have been classified based on their end use. Complexities vary between construction projects and within various types of building projects, as well as across regions and countries. Understanding the sources of complexity is imperative to strategize their successful development. This research paper attempts to identify the sources of complexities using the design and performance attributes of seven prominent building types. A survey was conducted through experienced architects and construction professionals (the mean years of experience being approximately 13.88 years) over 34 different attributes or parameters under six categories. These attributes have been shortlisted from past research work by various authors, and the pilot study for this project. The Kruskal-Wallis Test was used to calculate the mean ranking and to confirm that the medians of each building type were not the same when compared against each attribute, irrespective of the level of complexity. Using data analysis and the mean ranking scores as a representation of relative complexity, primary sources of complexity in each class of buildings have been identified and listed. The results indicate that hospitals (as a building typology) are relatively the most complex building facilities in terms of design and performance attributes, showing the highest mean ranking towards 16 attributes (with only one shared ranking). Hospitals are followed by retail/malls (10 with one shared ranking), hotels (3), high-rise residential buildings (4), educational institutions (2), general offices (0), and warehouses (0). Strategies to manage these attributes have been proposed for each building typology so that the risks emanating from the complexities of these building projects can be mitigated and effectively managed at the design stage. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

10 pages, 2911 KiB  
Article
The Relationship between Indoor and Outdoor Fine Particulate Matter in a High-Rise Building in Chicago Monitored by PurpleAir Sensors
by Megan M. Wenner, Anna Ries-Roncalli, Mena C. R. Whalen and Ping Jing
Sensors 2024, 24(8), 2493; https://doi.org/10.3390/s24082493 - 12 Apr 2024
Cited by 1 | Viewed by 1752
Abstract
In urban areas like Chicago, daily life extends above ground level due to the prevalence of high-rise buildings where residents and commuters live and work. This study examines the variation in fine particulate matter (PM2.5) concentrations across building stories. PM2.5 [...] Read more.
In urban areas like Chicago, daily life extends above ground level due to the prevalence of high-rise buildings where residents and commuters live and work. This study examines the variation in fine particulate matter (PM2.5) concentrations across building stories. PM2.5 levels were measured using PurpleAir sensors, installed between 8 April and 7 May 2023, on floors one, four, six, and nine of an office building in Chicago. Additionally, data were collected from a public outdoor PurpleAir sensor on the fourteenth floor of a condominium located 800 m away. The results show that outdoor PM2.5 concentrations peak at 14 m height, and then decline by 0.11 μg/m3 per meter elevation, especially noticeable from midnight to 8 a.m. under stable atmospheric conditions. Indoor PM2.5 concentrations increase steadily by 0.02 μg/m3 per meter elevation, particularly during peak work hours, likely caused by greater infiltration rates at higher floors. Both outdoor and indoor concentrations peak around noon. We find that indoor and outdoor PM2.5 are positively correlated, with indoor levels consistently remaining lower than outside levels. These findings align with previous research suggesting decreasing outdoor air pollution concentrations with increasing height. The study informs decision-making by community members and policymakers regarding air pollution exposure in urban settings. Full article
Show Figures

Figure 1

Back to TopTop