Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (216)

Search Parameters:
Keywords = high-birefringent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 8944 KiB  
Article
High-Speed Full-Color Polarized Light Imaging of Collagen Using a Polarization Camera
by Bin Yang, Neil Nayyar and Billy Sanchez
Bioengineering 2025, 12(7), 720; https://doi.org/10.3390/bioengineering12070720 - 30 Jun 2025
Viewed by 340
Abstract
Polarized light imaging (PLI) has been effective in visualizing and quantifying collagen content. Collagen-specific data are often overlaid over the tissue image for visualization. However, such contextual tissue images are typically in grayscale and lack important color information, limiting the usefulness of PLI [...] Read more.
Polarized light imaging (PLI) has been effective in visualizing and quantifying collagen content. Collagen-specific data are often overlaid over the tissue image for visualization. However, such contextual tissue images are typically in grayscale and lack important color information, limiting the usefulness of PLI in imaging the stained histology slides and for surgical guidance. The objective of this study was to develop a robust and easy-to-implement PLI technique to capture both true color and birefringent collagen data, and we call it ColorPOL. ColorPOL uses only one polarization-sensitive camera to capture information at 75 frames per second. The true color images were synthesized from individual RGB images, and collagen-specific information (fiber orientation and retardance) was derived from the green channel image. We implemented ColorPOL in transmission mode on an upright microscope and in reflection mode for wide-field thick tissue imaging. The color images in both implementations provided valuable color tissue context that facilitated the identification and localization of collagen content. Additionally, we demonstrated that in reflection mode, the high imaging speed enabled us to record and visualize continuous deformations of the collagenous tissues (tendons, sciatic nerves, and blood vessels) overlaid on the processed collagen-specific information. Robust performance and flexible configuration will make ColorPOL a valuable tool in basic research and translational applications. Full article
Show Figures

Figure 1

15 pages, 7651 KiB  
Article
Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping
by Nanxi Lin, Hong Zhang, Yunye Shi, Chenjun Xu, Zhuoqian Xie and Yunjin Chen
Materials 2025, 18(13), 2953; https://doi.org/10.3390/ma18132953 - 22 Jun 2025
Viewed by 294
Abstract
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure [...] Read more.
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure of BiFeO3 into a cubic phase, thereby reducing the lattice mismatch with silicon to 2.8%. High-quality, highly oriented, silicon-based cubic Sr,Ti:BiFeO3 thin films were successfully fabricated using radio frequency magnetron sputtering. Due to the induced lattice distortion, the characteristic periodic spiral spin antiferromagnetic structure of BiFeO3 was suppressed, resulting in a significant enhancement of the saturation magnetization of cubic Bi0.5Sr0.5Fe0.5Ti0.5O3 (48.0 emu/cm3), compared to that of pristine BiFeO3 (5.0 emu/cm3). Furthermore, the incorporation of Sr2+ and Ti4+ ions eliminated the birefringence effect inherent in trigonal BiFeO3, thereby inducing a pronounced magneto-optical effect in the cubic Sr,Ti:BiFeO3 thin film. The magnetic circular dichroic ellipticity (ψF) of Bi0.5Sr0.5Fe0.5Ti0.5O3 reached an impressive 2300 degrees/cm. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 18981 KiB  
Article
Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability
by Jinying Zhang, Bingnan Wang, Jiacheng Wang, Xinye Wang and Yexiaotong Zhang
Materials 2025, 18(12), 2778; https://doi.org/10.3390/ma18122778 - 12 Jun 2025
Viewed by 387
Abstract
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed [...] Read more.
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed structure facilitates the excitation of the K valley within the range of 0.851–0.934 THz and the K′ valley from 1.604 to 1.686 THz, while also demonstrating anomalous refraction and birefringence. The calculated emission angles, derived through momentum matching, enable transitions between single-wave and dual-wave emissions and allow for precise angle control. The introduction of the liquid crystal material NJU-LDn-4 enables continuous tuning of the dual-band spectral range under a varying electric field, broadening the operating frequency bands to the ranges of 0.757–0.996 THz and 1.426–1.798 THz, respectively. These findings suggest promising applications in tunable filter design, optical communication, photonic computing, optical sensing, and high-resolution imaging, particularly in novel optical devices requiring precise control over spectral characteristics and light propagation. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

19 pages, 5431 KiB  
Article
Polarization-Insensitive Silicon Grating Couplers via Subwavelength Metamaterials and Metaheuristic Optimization
by Jorge Parra
Photonics 2025, 12(5), 428; https://doi.org/10.3390/photonics12050428 - 29 Apr 2025
Viewed by 680
Abstract
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains [...] Read more.
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains a challenge due to the birefringence of silicon waveguides. Here, we address this issue by proposing polarization-insensitive grating couplers based on subwavelength dielectric metamaterials and metaheuristic optimization. Subwavelength periodic structures were engineered to act as uniaxial homogeneous linear (UHL) materials, enabling tailored anisotropy. On the other hand, particle swarm optimization (PSO) was employed to optimize the coupling efficiency, bandwidth, and polarization-dependent loss (PDL). Numerical simulations demonstrated that a pitch of 100 nm ensures UHL behavior while minimizing leaky waves. Optimized grating couplers achieved coupling efficiencies higher than −3 dB and a PDL of below 1 dB across the telecom C-band (1530–1565 nm). Three optimization strategies were explored, balancing efficiency, the bandwidth, and the PDL while considering the Pareto front. This work establishes a robust framework combining metamaterial engineering with computational optimization, paving the way for high-performance polarization-insensitive grating couplers with potential uses in advanced photonic applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

12 pages, 4037 KiB  
Article
Tuning Magneto-Birefringence of Two-Dimensional Vermiculite Dispersions Through Magnetic Ion Exchange
by An Wu, Tengxuan Cao, Hangkuan Ji, Wenjun Kuang, Jiarong Liu, Zichen Song, Jiandong Yao and Yi-Chao Zou
Inorganics 2025, 13(5), 139; https://doi.org/10.3390/inorganics13050139 - 29 Apr 2025
Viewed by 452
Abstract
Liquid crystals based on dispersions of two-dimensional (2D) materials have recently been developed for light modulation, exhibiting superior performances compared to conventional organic liquid crystals in a variety of prototypical applications, including coloration, solar-blind communications and blue-light fluoresce. Among the diverse family of [...] Read more.
Liquid crystals based on dispersions of two-dimensional (2D) materials have recently been developed for light modulation, exhibiting superior performances compared to conventional organic liquid crystals in a variety of prototypical applications, including coloration, solar-blind communications and blue-light fluoresce. Among the diverse family of 2D liquid crystals, vermiculite-based liquid crystals stand out with advantages in low cost, ease of mass production and environmental sustainability, owing to the high natural abundance of the material. Here, we demonstrated magnetic-field tunable optics with 2D vermiculite dispersions prepared through a facile ‘exchange and redispersion’ method. By exploiting the intrinsic ion-exchange capability of clay minerals, we observed a significantly enhanced magneto-birefringence of the vermiculite dispersion upon replacing the native cations with magnetic ions, manifesting in a doubled Cotton–Mouton coefficient, representing the highest value among previous reports. Magnetization measurements reveal that there is a remarkable magnetic anisotropy in Fe ion-exchanged vermiculite samples in contrast to the isotropic magnetism of pristine vermiculite, which accounts for the observed enhancement of magneto-birefringence. Our findings demonstrate that ion exchange can serve as a simple and effective strategy to modulate the physical and chemical properties of 2D materials’ dispersions, thereby opening avenues for broader and more diverse applications. Full article
(This article belongs to the Special Issue Physicochemical Characterization of 2D Materials)
Show Figures

Graphical abstract

13 pages, 2261 KiB  
Article
Influence of Thermal Processing on In Vitro Starch Digestibility in Cereal-Based Infant Foods
by Marianela D. Rodríguez, Nicolás F. Bongianino, Alberto E. León and Mariela C. Bustos
Foods 2025, 14(8), 1367; https://doi.org/10.3390/foods14081367 - 16 Apr 2025
Viewed by 2683
Abstract
Early-life nutrition is crucial for healthy infant development. This study explored the effects of high-temperature (30 min, 121 °C) and high-humidity treatments on the starch properties and digestibility of infant purees made from wheat, rice, and maize. Purees were prepared using whole grains [...] Read more.
Early-life nutrition is crucial for healthy infant development. This study explored the effects of high-temperature (30 min, 121 °C) and high-humidity treatments on the starch properties and digestibility of infant purees made from wheat, rice, and maize. Purees were prepared using whole grains (WGs), whole grain flours (WGFs), and flour suspensions (FSs) subjected to thermal treatment. Untreated whole grain samples from each cereal served as controls. Samples were analyzed for microstructure, thermal properties, viscosity, and starch digestibility. Microstructural analysis revealed partial to complete loss of amyloplast birefringence, particularly in FS. The thermal treatment reduced peak viscosity in WGs, WGFs, and FSs. Also, the flour suspensions showed lower thermal stability and a phytic acid content reduction of 30%. In vitro digestion revealed a significant reduction in total hydrolyzed starch (THS) in wheat- (27.8 g/100 g starch) and maize- (11.3 g/100 g starch) WG purees compared to controls. In contrast, WGF purees showed significant increases in THS: 29% (wheat), 70% (rice), and 92% (maize). FS purees also showed significant increases in THS (57.4, 39.3, and 45.4 g/100 g starch for wheat, rice, and maize, respectively), alongside a decrease in resistant starch. In conclusion, thermal treatment modulates starch digestibility and viscosity properties in a cereal-dependent manner, offering a potential approach to optimize infant nutrition. Full article
Show Figures

Figure 1

20 pages, 9535 KiB  
Article
Hydrothermal Retrogradation from Chlorite to Tosudite: Effect on the Optical Properties
by Zahra Ahmadi, Fernando Nieto, Farhad Khormali, Nicolás Velilla, Morteza Einali, Abbas Maghsoudi and Arash Amini
Minerals 2025, 15(3), 326; https://doi.org/10.3390/min15030326 - 20 Mar 2025
Viewed by 524
Abstract
In the argillic alteration zone of the SinAbad area of the Urumieh–Dokhtar magmatic belt (Iran), Mg-rich, Fe-poor chlorites, which crystallised at temperatures between 160 °C and 260 °C, were affected by extensive alteration to smectite mixed-layering at the micro- and nano-scales during the [...] Read more.
In the argillic alteration zone of the SinAbad area of the Urumieh–Dokhtar magmatic belt (Iran), Mg-rich, Fe-poor chlorites, which crystallised at temperatures between 160 °C and 260 °C, were affected by extensive alteration to smectite mixed-layering at the micro- and nano-scales during the retrograde evolution of the hydrothermal system. Chlorites retain their usual optical aspect and properties, except for the index of refraction perpendicular to the (001) layers, which becomes lower than those parallel to the layers, producing an increase in birefringence and change in the optic and elongation signs, in comparison to the ordinary ones for Mg chlorites. Scanning electron microscopy (SEM) maps and compositions, and electron microprobe (EMP) analyses indicate minor but ubiquitous Ca (and K) content. X-ray diffraction (XRD) of chloritic concentrates allowed the identification of chlorite and tosudite. High-resolution transmission electron microscopy (HRTEM) images show major 14 Å (chlorite), with the frequent presence of 24 Å (contracted tosudite) individual layers and small packets up to five layers thick. Lateral change from 14 Å to 24 Å individual layers has been visualised. High-resolution chemical maps obtained in high-angle annular dark-field (HAADF) mode confirm the existence of areas preferentially dominated by chlorite or tosudite. The overall chemical compositions obtained by SEM, EMP, and transmission electron microscopy (TEM) align from the chlorite to the tosudite end-members, whose pure compositions could be determined from extreme analytical electron microscopy (AEM) analyses. The described intergrowths and interlayers, under the optical resolution, could provide a clue to explain changes in the normal optic properties of chlorite, which are mentioned, but not explained, in the literature. Full article
Show Figures

Figure 1

16 pages, 1096 KiB  
Article
Optimization of Voltage Requirements in Electro-Optic Polarization Controllers for High-Speed QKD Systems
by Hugo Filipe Costa, Armando Nolasco Pinto and Nelson Jesus Muga
Photonics 2025, 12(3), 267; https://doi.org/10.3390/photonics12030267 - 14 Mar 2025
Viewed by 617
Abstract
We present a framework to optimize the voltage range of electro-optic polarization controllers (EPC) in polarization-based quantum key distribution (QKD) subsystems. In this study, we consider an EPC capable of modifying both the phase difference between its fast and slow axes and the [...] Read more.
We present a framework to optimize the voltage range of electro-optic polarization controllers (EPC) in polarization-based quantum key distribution (QKD) subsystems. In this study, we consider an EPC capable of modifying both the phase difference between its fast and slow axes and the orientation of the fast axis. This capability allows it to transform any input state of polarization (SOP) into any desired output SOP on the Poincaré sphere using a single wave-plate. When multiple wave-plates are available, properly distributing the required polarization modulation across them effectively reduces the electronic demands, lowers the implementation costs, and enhances the polarization modulation speeds. This optimization is achieved through the application of multi-objective optimization (MOO) and wave-plate splitting techniques. Within a simulation model, using the calibration parameters from a commercially available six-wave-plate EPC, we determined the optimized voltage ranges required to achieve the six, four, and three SOPs typically used in polarization-based QKD protocols. Two voltage reference points are considered in our study: bias voltage points, which result in zero birefringence, and zero voltage points. For optimization procedures centered around the bias voltage points, we observe a significant reduction in the voltage range, from ±37 V, for a single wave-plate, to approximately ±6 V, for six wave-plates. Furthermore, using wave-plate splitting techniques, we conclude that only two independent wave-plates (four variables) need to be considered in our model to achieve optimized results, which contributes to the efficient design of polarization-based QKD subsystems by minimizing voltage transitions while ensuring precise SOP control, ultimately enabling cost-effective and high-speed polarization modulation. Full article
Show Figures

Figure 1

18 pages, 6022 KiB  
Article
Biological Behavior of Bioactive Glasses SinGlass (45S5) and SinGlass High (F18) in the Repair of Critical Bone Defects
by Dayane Maria Braz Nogueira, Marcelie Priscila de Oliveira Rosso, Paulo Sérgio da Silva Santos, Manoel Damião Sousa-Neto, Alice Corrêa Silva-Sousa, Cleverson Teixeira Soares, Carlos Henrique Bertoni Reis, Jéssica de Oliveira Rossi, Cleuber Rodrigo de Souza Bueno, Daniela Vieira Buchaim, Rogério Leone Buchaim and Mariana Schutzer Ragghianti Zangrando
Biomolecules 2025, 15(1), 112; https://doi.org/10.3390/biom15010112 - 13 Jan 2025
Viewed by 1387
Abstract
This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate [...] Read more.
This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate of bone maturation. Histomorphological and birefringence analyses revealed better organization of the newly formed bone in the biomaterial-treated groups, and immunohistochemistry indicated the expression of osteogenic markers such as osteocalcin, immunostaining for bone morphogenetic protein 2 (BMP 2), and immunostaining for bone morphogenetic protein 4 (BMP 4). Microtomography computadorized (Micro-CT) revealed centripetal bone formation in both groups, with greater integration of the particles into the surrounding bone tissue. The superior performance of SinGlass High (F18) was attributed to its higher potassium and magnesium content, which enhance osteoconductivity. After 42 days, the SinGlass High (F18) group showed the highest percentage of new bone formation, in line with previous studies. Although our results are promising, the limited follow-up period and use of a single animal model highlight the need for further research to validate clinical applicability. SinGlass High (F18) appears to be a viable alternative to autografts in bone repair, with potential to improve tissue integration and accelerate recovery. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

10 pages, 3918 KiB  
Article
Design and Fabrication of Ultrathin Metallic Phase Shifters for Visible and Near-Infrared Wavelengths
by Qing Guo, Jinkui Chu, Chuanlong Guan, Chuxiao Zhang and Ran Zhang
Micromachines 2025, 16(1), 74; https://doi.org/10.3390/mi16010074 - 10 Jan 2025
Viewed by 960
Abstract
The polarization state of light is critical for biological imaging, acousto-optics, bio-navigation, and many other optical applications. Phase shifters are extensively researched for their applications in optics. The size of optical elements with phase delay that are made from natural birefringent materials is [...] Read more.
The polarization state of light is critical for biological imaging, acousto-optics, bio-navigation, and many other optical applications. Phase shifters are extensively researched for their applications in optics. The size of optical elements with phase delay that are made from natural birefringent materials is limited; however, fabricating waveplates from dielectric metamaterials is very complex and expensive. Here, we present an ultrathin (14 nm) metallic phase shifter developed using nanoimprinting technology and the oxygen plasma ashing technique for visible and near-infrared wavelengths. The fabrication process can produce desirable metallic phase shifters with high efficiency, large area, and low cost. We demonstrate through a numerical simulation and experiment that the metallic phase shifter exhibits phase delay performance. Our results highlight the simplicity of the fabrication process for a metallic phase shifter with phase delay performance and offer important opportunities for creating high-efficiency, ultrathin polarizing elements, which can be used in miniaturized devices, such as integrated circuits. Full article
(This article belongs to the Special Issue Nanostructured Optoelectronic and Nanophotonic Devices)
Show Figures

Figure 1

19 pages, 15415 KiB  
Article
Green Starch Modification Using Citric Acid: Quinoa, Chickpea, and Cassava Starches
by Disala Menuwara Arachchi, Anthony Halim, Gbemisola Fadimu, Asgar Farahnaky and Mahsa Majzoobi
Foods 2025, 14(2), 164; https://doi.org/10.3390/foods14020164 - 8 Jan 2025
Cited by 1 | Viewed by 2024
Abstract
Dietary fibre deficiency has been associated with various global health challenges. Starch, as a main component of many staple foods, is typically very low in fibre content. The primary aim of this research was to increase the dietary fibre and alter the physicochemical [...] Read more.
Dietary fibre deficiency has been associated with various global health challenges. Starch, as a main component of many staple foods, is typically very low in fibre content. The primary aim of this research was to increase the dietary fibre and alter the physicochemical properties of some common and emerging starches (cassava, quinoa, and chickpea starch) using eco-friendly modifications. Citric acid, a safe, natural, and environmentally friendly cross-linking agent, was employed for this purpose. Starch samples were treated with 30% citric acid and dry-heated at 130 °C for 5 h. This process resulted in relatively high degrees of substitution: 0.124 for cassava, 0.117 for quinoa, and 0.112 for chickpea starches. The modification successfully produced rich sources of dietary fibre suitable for food applications. It also reduced water interactions, pasting properties, and crystallinity. The highest reduction in swelling power and solubility was observed in quinoa starch (−67.34% and −82.10%, respectively), while the lowest values were obtained for cassava starch (−35.39% and −44.22%). All starches retained their granular integrity; however, they lost birefringence and Maltese crosses and showed some erosions on the granule surfaces. The citrate starches produced in this research offer thermally stable starch suitable for various food applications. Full article
(This article belongs to the Special Issue Starch: Structure, Modification and Nutritional Function)
Show Figures

Figure 1

11 pages, 2649 KiB  
Communication
Applications of Isosceles Triangular Coupling Structure in Optical Switching and Sensing
by Lili Zeng, Xingjiao Zhang, Qinghua Guo, Yang Fan, Yuanwen Deng, Zhengchao Ma and Boxun Li
Sensors 2024, 24(24), 8221; https://doi.org/10.3390/s24248221 - 23 Dec 2024
Cited by 1 | Viewed by 756
Abstract
In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a [...] Read more.
In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD). Due to the existence of the side mode and angular mode, the transmission spectrum presents two high transmittance peaks and two low transmittance peaks. In addition, the four transmission peaks exhibit different variation trends when the dimensions of the isosceles triangle are changed. The liquid crystal (LC) materials comprise anisotropic uniaxial crystal and exhibit a remarkable birefringence effect under the action of the external field. When the isosceles triangle coupling structure is filled with LC, the refractive index of the liquid crystal can be changed by changing the applied voltage, thereby achieving the function of an optical switch. Within a certain range, a linear relationship between refractive index and applied voltage can be obtained. Moreover, the proposed structure can be applied to biochemical sensing to detect glucose concentrations, and the sensitivity reaches as high as 0.283 nm·L/g, which is significantly higher than other values reported in the literature. The triangular coupling structure has advantages such as simple structure and ease of manufacturing, making it an ideal choice for the design of high-performance integrated plasmonic devices. Full article
Show Figures

Figure 1

10 pages, 915 KiB  
Article
Optimization of Low-Loss, High-Birefringence, Single-Layer, Annular, Hollow, Anti-Resonant Fiber Using a Surrogate Model-Assisted Gradient Descent Method
by Lihong Zhai, Sijie Zhang, Jiyang Luo, Gang Huang and Zihan Liu
Photonics 2024, 11(12), 1156; https://doi.org/10.3390/photonics11121156 - 9 Dec 2024
Viewed by 829
Abstract
This paper proposes a novel optimization method for hollow-core, anti-resonant fiber based on a gradient descent algorithm assisted via a radial basis-function surrogate model. This approach significantly reduces the number of optimization iterations, achieving a stable improvement in birefringence performance by an order [...] Read more.
This paper proposes a novel optimization method for hollow-core, anti-resonant fiber based on a gradient descent algorithm assisted via a radial basis-function surrogate model. This approach significantly reduces the number of optimization iterations, achieving a stable improvement in birefringence performance by an order of magnitude across the operating wavelength band. Furthermore, various optimization algorithms were compared, and the indicators of their Pareto sets were analyzed to demonstrate the effectiveness of the proposed method in multi-objective optimization. Full article
(This article belongs to the Special Issue Fiber Lasers: Recent Advances and Applications)
Show Figures

Figure 1

9 pages, 1827 KiB  
Article
Efficient Second-Harmonic Generation in Thin-Film Lithium Tantalate Through Modal Phase-Matching
by Jiacheng Liu, Gongyu Xia, Pingyu Zhu, Kaikai Zhang, Ping Xu and Zhihong Zhu
Photonics 2024, 11(12), 1150; https://doi.org/10.3390/photonics11121150 - 6 Dec 2024
Cited by 3 | Viewed by 1434
Abstract
Lithium tantalate (LT) exhibits nonlinear optical properties that are comparable to those of lithium niobate (LN), yet the former surpasses the latter in several respects. These include an enhanced optical damage threshold, a wider transparency range, and lower birefringence. Consequently, LT is an [...] Read more.
Lithium tantalate (LT) exhibits nonlinear optical properties that are comparable to those of lithium niobate (LN), yet the former surpasses the latter in several respects. These include an enhanced optical damage threshold, a wider transparency range, and lower birefringence. Consequently, LT is an excellent material for optical frequency conversion applications. In this study, we have devised a novel device based on thin-film lithium tantalate (TFLT) for the efficient generation of second-harmonic waves. The design employs modal phase-matching (MPM), which circumvents the intricacies of conventional poling techniques, and attains a normalised conversion efficiency of 120% W−1cm−2. In order to address the challenges presented by higher-order modes, a mode converter with an insertion loss of less than 0.1 dB has been developed, thereby ensuring the efficient utilisation of the second harmonic. This study not only demonstrates the potential of TFLT for high-performance SHG, but also promotes the development of integrated nonlinear TFLT platforms. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

22 pages, 6166 KiB  
Article
Intermediate and Transitory Inflammation Mediate Proper Alveolar Bone Healing Outcome in Contrast to Extreme Low/High Responses: Evidence from Mice Strains Selected for Distinct Inflammatory Phenotypes
by Priscila Maria Colavite, Michelle de Campos Soriani Azevedo, Carolina Fávaro Francisconi, Angélica Cristina Fonseca, André Petenucci Tabanez, Jéssica Lima Melchiades, Daniela Carignatto Passadori, Andrea Borrego, Marcelo De Franco, Ana Paula Favaro Trombone and Gustavo Pompermaier Garlet
Biology 2024, 13(12), 972; https://doi.org/10.3390/biology13120972 - 25 Nov 2024
Viewed by 953
Abstract
Alveolar bone healing is influenced by various local and systemic factors, including the local inflammatory response. This study aimed to evaluate the role of inflammatory responsiveness in alveolar bone healing using 8-week-old male and female mice (N = 5/time/group) strains selected for maximum [...] Read more.
Alveolar bone healing is influenced by various local and systemic factors, including the local inflammatory response. This study aimed to evaluate the role of inflammatory responsiveness in alveolar bone healing using 8-week-old male and female mice (N = 5/time/group) strains selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response carrying distinct homozygous RR/SS Slc11a1 genotypes, namely AIRminRR, AIRminSS, AIRmaxRR, and AIRmaxSS mice. After upper right incisor extraction, bone healing was analyzed at 0, 3, 7, and 14 days using micro-computed tomography, histomorphometry, birefringence, immunohistochemistry, and PCRArray analysis. AIRmaxSS and AIRminRR presented the highest and lowest inflammatory readouts, respectively, associated with lowest repair levels in both strains, while intermediate inflammatory phenotypes observed in AIRminSS and AIRmaxRR were associated with higher repair levels in such strains. The better healing outcomes are associated with intermediate inflammatory cell counts, a balanced expression of pro- and anti-inflammatory cytokines and chemokines, increased expression of growth and osteogenic factors and MSCs markers. Our results demonstrate that extreme high and low inflammatory responses are not ideal for a proper bone repair outcome, while an intermediate and transitory inflammation is associated with a proper alveolar bone healing outcome. Full article
Show Figures

Figure 1

Back to TopTop