Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = hierarchical federated learning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14243 KB  
Article
Personalized Federated Learning with Hierarchical Two-Branch Aggregation for Few-Shot Scenarios
by Yifan Miao, Weishan Zhang, Yuhan Wang, Yuru Liu, Zhen Zhang, Lingzhao Meng and Baoyu Zhang
Sensors 2026, 26(3), 1037; https://doi.org/10.3390/s26031037 (registering DOI) - 5 Feb 2026
Abstract
Personalized federated learning (pFL) aims to address data heterogeneity by training client-specific models. However, it faces two critical challenges under few-shot conditions. First, existing methods often overlook the hierarchical structure of neural representations, limiting their ability to balance generalization and personalization. Second, recent [...] Read more.
Personalized federated learning (pFL) aims to address data heterogeneity by training client-specific models. However, it faces two critical challenges under few-shot conditions. First, existing methods often overlook the hierarchical structure of neural representations, limiting their ability to balance generalization and personalization. Second, recent approaches incorporate representation-level inductive biases that typically rely on rigid assumptions, such as fixed perturbation patterns or compact class clusters, making them vulnerable to distribution shifts in federated environments. To overcome these limitations, we propose pFedH2A, a novel hierarchical framework incorporating brain-inspired mechanisms, tailored for personalized federated learning in few-shot scenarios. First, we design a dual-branch hypernetwork (DHN) that employs two structurally distinct branches to generate aggregation weights. Each branch is biased toward capturing either low-level shared features or high-level personalized representations, enabling fine-grained personalization by mimicking the brain’s division of perceptual and representational processing. Second, we introduce a relation-aware module that learns an adaptive similarity function for each client, supporting few-shot classification by measuring whether a pair of samples belongs to the same class without relying on rigid prototype assumptions. Extensive experiments on public image classification datasets demonstrate that pFedH2A outperforms existing pFL baselines under few-shot scenarios, validating its effectiveness. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

69 pages, 30976 KB  
Review
Next-Gen Explainable AI (XAI) for Federated and Distributed Internet of Things Systems: A State-of-the-Art Survey
by Aristeidis Karras, Anastasios Giannaros, Natalia Amasiadi and Christos Karras
Future Internet 2026, 18(2), 83; https://doi.org/10.3390/fi18020083 - 4 Feb 2026
Abstract
Background: Explainable Artificial Intelligence (XAI) is deployed in Internet of Things (IoT) ecosystems for smart cities and precision agriculture, where opaque models can compromise trust, accountability, and regulatory compliance. Objective: This survey investigates how XAI is currently integrated into distributed and federated IoT [...] Read more.
Background: Explainable Artificial Intelligence (XAI) is deployed in Internet of Things (IoT) ecosystems for smart cities and precision agriculture, where opaque models can compromise trust, accountability, and regulatory compliance. Objective: This survey investigates how XAI is currently integrated into distributed and federated IoT architectures and identifies systematic gaps in evaluation under real-world resource constraints. Methods: A structured search across IEEE Xplore, ACM Digital Library, ScienceDirect, SpringerLink, and Google Scholar targeted publications related to XAI, IoT, edge/fog computing, smart cities, smart agriculture, and federated learning. Relevant peer-reviewed works were synthesized along three dimensions: deployment tier (device, edge/fog, cloud), explanation scope (local vs. global), and validation methodology. Results: The analysis reveals a persistent resource–interpretability gap: computationally intensive explainers are frequently applied on constrained edge and federated platforms without explicitly accounting for latency, memory footprint, or energy consumption. Only a minority of studies quantify privacy–utility effects or address causal attribution in sensor-rich environments, limiting the reliability of explanations in safety- and mission-critical IoT applications. Contribution: To address these shortcomings, the survey introduces a hardware-centric evaluation framework with the Computational Complexity Score (CCS), Memory Footprint Ratio (MFR), and Privacy–Utility Trade-off (PUT) metrics and proposes a hierarchical IoT–XAI reference architecture, together with the conceptual Internet of Things Interpretability Evaluation Standard (IOTIES) for cross-domain assessment. Conclusions: The findings indicate that IoT–XAI research must shift from accuracy-only reporting to lightweight, model-agnostic, and privacy-aware explanation pipelines that are explicitly budgeted for edge resources and aligned with the needs of heterogeneous stakeholders in smart city and agricultural deployments. Full article
(This article belongs to the Special Issue Human-Centric Explainability in Large-Scale IoT and AI Systems)
20 pages, 1672 KB  
Article
Robust Stochastic Power Allocation for Industrial IoT Federated Learning with Neurosymbolic AI
by Pratik Goswami, Adeel Iqbal and Kwonhue Choi
Mathematics 2026, 14(3), 547; https://doi.org/10.3390/math14030547 - 3 Feb 2026
Viewed by 42
Abstract
In this work, a robust optimization approach for energy-aware federated learning (FL) in industrial IoT networks is proposed that addresses uncertainties in harvested energy, device failures, and dynamic topologies. The proposed neurosymbolic reasoning approach combines graph neural networks (GNNs) for topology-aware power prediction [...] Read more.
In this work, a robust optimization approach for energy-aware federated learning (FL) in industrial IoT networks is proposed that addresses uncertainties in harvested energy, device failures, and dynamic topologies. The proposed neurosymbolic reasoning approach combines graph neural networks (GNNs) for topology-aware power prediction with symbolic rules to solve the stochastic power allocation problem, providing both optimality guarantees and explainable safety-critical decisions. The hierarchical Master-Coordination-Task Agent (MA-CoA-TA) architecture prioritizes critical industrial nodes while ensuring FL convergence under energy constraints. This work establishes approximation guarantees through theoretical analysis relative to the robust optimum and validates with rigorous simulations against existing methods. Experimental results demonstrate that proposed framework provides optimal balance for robust FL deployment in large-scale IIoT networks with real-world uncertainties by achieving 5.7% FL accuracy with 151 J remaining battery under the most challenging conditions (100 rounds, 200 devices), while baselines fail completely (0% accuracy, battery depletion). Ablation confirms component synergy—symbolic reasoning delivers 2.2 times accuracy over GNN-only, while GNN+harvesting preserves 30 times more battery than symbolic-only. Full article
Show Figures

Figure 1

19 pages, 1407 KB  
Article
Privacy Protection Optimization Method for Cloud Platforms Based on Federated Learning and Homomorphic Encryption
by Jing Wang and Yun Wang
Sensors 2026, 26(3), 890; https://doi.org/10.3390/s26030890 - 29 Jan 2026
Viewed by 159
Abstract
With the wide application of cloud computing in multi-tenant, heterogeneous nodes and high-concurrency environments, model parameters frequently interact during distributed training, which easily leads to privacy leakage, communication redundancy, and decreased aggregation efficiency. To realize the collaborative optimization of privacy protection and computing [...] Read more.
With the wide application of cloud computing in multi-tenant, heterogeneous nodes and high-concurrency environments, model parameters frequently interact during distributed training, which easily leads to privacy leakage, communication redundancy, and decreased aggregation efficiency. To realize the collaborative optimization of privacy protection and computing performance, this study proposes the Heterogeneous Federated Homomorphic Encryption Cloud (HFHE-Cloud) model, which integrates federated learning (FL) and homomorphic encryption and constructs a secure and efficient collaborative learning framework for cloud platforms. Under the condition of not exposing the original data, the model effectively reduces the performance bottleneck caused by encryption calculation and communication delay through hierarchical key mapping and dynamic scheduling mechanism of heterogeneous nodes. The experimental results show that HFHE-Cloud is significantly superior to Federated Averaging (FedAvg), Federated Proximal (FedProx), Federated Personalization (FedPer) and Federated Normalized Averaging (FedNova) in comprehensive performance, Homomorphically Encrypted Federated Averaging (HE-FedAvg) and other five baseline models. In the dimension of privacy protection, the global accuracy is up to 94.25%, and the Loss is stable within 0.09. In terms of computing performance, the encryption and decryption time is shortened by about one third, and the encryption overhead is controlled at 13%. In terms of distributed training efficiency, the number of communication rounds is reduced by about one fifth, and the node participation rate is stable at over 90%. The results verify the model’s ability to achieve high security and high scalability in multi-tenant environment. This study aims to provide cloud service providers and enterprise data holders with a technical solution of high-intensity privacy protection and efficient collaborative training that can be deployed in real cloud platforms. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

28 pages, 2192 KB  
Article
AptEVS: Adaptive Edge-and-Vehicle Scheduling for Hierarchical Federated Learning over Vehicular Networks
by Yu Tian, Nina Wang, Zongshuai Zhang, Wenhao Zou, Liangjie Zhao, Shiyao Liu and Lin Tian
Electronics 2026, 15(2), 479; https://doi.org/10.3390/electronics15020479 - 22 Jan 2026
Viewed by 89
Abstract
Hierarchical federated learning (HFL) has emerged as a promising paradigm for distributed machine learning over vehicular networks. Despite recent advances in vehicle selection and resource allocation, most still adopt a fixed Edge-and-Vehicle Scheduling (EVS) configuration that keeps the number of participating edge nodes [...] Read more.
Hierarchical federated learning (HFL) has emerged as a promising paradigm for distributed machine learning over vehicular networks. Despite recent advances in vehicle selection and resource allocation, most still adopt a fixed Edge-and-Vehicle Scheduling (EVS) configuration that keeps the number of participating edge nodes and vehicles per node constant across training rounds. However, given the diverse training tasks and dynamic vehicular environments, our experiments confirm that such static configurations struggle to efficiently meet the task-specific requirements across model accuracy, time delay, and energy consumption. To address this, we first formulate a unified, long-term training cost metric that balances these conflicting objectives. We then propose AptEVS, an adaptive scheduling framework based on deep reinforcement learning (DRL), designed to minimize this cost. The core of AptEVS is its phase-aware design, which adapts the scheduling strategy by first identifying the current training phase and then switching to specialized strategies accordingly. Extensive simulations demonstrate that AptEVS learns an effective scheduling policy online from scratch, consistently outperforming baselines and and reducing the long-term training cost by up to 66.0%. Our findings demonstrate that phase-aware DRL is both feasible and highly effective for resource scheduling over complex vehicular networks. Full article
(This article belongs to the Special Issue Technology of Mobile Ad Hoc Networks)
Show Figures

Figure 1

40 pages, 3201 KB  
Article
Scalable Satellite-Assisted Adaptive Federated Learning for Robust Precision Farming
by Sai Puppala and Koushik Sinha
Agronomy 2026, 16(2), 229; https://doi.org/10.3390/agronomy16020229 - 18 Jan 2026
Viewed by 211
Abstract
Dynamic network conditions in precision agriculture motivate a scalable, privacypreserving federated learning architecture that tightly integrates ground-based edge intelligence with a space-assisted hierarchical aggregation layer. In Phase 1, heterogeneous tractors act as intelligent farm nodes that train local models, form capability- and task-aware [...] Read more.
Dynamic network conditions in precision agriculture motivate a scalable, privacypreserving federated learning architecture that tightly integrates ground-based edge intelligence with a space-assisted hierarchical aggregation layer. In Phase 1, heterogeneous tractors act as intelligent farm nodes that train local models, form capability- and task-aware clusters, and employ Network Quality Index (NQI)-driven scheduling, similarity-based checkpointing, and compressed transmissions to cope with highly variable 3G/4G/5G connectivity. In Phase 2, cluster drivers synchronize with Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellites that perform regional and global aggregation using staleness- and fairness-aware weighting, while end-to-end Salsa20 + MAC encryption preserves the confidentiality and integrity of all model updates. Across two representative tasks—nutrient prediction and crop health assessment—our full hierarchical system matches or exceeds centralized performance (e.g., AUC 0.92 vs. 0.91 for crop health) while reducing uplink traffic by ∼90% relative to vanilla FedAvg and cutting the communication energy proxy by more than 4×. The proposed fairness-aware GEO aggregation substantially narrows regional performance gaps (standard deviation of AUC across regions reduced from 0.058 to 0.017) and delivers the largest gains in low-connectivity areas (AUC 0.74 → 0.88). These results demonstrate that coupling on-farm intelligence with multi-orbit federated aggregation enables near-centralized model quality, strong privacy guarantees, and communication efficiency suitable for large-scale, connectivity-challenged agricultural deployments. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

29 pages, 13037 KB  
Article
Energy-Efficient Hierarchical Federated Learning in UAV Networks with Partial AI Model Upload Under Non-Convex Loss
by Hui Li, Shiyu Wang, Yu Du, Runlei Li, Xin Fan and Chuanwen Luo
Sensors 2026, 26(2), 619; https://doi.org/10.3390/s26020619 - 16 Jan 2026
Viewed by 179
Abstract
Hierarchical Federated Learning (HFL) alleviates the trade-off between communication overhead and privacy protection in mobile scenarios via multi-level aggregation and mobility consideration. However, its idealized convex loss assumption and full-dimension parameter upload deviate from real-world non-convex tasks and edge channel constraints, causing excessive [...] Read more.
Hierarchical Federated Learning (HFL) alleviates the trade-off between communication overhead and privacy protection in mobile scenarios via multi-level aggregation and mobility consideration. However, its idealized convex loss assumption and full-dimension parameter upload deviate from real-world non-convex tasks and edge channel constraints, causing excessive energy consumption, high communication cost, and compromised convergence that hinder practical deployment. To address these issues in mobile/UAV networks, this paper proposes an energy-efficient optimization scheme for HFL under non-convex loss, integrating a dynamically adjustable partial-dimension model upload mechanism. By screening key update dimensions, the scheme reduces uploaded data volume. We construct a total energy minimization model that incorporates communication/computation energy formulas related to upload dimensions and introduces an attendance rate constraint to guarantee learning performance. Using Lyapunov optimization, the long-term optimization problem is transformed into single-round solvable subproblems, with a step-by-step strategy balancing minimal energy consumption and model accuracy. Simulation results show that compared with the original HFL algorithm, our proposed scheme achieves significant energy reduction while maintaining high test accuracy, verifying the positive impact of mobility on system performance. Full article
Show Figures

Figure 1

29 pages, 3212 KB  
Article
Secure Hierarchical Asynchronous Federated Learning with Shuffle Model and Mask–DP
by Yonghui Chen, Daxiang Ai and Linglong Yan
Sensors 2026, 26(2), 617; https://doi.org/10.3390/s26020617 - 16 Jan 2026
Viewed by 197
Abstract
Hierarchical asynchronous federated learning (HAFL) accommodates more real networking and ensures practical communications and efficient aggregations. However, existing HAFL schemes still face challenges in balancing privacy-preserving and robustness. Malicious training nodes may infer the privacy of other training nodes or poison the global [...] Read more.
Hierarchical asynchronous federated learning (HAFL) accommodates more real networking and ensures practical communications and efficient aggregations. However, existing HAFL schemes still face challenges in balancing privacy-preserving and robustness. Malicious training nodes may infer the privacy of other training nodes or poison the global model, thereby damaging the system’s robustness. To address these issues, we propose a secure hierarchical asynchronous federated learning (SHAFL) framework. SHAFL organizes training nodes into multiple groups based on their respective gateways. Within each group, the training nodes prevent inference attacks from the gateways and committee nodes via a mask–DP exchange protocol and employ homomorphic encryption (HE) to prevent collusion attacks from other training nodes. Compared with conventional solutions, SHAFL uses noise that can be eliminated to reduce the impact of noise on the global model’s performance, while employing a shuffle model and subsampling to enhance the local model’s privacy-preserving level. At global model aggregation, SHAFL considers both model accuracy and communication delay, effectively reducing the impact of malicious and stale models on system performance. Theoretical analysis and experimental evaluations demonstrate that SHAFL outperforms state-of-the-art solutions in terms of convergence, security, robustness, and privacy-preserving capabilities. Full article
Show Figures

Figure 1

31 pages, 1742 KB  
Article
Federated Learning Frameworks for Intelligent Transportation Systems: A Comparative Adaptation Analysis
by Mario Steven Vela Romo, Carolina Tripp-Barba, Nathaly Orozco Garzón, Pablo Barbecho, Xavier Calderón Hinojosa and Luis Urquiza-Aguiar
Smart Cities 2026, 9(1), 12; https://doi.org/10.3390/smartcities9010012 - 16 Jan 2026
Viewed by 250
Abstract
Intelligent Transportation Systems (ITS) have progressively incorporated machine learning to optimize traffic efficiency, enhance safety, and improve real-time decision-making. However, the traditional centralized machine learning (ML) paradigm faces critical limitations regarding data privacy, scalability, and single-point vulnerabilities. This study explores FL as a [...] Read more.
Intelligent Transportation Systems (ITS) have progressively incorporated machine learning to optimize traffic efficiency, enhance safety, and improve real-time decision-making. However, the traditional centralized machine learning (ML) paradigm faces critical limitations regarding data privacy, scalability, and single-point vulnerabilities. This study explores FL as a decentralized alternative that preserves privacy by training local models without transferring raw data. Based on a systematic literature review encompassing 39 ITS-related studies, this work classifies applications according to their architectural detail—distinguishing systems from models—and identifies three families of federated learning (FL) frameworks: privacy-focused, integrable, and advanced infrastructure. Three representative frameworks—Federated Learning-based Gated Recurrent Unit (FedGRU), Digital Twin + Hierarchical Federated Learning (DT + HFL), and Transfer Learning with Convolutional Neural Networks (TFL-CNN)—were comparatively analyzed against a client–server baseline to assess their suitability for ITS adaptation. Our qualitative, architecture-level comparison suggests that DT + HFL and TFL-CNN, characterized by hierarchical aggregation and edge-level coordination, are conceptually better aligned with scalability and stability requirements in vehicular and traffic deployments than pure client–server baselines. FedGRU, while conceptually relevant as a meta-framework for coordinating multiple organizational models, is primarily intended as a complementary reference rather than as a standalone architecture for large-scale ITS deployment. Through application-level evaluations—including traffic prediction, accident detection, transport-mode identification, and driver profiling—this study demonstrates that FL can be effectively integrated into ITS with moderate architectural adjustments. This work does not introduce new experimental results; instead, it provides a qualitative, architecture-level comparison and adaptation guideline to support the migration of ITS applications toward federated learning. Overall, the results establish a solid methodological foundation for migrating centralized ITS architectures toward federated, privacy-preserving intelligence, in alignment with the evolution of edge and 6G infrastructures. Full article
(This article belongs to the Special Issue Big Data and AI Services for Sustainable Smart Cities)
Show Figures

Figure 1

21 pages, 2506 KB  
Article
Collaborative Dispatch of Power–Transportation Coupled Networks Based on Physics-Informed Priors
by Zhizeng Kou, Yingli Wei, Shiyan Luan, Yungang Wu, Hancong Guo, Bochao Yang and Su Su
Electronics 2026, 15(2), 343; https://doi.org/10.3390/electronics15020343 - 13 Jan 2026
Viewed by 183
Abstract
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a [...] Read more.
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a collaborative optimization framework for power–transportation coupled networks that integrates multi-modal data with physical priors. The framework constructs a joint feature space from traffic flow, pedestrian density, charging behavior, and grid operating states, and employs hypergraph modeling—guided by power flow balance and traffic flow conservation principles—to capture high-order cross-domain coupling. For prediction, spatiotemporal graph convolution combined with physics-informed attention significantly improves the accuracy of EV charging load forecasting. For optimization, a hierarchical multi-agent strategy integrating federated learning and the Alternating Direction Method of Multipliers (ADMM) enables privacy-preserving, distributed charging load scheduling. Case studies conducted on a 69-node distribution network using real traffic and charging data demonstrate that the proposed method reduces the grid’s peak–valley difference by 20.16%, reduces system operating costs by approximately 25%, and outperforms mainstream baseline models in prediction accuracy, algorithm convergence speed, and long-term operational stability. This work provides a practical and scalable technical pathway for the deep integration of energy and transportation systems in future smart cities. Full article
Show Figures

Figure 1

32 pages, 3734 KB  
Article
A Hierarchical Framework Leveraging IIoT Networks, IoT Hub, and Device Twins for Intelligent Industrial Automation
by Cornelia Ionela Bădoi, Bilge Kartal Çetin, Kamil Çetin, Çağdaş Karataş, Mehmet Erdal Özbek and Savaş Şahin
Appl. Sci. 2026, 16(2), 645; https://doi.org/10.3390/app16020645 - 8 Jan 2026
Viewed by 462
Abstract
Industrial Internet of Things (IIoT) networks, Microsoft Azure Internet of Things (IoT) Hub, and device twins (DvT) are increasingly recognized as core enablers of adaptive, data-driven manufacturing. This paper proposes a hierarchical IIoT framework that integrates industrial IoT networking, DvT for asset-level virtualisation, [...] Read more.
Industrial Internet of Things (IIoT) networks, Microsoft Azure Internet of Things (IoT) Hub, and device twins (DvT) are increasingly recognized as core enablers of adaptive, data-driven manufacturing. This paper proposes a hierarchical IIoT framework that integrates industrial IoT networking, DvT for asset-level virtualisation, system-level digital twins (DT) for cell orchestration, and cloud-native services to support the digital transformation of brownfield, programmable logic controller (PLC)-centric modular automation (MA) environments. Traditional PLC/supervisory control and data acquisition (SCADA) paradigms struggle to meet interoperability, observability, and adaptability requirements at scale, motivating architectures in which DvT and IoT Hub underpin real-time orchestration, virtualisation, and predictive-maintenance workflows. Building on and extending a previously introduced conceptual model, the present work instantiates a multilayered, end-to-end design that combines a federated Message Queuing Telemetry Transport (MQTT) mesh on the on-premises side, a ZigBee-based backup mesh, and a secure bridge to Azure IoT Hub, together with a systematic DvT modelling and orchestration strategy. The methodology is supported by a structured analysis of relevant IIoT and DvT design choices and by a concrete implementation in a nine-cell MA laboratory featuring a robotic arm predictive-maintenance scenario. The resulting framework sustains closed-loop monitoring, anomaly detection, and control under realistic workloads, while providing explicit envelopes for telemetry volume, buffering depth, and latency budgets in edge-cloud integration. Overall, the proposed architecture offers a transferable blueprint for evolving PLC-centric automation toward more adaptive, secure, and scalable IIoT systems and establishes a foundation for future extensions toward full DvT ecosystems, tighter artificial intelligence/machine learning (AI/ML) integration, and fifth/sixth generation (5G/6G) and time-sensitive networking (TSN) support in industrial networks. Full article
(This article belongs to the Special Issue Novel Technologies of Smart Manufacturing)
Show Figures

Figure 1

36 pages, 5570 KB  
Article
Evolving Collective Intelligence for Unmanned Marine Vehicle Swarms: A Federated Meta-Learning Framework for Cross-Fleet Planning and Control
by Yuhan Ye, Hongjun Tian, Yijie Yin, Yuhan Zhou, Yang Xiong, Zi Wang, Yaojiang Liu, Zinan Nie, Zitong Zhang, Yichen Wang and Jingyu Sun
J. Mar. Sci. Eng. 2026, 14(1), 82; https://doi.org/10.3390/jmse14010082 - 31 Dec 2025
Viewed by 268
Abstract
The development of robust autonomous maritime systems is fundamentally constrained by the “data silo” problem, where valuable operational data from disparate fleets remain isolated due to privacy concerns, severely limiting the scalability of general-purpose navigation intelligence. To address this barrier, we propose a [...] Read more.
The development of robust autonomous maritime systems is fundamentally constrained by the “data silo” problem, where valuable operational data from disparate fleets remain isolated due to privacy concerns, severely limiting the scalability of general-purpose navigation intelligence. To address this barrier, we propose a novel Federated Meta-Transfer Learning (FMTL) framework that enables collaborative evolution of unmanned surface vehicle (USV) swarms while preserving data privacy. Our hierarchical approach orchestrates three synergistic stages: (1) transfer learning pre-trains a universal “Sea-Sense” foundation model on large-scale maritime data to establish fundamental navigation priors; (2) federated learning enables decentralized fleets to collaboratively refine this model through encrypted gradient aggregation, forming a distributed cognitive network; (3) meta-learning allows for rapid personalization to individual vessel dynamics with minimal adaptation trials. Comprehensive simulations across heterogeneous fleet distributions demonstrate that our federated model achieves a 95.4% average success rate across diverse maritime scenarios, significantly outperforming isolated specialist models (63.9–73.1%), while enabling zero-shot performance of 78.5% and few-shot adaptation within 8–12 episodes on unseen tasks. This work establishes a scalable, privacy-preserving paradigm for collective maritime intelligence through swarm-based learning. Full article
Show Figures

Figure 1

27 pages, 5462 KB  
Article
A Federated Hierarchical DQN-Based Distributed Intelligent Anti-Jamming Method for UAVs
by Dadong Ni, Shuo Ma, Junyi Du, Yuansheng Wu, Chengxu Zhou and Haitao Xiao
Sensors 2026, 26(1), 181; https://doi.org/10.3390/s26010181 - 26 Dec 2025
Viewed by 394
Abstract
In recent years, with the rapid development of intelligent communication technologies, anti-jamming techniques based on deep learning have been widely adopted in unmanned aerial vehicle (UAV) systems, yielding significant improvements. Most existing studies primarily focus on intelligent anti-jamming decision-making for single UAVs. However, [...] Read more.
In recent years, with the rapid development of intelligent communication technologies, anti-jamming techniques based on deep learning have been widely adopted in unmanned aerial vehicle (UAV) systems, yielding significant improvements. Most existing studies primarily focus on intelligent anti-jamming decision-making for single UAVs. However, in UAV swarm systems, single-agent decision models often suffer from data isolation and inconsistent frequency usage decisions among nodes within the same task subnet, caused by asynchronous model updates. Although data sharing among UAVs can partially alleviate model update issues, it introduces significant communication overhead and data security challenges. To address these problems, this paper proposes a novel multi-UAV cooperative intelligent anti-jamming decision-making method, termed Federated Learning-Hierarchical Deep Q-Network (FL-HDQN). First, an adaptive model synchronization mechanism is integrated into the federated learning framework. By sharing only local model parameters instead of raw data, UAVs collaboratively train a global model for each task subnet. This approach ensures decision consistency while preserving data privacy and reducing communication costs. Second, to overcome the curse of dimensionality caused by multi-domain interference parameters, a hierarchical deep reinforcement learning model is designed. The model decouples multi-domain optimization into two levels: the first layer performs time–frequency domain decisions, and the second layer conducts power and modulation-coding domain decisions, ensuring both real-time performance and decision effectiveness. Finally, simulation results demonstrate that, compared with state-of-the-art intelligent anti-jamming models, the proposed method achieves 1% higher decision accuracy, validating its superiority and effectiveness. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

47 pages, 6988 KB  
Article
A Hierarchical Predictive-Adaptive Control Framework for State-of-Charge Balancing in Mini-Grids Using Deep Reinforcement Learning
by Iacovos Ioannou, Saher Javaid, Yasuo Tan and Vasos Vassiliou
Electronics 2026, 15(1), 61; https://doi.org/10.3390/electronics15010061 - 23 Dec 2025
Viewed by 363
Abstract
State-of-charge (SoC) balancing across multiple battery energy storage systems (BESS) is a central challenge in renewable-rich mini-grids. Heterogeneous battery capacities, differing states of health, stochastic renewable generation, and variable loads create a high-dimensional uncertain control problem. Conventional droop-based SoC balancing strategies are decentralized [...] Read more.
State-of-charge (SoC) balancing across multiple battery energy storage systems (BESS) is a central challenge in renewable-rich mini-grids. Heterogeneous battery capacities, differing states of health, stochastic renewable generation, and variable loads create a high-dimensional uncertain control problem. Conventional droop-based SoC balancing strategies are decentralized and computationally light but fundamentally reactive and limited, whereas model predictive control (MPC) is insightful but computationally intensive and prone to modeling errors. This paper proposes a Hierarchical Predictive–Adaptive Control (HPAC) framework for SoC balancing in mini-grids using deep reinforcement learning. The framework consists of two synergistic layers operating on different time scales. A long-horizon Predictive Engine, implemented as a federated Transformer network, provides multi-horizon probabilistic forecasts of net load, enabling multiple mini-grids to collaboratively train a high-capacity model without sharing raw data. A fast-timescale Adaptive Controller, implemented as a Soft Actor-Critic (SAC) agent, uses these forecasts to make real-time charge/discharge decisions for each BESS unit. The forecasts are used both to augment the agent’s state representation and to dynamically shape a multi-objective reward function that balances SoC, economic performance, degradation-aware operation, and voltage stability. The paper formulates SoC balancing as a Markov decision process, details the SAC-based control architecture, and presents a comprehensive evaluation using a MATLAB-(R2025a)-based digital-twin simulation environment. A rigorous benchmarking study compares HPAC against fourteen representative controllers spanning rule-based, MPC, and various DRL paradigms. Sensitivity analysis on reward weight selection and ablation studies isolating the contributions of forecasting and dynamic reward shaping are conducted. Stress-test scenarios, including high-volatility net-load conditions and communication impairments, demonstrate the robustness of the approach. Results show that HPAC achieves near-minimal operating cost with essentially zero SoC variance and the lowest voltage variance among all compared controllers, while maintaining moderate energy throughput that implicitly preserves battery lifetime. Finally, the paper discusses a pathway from simulation to hardware-in-the-loop testing and a cloud-edge deployment architecture for practical, real-time deployment in real-world mini-grids. Full article
(This article belongs to the Special Issue Smart Power System Optimization, Operation, and Control)
Show Figures

Figure 1

19 pages, 1221 KB  
Article
Distributed Deep Learning in IoT Sensor Network for the Diagnosis of Plant Diseases
by Athanasios Papanikolaou, Athanasios Tziouvaras, George Floros, Apostolos Xenakis and Fabio Bonsignorio
Sensors 2025, 25(24), 7646; https://doi.org/10.3390/s25247646 - 17 Dec 2025
Viewed by 584
Abstract
The early detection of plant diseases is critical to improving agricultural productivity and ensuring food security. However, conventional centralized deep learning approaches are often unsuitable for large-scale agricultural deployments, as they rely on continuous data transmission to cloud servers and require high computational [...] Read more.
The early detection of plant diseases is critical to improving agricultural productivity and ensuring food security. However, conventional centralized deep learning approaches are often unsuitable for large-scale agricultural deployments, as they rely on continuous data transmission to cloud servers and require high computational resources that are impractical for Internet of Things (IoT)-based field environments. In this article, we present a distributed deep learning framework based on Federated Learning (FL) for the diagnosis of plant diseases in IoT sensor networks. The proposed architecture integrates multiple IoT nodes and an edge computing node that collaboratively train an EfficientNet B0 model using the Federated Averaging (FedAvg) algorithm without transferring local data. Two training pipelines are evaluated: a standard single-model pipeline and a hierarchical pipeline that combines a crop classifier with crop-specific disease models. Experimental results on a multicrop leaf image dataset under realistic augmentation scenarios demonstrate that the hierarchical FL approach improves per-crop classification accuracy and robustness to environmental variations, while the standard pipeline offers lower latency and energy consumption. Full article
Show Figures

Figure 1

Back to TopTop