Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (378)

Search Parameters:
Keywords = high-power fiber lasers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 321
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

22 pages, 6689 KiB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 368
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

10 pages, 1296 KiB  
Article
High-Sensitivity Dynamic Detection of Dissolved Acetylene in Transformer Oil Based on High-Power Quartz-Enhanced Photoacoustic Spectroscopy Sensing System
by Yuxiang Wu, Tiehua Ma, Chenhua Liu, Yashan Fan, Shuai Shi, Songjie Guo, Yu Wang, Xiangjun Xu, Guqing Guo, Xuanbing Qiu, Zhijin Shang and Chuanliang Li
Photonics 2025, 12(7), 713; https://doi.org/10.3390/photonics12070713 - 16 Jul 2025
Viewed by 281
Abstract
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with [...] Read more.
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with an optimized acoustic resonator to enhance the acoustic signal. The laser power was boosted to 150 mW using a C-band erbium-doped fiber amplifier (EDFA), achieving a detection limit of 469 ppb for C2H2 with an integration time of 1 s. The headspace degassing method was utilized to extract dissolved gases from the transformer oil, and the equilibrium process for the release of dissolved C2H2 was successfully monitored using the developed high-power QEPAS system. This approach provides reliable technical support for the real-time monitoring of the operational safety of power transformers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 3287 KiB  
Article
Characterization of Chirp Properties of an 850 nm Single-Mode Multi-Aperture Vertical-Cavity Surface-Emitting Laser and Analysis of Transmission Performance over Multimode and Single-Mode Fibers
by Xin Chen, Nikolay Ledentsov, Abdullah S. Karar, Jason E. Hurley, Oleg Yu. Makarov, Hao Dong, Ahmad Atieh, Ming-Jun Li and Nikolay Ledentsov
Photonics 2025, 12(7), 703; https://doi.org/10.3390/photonics12070703 - 11 Jul 2025
Viewed by 365
Abstract
By measuring the transfer function of the single-mode multi-aperture vertical-cavity surface-emitting laser (SM MA VCSEL) transmitting over a long single-mode fiber at 850 nm, we confirm that the chirp of the SM MA VCSEL under study is dominated by transient chirp with an [...] Read more.
By measuring the transfer function of the single-mode multi-aperture vertical-cavity surface-emitting laser (SM MA VCSEL) transmitting over a long single-mode fiber at 850 nm, we confirm that the chirp of the SM MA VCSEL under study is dominated by transient chirp with an alpha value of −3.81 enabling a 19 GHz bandwidth over 10 km of single-mode fiber. The detailed measurement of the VCSEL with different bias currents also allows us to recover other key characteristics of the VCSEL, thereby enabling us to practically construct the optical eye diagrams that closely match the experimentally measured ones. The link-level transfer function can be obtained using an analytical equation including effects of modal dispersion and laser chirp–chromatic dispersion (CD) interaction for an MMF of a given length and bandwidth grade. The narrow linewidth and chirp characteristics of the SM MA VCSEL enable transmission performance that surpasses that of conventional MM VCSELs, achieving comparable transmission distances at moderate modal bandwidths for OM3 and OM4 fibers and significantly longer reaches when the modal bandwidth is higher. The transmission performance was also confirmed with the modeled eye diagrams using extracted VCSEL parameters. The chirp properties also provide sufficient bandwidth for SM MA VCSEL transmission over kilometer-scale lengths of single-mode fibers at a high data rate of 100G or above with sufficient optical power coupled into the fibers. Advanced transmission distances are possible over multimode and single-mode fibers versus chirp-free devices. Full article
(This article belongs to the Special Issue Advances in Multimode Optical Fibers and Related Technologies)
Show Figures

Figure 1

12 pages, 1896 KiB  
Article
A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth
by Zixiang Gao, Qiang Shu, Fang Li, Chun Zhang, Fengyun Li, Xingchen Jiang, Yu Wen, Cheng Chen, Li Li, Qiuhui Chu, Rumao Tao, Honghuan Lin, Zhitao Peng and Jianjun Wang
Photonics 2025, 12(7), 701; https://doi.org/10.3390/photonics12070701 - 11 Jul 2025
Viewed by 406
Abstract
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by [...] Read more.
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by the onset of stimulated Brillouin scattering. At the maximum power operation, the amplifier exhibited a 3 dB spectral linewidth of 0.43 nm with beam quality being M2 < 1.33 and polarization extinction ratio (PER) being 16.3 dB. To the best of our knowledge, this represents the highest spectral brightness and PER achieved by PM fiber laser systems around 6 kW-level operation. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

14 pages, 4193 KiB  
Article
Comparative Analysis of Two Types of Combined Power-Over-Fiber and Radio-Over-Fiber Systems Using Raman Amplification for Different Link Lengths
by Paulo Kiohara, Romildo H. Souza, Véronique Quintard, Mikael Guegan, Laura Ghisa, André Pérennou and Olympio L. Coutinho
Sensors 2025, 25(13), 4159; https://doi.org/10.3390/s25134159 - 4 Jul 2025
Viewed by 330
Abstract
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines [...] Read more.
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines PoF and RoF, using Raman amplification to obtain RF gain. The first emphasis is placed on the use of two types of high-power laser sources (HPLSs) for the PoF system: a 1480 nm Raman-based HPLS and a 1550 nm HPLS that is based on an erbium-doped fiber amplifier (EDFA). The second emphasis of this paper is on how these two HPLSs simulate Raman scattering (SRS) in the fiber, considering different lengths of SMF 28 for the link. Thus, a comparative analysis is proposed considering the effects induced on the RF signal, mainly focused on its RF power gain (GRF), noise figure (NF), and spurious-free dynamic range (SFDR). The obtained results show that the architecture using a PoF system based on the 1550 nm HPLS benefits from a lower noise figure degradation, even when the noise generated by the optical amplification is considered. Full article
(This article belongs to the Special Issue Optical Communications in Sensor Networks)
Show Figures

Figure 1

16 pages, 3101 KiB  
Article
Enhanced High-Resolution and Long-Range FMCW LiDAR with Directly Modulated Semiconductor Lasers
by Luís C. P. Pinto and Maria C. R. Medeiros
Sensors 2025, 25(13), 4131; https://doi.org/10.3390/s25134131 - 2 Jul 2025
Viewed by 622
Abstract
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. [...] Read more.
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. Integrating LiDARs into electronic and photonic semiconductor chips can lower their cost, size, and power consumption, making them affordable for cost-sensitive applications. Additionally, simple designs are required, such as FMCW signal generation by the direct modulation of the current of a semiconductor laser. However, semiconductor lasers are inherently nonlinear, and the driving waveform needs to be optimized to generate linear FMCW signals. In this paper, we employ pre-distortion techniques to compensate for chirp nonlinearity, achieving frequency nonlinearities of 0.0029% for the down-ramp and the up-ramp at 55 kHz. Experimental results demonstrate a highly accurate LiDAR system with a resolution of under 5 cm, operating over a 210-m range through single-mode fiber, which corresponds to approximately 308 m in free space, towards meeting the requirements for long-range autonomous driving. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

10 pages, 2216 KiB  
Article
A Solid-State Three-Stage Nd:YVO4 Laser Amplifier System Based on AOM Pulse Picker-Integrated Modulator
by Zhenyu Li, Yawen Zheng, Zhengtao Zhang, Peipei Lu, Zhen Zeng, Zhongsheng Zhai and Boya Xie
Quantum Beam Sci. 2025, 9(3), 22; https://doi.org/10.3390/qubs9030022 - 1 Jul 2025
Viewed by 311
Abstract
In recent years, ultrafast bursts with high power have been applied in many significant fields. However, the peak power of the pulse train generated by fiber lasers is limited by fiber characteristics from nonlinear effects, which can only be at the level of [...] Read more.
In recent years, ultrafast bursts with high power have been applied in many significant fields. However, the peak power of the pulse train generated by fiber lasers is limited by fiber characteristics from nonlinear effects, which can only be at the level of milliwatt. In this research, the pulse frequency is reduced by an AOM pulse picker-integrated modulator. With M2 and pulse width guaranteed, the frequency of the reduced pulse train is amplified by a solid-state three-stage Nd:YVO4 amplifier system. Finally, the peak power of the pulse train is increased. The final output pulse repetition rate of the experiment is 1 MHz with a pulse width of 8.09 picoseconds and a peak power of up to 3.7 MW. Full article
(This article belongs to the Section High-Power Laser Physics)
Show Figures

Figure 1

15 pages, 2814 KiB  
Article
Triple-Clad Fiber Combiner for Holmium-Doped Fiber Lasers Clad-Pumping
by Nicolas Dalloz, Stefano Bigotta, Thierry Ibach, Christophe Louot, Thierry Robin and Anne Hildenbrand-Dhollande
Photonics 2025, 12(7), 659; https://doi.org/10.3390/photonics12070659 - 30 Jun 2025
Viewed by 396
Abstract
The development of a high-power 7 × 1 triple-clad fiber combiner aimed at resonantly clad-pump holmium-doped fiber lasers is presented. Thanks to the implementation in the combiner of a low refractive index glass capillary, we show that the developed combiner is compatible with [...] Read more.
The development of a high-power 7 × 1 triple-clad fiber combiner aimed at resonantly clad-pump holmium-doped fiber lasers is presented. Thanks to the implementation in the combiner of a low refractive index glass capillary, we show that the developed combiner is compatible with power scaling. Due to the hexagonal arrangement of its seven single-mode input fibers, the presented combiner can also be used in a 6 + 1 × 1 configuration. This characteristic of the fiber component allows for holmium-doped fiber lasers to be studied and developed with both single-oscillator and master-oscillator power amplifier architectures. Full article
(This article belongs to the Special Issue Research and Applications of Optical Fibers)
Show Figures

Figure 1

17 pages, 2477 KiB  
Article
High-Order Domain-Wall Dark Harmonic Pulses and Their Transition to H-Shaped and DSR Pulses in a Dumbbell-Shaped Fiber Laser at 1563 nm
by Alejandro Reyes-Mora, Manuel Durán-Sánchez, Edwin Addiel Espinosa-De-La-Cruz, Ulises Alcántara-Bautista, Adalid Ibarra-Garrido, Ivan Armas-Rivera, Luis Alberto Rodríguez-Morales, Miguel Bello-Jiménez and Baldemar Ibarra-Escamilla
Micromachines 2025, 16(7), 727; https://doi.org/10.3390/mi16070727 - 21 Jun 2025
Viewed by 569
Abstract
In this work, we report the formation of multiple mode-locking states in an Erbium/Ytterbium co-doped fiber laser, such as domain-wall (DW) dark pulses, high-order dark harmonic pulses, dissipative soliton resonance (DSR) pulses, and dual-wavelength h-shaped pulses. By increasing the pump power and adjusting [...] Read more.
In this work, we report the formation of multiple mode-locking states in an Erbium/Ytterbium co-doped fiber laser, such as domain-wall (DW) dark pulses, high-order dark harmonic pulses, dissipative soliton resonance (DSR) pulses, and dual-wavelength h-shaped pulses. By increasing the pump power and adjusting the quarter-wave retarder (QWR) plates, we experimentally achieve 310th-order harmonic dark pulses. DSR pulses emerge at a pump power of 1.01 W and remain stable up to 9.07 W, reaching a maximum pulse width of 676 ns and a pulse energy of 1.608 µJ, while Dual-wavelength h-shaped pulses have a threshold of 1.42 W and maintain stability up to 9.07 W. Using a monochromator, we confirm that these h-shaped pulses result from the superposition of a soliton-like pulse and a DSR-like pulse, emitting at different wavelengths but locked in time. The fundamental repetition rate for dark pulsing, DSR, and h-shaped pulses is 321.34 kHz. This study provides new insights into complex pulse dynamics in fiber lasers and demonstrates the versatile emission regimes achievable through precise pump and polarization control. Full article
(This article belongs to the Collection Microdevices and Applications Based on Advanced Glassy Materials)
Show Figures

Figure 1

19 pages, 2372 KiB  
Review
Frontier Advances and Challenges of High-Power Thulium-Doped Fiber Lasers in Minimally Invasive Medicine
by Wen-Yue Xu, Gong Wang, Yun-Fei Li, Yu Yu, Yulei Wang and Zhiwei Lu
Photonics 2025, 12(6), 614; https://doi.org/10.3390/photonics12060614 - 16 Jun 2025
Viewed by 808
Abstract
Lasers are increasingly used in the biomedical field because of their concentrated energy, good stability, ease of use, and other advantages, promoting the development of precision medicine to a higher level. Medical laser equipment has transformed from a single therapeutic tool in an [...] Read more.
Lasers are increasingly used in the biomedical field because of their concentrated energy, good stability, ease of use, and other advantages, promoting the development of precision medicine to a higher level. Medical laser equipment has transformed from a single therapeutic tool in an intelligent and precise diagnostic system. Existing clinical laser equipment has significant technical bottlenecks regarding soft-tissue ablation precision and multimodal diagnostic compatibility, which seriously restricts its clinical application. High-power thulium-doped fiber lasers with operating wavelengths of 1.9–2.1 μm provide a revolutionary solution for minimally invasive surgery due to their high compatibility with the absorption peaks of water molecules in biological tissues. This study reviews recent advances in high-power thulium-doped fiber lasers for minimally invasive therapies in the biomedical field. Breakthrough results in four major clinical application scenarios, namely, urological lithotripsy, tumor precision ablation, disfiguring dermatological treatment, and minimally invasive endovenous laser ablation, are also summarized. By systematically evaluating its potential for multimodal diagnostic and therapeutic applications and thoroughly exploring the technical challenges and strategies for clinical transformation, we aim to provide a theoretical basis and practical guidance for the clinical transformation and industrialization of new-generation medical laser technology. Full article
Show Figures

Figure 1

20 pages, 2846 KiB  
Article
An FSM-Assisted High-Accuracy Autonomous Magnetic Compensation Optimization Method for Dual-Channel SERF Magnetometers Used in Weak Biomagnetic Signal Measurement
by Xinran Tian, Bo Bao, Ridong Wang and Dachao Li
Sensors 2025, 25(12), 3690; https://doi.org/10.3390/s25123690 - 12 Jun 2025
Viewed by 341
Abstract
Atomic magnetometers based on the spin-exchange relaxation-free (SERF) regime have broad applications in bio-magnetic measurement due to their high sensitivity and miniaturized size. In this paper, we propose a SERF-based magnetometer using 1 × 2 polarization-maintaining fiber (PMF) with single-beam parameter optimization. The [...] Read more.
Atomic magnetometers based on the spin-exchange relaxation-free (SERF) regime have broad applications in bio-magnetic measurement due to their high sensitivity and miniaturized size. In this paper, we propose a SERF-based magnetometer using 1 × 2 polarization-maintaining fiber (PMF) with single-beam parameter optimization. The impacts of temperature, pumping laser power, and modulation amplitude on the magnetometer’s response signal at the SERF regime are examined. Moreover, through the simulation of zero-field resonance, the compensation accuracy is optimized. To further improve the compensation stability and accuracy, a novel finite state machine (FSM)-assisted iterative optimization magnetic field compensation algorithm is proposed. A pT-level compensation resolution with an error below 1.6% is achieved, which lays the foundation for the subsequent application of biomagnetic measurement arrays. Full article
Show Figures

Figure 1

19 pages, 1706 KiB  
Article
Demonstration of 50 Gbps Long-Haul D-Band Radio-over-Fiber System with 2D-Convolutional Neural Network Equalizer for Joint Phase Noise and Nonlinearity Mitigation
by Yachen Jiang, Sicong Xu, Qihang Wang, Jie Zhang, Jingtao Ge, Jingwen Lin, Yuan Ma, Siqi Wang, Zhihang Ou and Wen Zhou
Sensors 2025, 25(12), 3661; https://doi.org/10.3390/s25123661 - 11 Jun 2025
Viewed by 440
Abstract
High demand for 6G wireless has made photonics-aided D-band (110–170 GHz) communication a research priority. Photonics-aided technology integrates optical and wireless communications to boost spectral efficiency and transmission distance. This study presents a Radio-over-Fiber (RoF) communication system utilizing photonics-aided technology for 4600 m [...] Read more.
High demand for 6G wireless has made photonics-aided D-band (110–170 GHz) communication a research priority. Photonics-aided technology integrates optical and wireless communications to boost spectral efficiency and transmission distance. This study presents a Radio-over-Fiber (RoF) communication system utilizing photonics-aided technology for 4600 m long-distance D-band transmission. We successfully show the transmission of a 50 Gbps (25 Gbaud) QPSK signal utilizing a 128.75 GHz carrier frequency. Notwithstanding these encouraging outcomes, RoF systems encounter considerable obstacles, including pronounced nonlinear distortions and phase noise related to laser linewidth. Numerous factors can induce nonlinear impairments, including high-power amplifiers (PAs) in wireless channels, the operational mechanisms of optoelectronic devices (such as electrical amplifiers, modulators, and photodiodes), and elevated optical power levels during fiber transmission. Phase noise (PN) is generated by laser linewidth. Despite the notable advantages of classical Volterra series and deep neural network (DNN) methods in alleviating nonlinear distortion, they display considerable performance limitations in adjusting for phase noise. To address these problems, we propose a novel post-processing approach utilizing a two-dimensional convolutional neural network (2D-CNN). This methodology allows for the extraction of intricate features from data preprocessed using traditional Digital Signal Processing (DSP) techniques, enabling concurrent compensation for phase noise and nonlinear distortions. The 4600 m long-distance D-band transmission experiment demonstrated that the proposed 2D-CNN post-processing method achieved a Bit Error Rate (BER) of 5.3 × 10−3 at 8 dBm optical power, satisfying the soft-decision forward error correction (SD-FEC) criterion of 1.56 × 10−2 with a 15% overhead. The 2D-CNN outperformed Volterra series and deep neural network approaches in long-haul D-band RoF systems by compensating for phase noise and nonlinear distortions via spatiotemporal feature integration, hierarchical feature extraction, and nonlinear modelling. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

11 pages, 1431 KiB  
Article
Optimization of Output Characteristics in Figure-9 Mode-Locked Fiber Laser Based on Black Phosphorus Assistance
by Peiyuan Xiao, Lu Sui, Wanzhuo Ma, Renshun Pan and Huilin Jiang
Photonics 2025, 12(6), 589; https://doi.org/10.3390/photonics12060589 - 9 Jun 2025
Viewed by 410
Abstract
Utilizing the nonlinear effects of black phosphorus (BP), the self-starting threshold and noise performance were optimized in a figure-9 mode-locked fiber laser configuration. Experimental results demonstrate that a mode-locked pulse output with a spectral bandwidth of 8.2 nm, center wavelength of 1033.5 nm, [...] Read more.
Utilizing the nonlinear effects of black phosphorus (BP), the self-starting threshold and noise performance were optimized in a figure-9 mode-locked fiber laser configuration. Experimental results demonstrate that a mode-locked pulse output with a spectral bandwidth of 8.2 nm, center wavelength of 1033.5 nm, and repetition rate of 42 MHz is obtained. Compared with single-mechanism mode-locked lasers, the self-starting mode-locked threshold is reduced by 100 mW. Regarding noise characteristics, the signal-to-noise ratio (SNR) is enhanced to 68.4 dB and the phase noise is reduced to −115.6 dBc/Hz at 1 MHz to 10 MHz frequency offsets. The root mean square (RMS) of the output power is optimized to 0.9% and phase noise jitter is reduced to 1.9%. This work proves a novel approach to tackle the challenges of high self-starting thresholds and instability in mode-locked lasers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

11 pages, 3104 KiB  
Communication
A Novel Spatter Detection Algorithm for Real-Time Quality Control in Laser-Directed Energy Deposition-Based Additive Manufacturing
by Farzaneh Kaji, Jinoop Arackal Narayanan, Mark Zimny and Ehsan Toyserkani
Sensors 2025, 25(12), 3610; https://doi.org/10.3390/s25123610 - 8 Jun 2025
Viewed by 761
Abstract
Laser-Directed Energy Deposition (LDED) has recently been widely used for 3D-printing metal components and repairing high-value parts. One key performance indicator of the LDED process is represented by melt pool stability and spatter behavior. In this research study, an off-axis vision monitoring system [...] Read more.
Laser-Directed Energy Deposition (LDED) has recently been widely used for 3D-printing metal components and repairing high-value parts. One key performance indicator of the LDED process is represented by melt pool stability and spatter behavior. In this research study, an off-axis vision monitoring system is employed to characterize spatter formation based on different anomalies in the process. This study utilizes a 1 kW fiber laser-based LDED system equipped with a monochrome high-dynamic-range (HDR) vision camera and an SP700 Near-IR/UV Block visible bandpass filter positioned at various locations. To extract meaningful features from the original images, a novel image processing algorithm is developed to quantify spatter counts, orientation, area, and distance from the melt pool under harsh conditions. Additionally, this study analyzes the average number of spatters for different laser power settings, revealing a strong positive correlation. Validation experiments confirm over 93% detection accuracy, underscoring the robustness of the image processing pipeline. Furthermore, spatter detection is employed to assess the impact of spatter formation on deposition continuity. This research study provides a method for detecting spatters, correlating them with LDED process parameters, and predicting deposit quality. Full article
Show Figures

Figure 1

Back to TopTop