Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = hexadentate ligand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2393 KB  
Article
Gadolinium Complex with Tris-Hydroxypyridinone as an Input for New Imaging Probes: Thermodynamic Stability, Molecular Modeling and Biodistribution
by Inês Dias, Lurdes Gano, Sílvia Chaves and M. Amélia Santos
Molecules 2025, 30(6), 1295; https://doi.org/10.3390/molecules30061295 - 13 Mar 2025
Viewed by 1341
Abstract
The development of gadolinium-based magnetic resonance imaging (MRI) contrast agents (CAs) is a highly challenging and demanding research field in metal-coordination medicinal chemistry. The recognized high capacity of hydroxypyridinone (HOPO)-based compounds to coordinate Gd (III) led us to evaluate the set of physic–chemical–biological [...] Read more.
The development of gadolinium-based magnetic resonance imaging (MRI) contrast agents (CAs) is a highly challenging and demanding research field in metal-coordination medicinal chemistry. The recognized high capacity of hydroxypyridinone (HOPO)-based compounds to coordinate Gd (III) led us to evaluate the set of physic–chemical–biological properties of a new Gd (III) complex with a hexadentate tripodal ligand (H3L) containing three 3,4-HOPO chelating moieties attached to an anchoring cyclohexane backbone. In particular, the thermodynamic stability constants of the complex were evaluated by potentiometry, showing the formation of a highly stable (1:1) Gd-L complex (log βGdL = 26.59), with full coordination even in an acid-neutral pH under the experimental conditions used. Molecular simulations of the Gd (III) complex revealed a minimum energy structure with somewhat-distorted octahedral geometry, involving full metal hexa-coordination by the three bidentate moieties of the ligand arms, indicating that an extra water molecule should be coordinated to the metal ion, an important feature for the CAs (and the required enhancement of water proton relaxivity). In vivo biodistribution studies with the 67Ga complex, as a surrogate of the corresponding Gd complex, showed in vivo stability and rapid excretion from the animal body. Though deserving further investigation, these results may give an input on future perspectives towards new MRI diagnostic agents. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

18 pages, 2865 KB  
Article
Engineering Mononuclear Ln(III) Complexes with a Pseudo-Macrocyclic Hexadentate N4O2 Schiff Base Ligand Exhibiting Slow Magnetic Relaxation
by Ismael Francisco Diaz-Ortega, Yating Ye, Jesus Jover, Eliseo Ruiz, Enrique Colacio and Juan Manuel Herrera
Magnetochemistry 2024, 10(12), 104; https://doi.org/10.3390/magnetochemistry10120104 - 12 Dec 2024
Cited by 1 | Viewed by 1983
Abstract
We report here the synthesis of a series of nine coordinated mononuclear LnIII complexes [LnL1Cl2(DMF)]Cl·2.5DMF and [LnL1(L2)2]Cl·4CH3OH (LnIII = GdIII, DyIII, ErIII and Yb [...] Read more.
We report here the synthesis of a series of nine coordinated mononuclear LnIII complexes [LnL1Cl2(DMF)]Cl·2.5DMF and [LnL1(L2)2]Cl·4CH3OH (LnIII = GdIII, DyIII, ErIII and YbIII, HL2 = 9-anthracenecarboxylic acid), where L1 is a hexadentate N4O2 Schiff base ligand prepared from the condensation of 1,10-phenanthroline-2,9-dicarbaldehyde and semicarbazone. The X-ray crystal structures of these complexes show the LnIII ions to possess LnN4O2Cl2 and LnN4O4 coordination spheres, which can be considered to be derived from a hexagonal bipyramidal geometry, with the ligand in the equatorial plane and the anions (chloride or 9-antracenecarboxylate) in axial positions, which undergo distortion after coordination of either a molecule of DMF or a bidentate coordination of the 9-anthracenecarboxxylate ligand. All these compounds exhibit field-induced slow magnetization relaxation (SMR). The absence of SMR at zero field due to QTM, as well as the processes involved in the magnetic relaxation under a field of 0.1 T, have been justified on the basis of theoretical calculations and the distortion of the respective coordination spheres. The severe discrepancy between the calculated and experimental thermal energy barriers for the DyIII complexes seems to indicate that the relaxation occurs with the contribution of spin–vibrational coupling, which is favored by the flexibility of the ligand. Full article
Show Figures

Figure 1

5 pages, 748 KB  
Proceeding Paper
Development and Validation of the Stability of p-SCN-Bn-Df via the Reversed-Phase Chromatography Method: Practical Experiences
by Anjli Shrivastav, Mohd. Faheem, Vaibhav Pandey and Manish Dixit
Chem. Proc. 2024, 16(1), 39; https://doi.org/10.3390/ecsoc-28-20175 - 14 Nov 2024
Viewed by 909
Abstract
The DFO, a special hexadentate chelator with three hydroxamate moieties, is a bifunctional 1-(4-isothiocyanatophenyl)-3-[6,17-dihydroxy-7,10,18,21-tetraoxo-27-(N-acetylhydroxylamino)- 6,11,17, 22- tetraazaheptaeicosine] thiourea (p-SCN-Bn-Df), a significant next-generation ligand. The presence of the thiocyanate (-SCN) group makes it capable of hydrolysis and the protonation process. In this study aims [...] Read more.
The DFO, a special hexadentate chelator with three hydroxamate moieties, is a bifunctional 1-(4-isothiocyanatophenyl)-3-[6,17-dihydroxy-7,10,18,21-tetraoxo-27-(N-acetylhydroxylamino)- 6,11,17, 22- tetraazaheptaeicosine] thiourea (p-SCN-Bn-Df), a significant next-generation ligand. The presence of the thiocyanate (-SCN) group makes it capable of hydrolysis and the protonation process. In this study aims to optimize the HPLC protocol for 1-(4-isothiocyanatophenyl)-3-[6,17-dihydroxy-7,10,18,21-tetraoxo-27-(n-acetylhydroxylamino)-6,11,17,22-tetraazaheptaeicosine] thiourea (p-SCN-Bn-Df) via the Reversed-Phase Chromatography (RP-HPLC) method. A variety of mobile phases were tested in various ratios of solvent constituents such as methanol/water, acetonitrile/water, and phosphate buffer along with at variable pH concentrations. However, when employing a mobile phase consisting of water to acetonitrile containing 0.1% TFA (05:95, v/v) in an isocratic manner, satisfactory separation and symmetric peaks were observed. This method utilized an Eclipsed C-18 column (5 μm, 4.6 × 250 mm) column with a flow rate of 0.5 mL/min. The maximum absorption of p-SCN-Bn-Dfat 254 nm wavelength was selected as the detection wavelength. The Retention time (tR) of p-SCN-Bn-Df was found at 5.205 min. The ICH guideline was used to evaluate the linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), specificity, and system appropriateness criteria to validate the optimized chromatographic and spectrophotometric procedures. For accurate compound separation in pharmaceutical and environmental analyses, this phase is adaptable and often used. This study is useful for the evaluation of p-SCN-Bn-Df QC parameters and chelation rates with different radioisotopes e.g., Zirconuim-89 (Zr-89). Full article
Show Figures

Figure 1

13 pages, 2933 KB  
Article
In Situ Synthesis of Hexadentate Cyclometalated Ir(III) Complexes as Photocatalysts for the Oxidation of Sulfides into Sulfoxides in Water
by Jing-Yan Fan, Su-Yang Yao and Bao-Hui Ye
Inorganics 2024, 12(3), 73; https://doi.org/10.3390/inorganics12030073 - 28 Feb 2024
Cited by 2 | Viewed by 2467
Abstract
The aerobic photooxidation of sulfides into sulfoxides in eco-friendly solvents, notably water, at room temperature, represents a significant interest in the domain of synthetic chemistry. This study introduces four highly stable hexadentate Ir(III) complexes: [Ir(fpqen)](PF6) (1), [Ir(btqen)](PF6) [...] Read more.
The aerobic photooxidation of sulfides into sulfoxides in eco-friendly solvents, notably water, at room temperature, represents a significant interest in the domain of synthetic chemistry. This study introduces four highly stable hexadentate Ir(III) complexes: [Ir(fpqen)](PF6) (1), [Ir(btqen)](PF6) (2), [Ir(bmpqen)](PF6) (3), and [Ir(bnqen](PF6) (4) (where bfpqen is N,N′-bis(2-(4-fluorophenyl)quinolin-8-yl)ethane-1,2-diamine, btqen is N,N′-bis(2-(4-tolyl)quinolin-8-yl)ethane-1,2-diamine, bmpqen is N,N′-bis(2-(4-methoxyphenyl)quinolin-8-yl)ethane-1,2-diamine, and bnqen is N,N′-bis(2-naphthylquinolin-8-yl)ethane-1,2-diamine). These complexes were synthesized utilizing an in situ inter-ligand C-N cross-coupling photoreaction of the precursors [Ir(L)2(en)](PF6) (L is 2-(4-fluorophenyl)quinoline, (2-(4-tolyl)quinoline, 2-(4-methoxyphenyl)quinoline or 2-naphthylquinoline, and en is 1,2-diamine) under benign conditions. This methodology furnishes a valuable and complementary approach for the in situ generation of multidentate complexes through a post-coordination inter-ligand-coupling strategy under mild conditions. Moreover, these hexadentate Ir(III) complexes exhibit pronounced catalytic activity and chemo-selectivity toward the aerobic photooxidations of sulfides into sulfoxides in aqueous media at room temperature, offering a new avenue for the sustainable synthesis of sulfoxides. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

12 pages, 2230 KB  
Article
Dinuclear Molybdenum(VI) Complexes Based on Flexible Succinyl and Adipoyl Dihydrazones
by Edi Topić, Vladimir Damjanović, Katarina Pičuljan and Mirta Rubčić
Crystals 2024, 14(2), 135; https://doi.org/10.3390/cryst14020135 - 29 Jan 2024
Cited by 2 | Viewed by 1992
Abstract
A series of molybdenum(VI) complexes with aryl-functionalized alkyl dihydrazones was prepared by the reaction of [MoO2(acac)2] and the appropriate dihydrazone in methanol. Their solid-state structures were elucidated via single-crystal X-ray diffraction (SC-XRD) and Fourier-transform infra-red (FTIR) spectroscopy, while the [...] Read more.
A series of molybdenum(VI) complexes with aryl-functionalized alkyl dihydrazones was prepared by the reaction of [MoO2(acac)2] and the appropriate dihydrazone in methanol. Their solid-state structures were elucidated via single-crystal X-ray diffraction (SC-XRD) and Fourier-transform infra-red (FTIR) spectroscopy, while the thermal stability of compounds was inspected by combined thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) experiments. The behaviour of complexes in DMSO-d6 solution was explored by nuclear magnetic resonance (NMR). The relevant data show that all complexes are dinuclear, with dihydrazones acting as ditopic hexadentate ligands. The in vitro cytotoxic activity of the prepared molybdenum(VI) complexes was evaluated on THP-1 and HepG2 cell lines, while their antibacterial activity was tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Moraxella catarrhalis bacteria. The majority of compounds proved to be non-cytotoxic, while some exhibited superior antibacterial activity in comparison to dihydrazone ligands. Full article
(This article belongs to the Special Issue The Polyhedral Face of Coordination Chemistry)
Show Figures

Graphical abstract

14 pages, 3456 KB  
Article
Pentadentate and Hexadentate Pyridinophane Ligands Support Reversible Cu(II)/Cu(I) Redox Couples
by Glenn Blade, Andrew J. Wessel, Karna Terpstra and Liviu M. Mirica
Inorganics 2023, 11(11), 446; https://doi.org/10.3390/inorganics11110446 - 20 Nov 2023
Cited by 2 | Viewed by 3249
Abstract
Two new ligands were synthesized with the goal of copper stabilization, N,N′-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicN4) and N-(methyl),N′-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicMeN4), by selective functionalization of HN4 and TsHN4. These two ligands, when reacted with various copper salts, generated both Cu(II) and Cu(I) [...] Read more.
Two new ligands were synthesized with the goal of copper stabilization, N,N′-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicN4) and N-(methyl),N′-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicMeN4), by selective functionalization of HN4 and TsHN4. These two ligands, when reacted with various copper salts, generated both Cu(II) and Cu(I) complexes. These ligands and Cu complexes were characterized by various methods, such as NMR, UV-Vis, MS, and EA. Each compound was also examined electrochemically, and each revealed reversible Cu(II)/Cu(I) redox couples. Additionally, stability constants were determined via spectrophotometric titrations, and radiolabeling and cytotoxicity experiments were performed to assess the chelators relevance to their potential use in vivo as 64Cu PET imaging agents. Full article
Show Figures

Graphical abstract

5 pages, 967 KB  
Proceeding Paper
Synthesis of a Dysprosium(III) Complex with a Hexadentate Amine Ligand
by Cristina González-Barreira, Julio Corredoira-Vázquez, Ana M. García-Deibe and Matilde Fondo
Chem. Proc. 2023, 14(1), 23; https://doi.org/10.3390/ecsoc-27-16143 - 15 Nov 2023
Viewed by 1329
Abstract
The use of polydentate macrocyclic Lewis bases is a way to contribute to determine the coordination number of metal complexes. In this sense, hexadentate N6 donors can help to achieve lanthanoid complexes with coordination number 8. But the geometry of these complexes [...] Read more.
The use of polydentate macrocyclic Lewis bases is a way to contribute to determine the coordination number of metal complexes. In this sense, hexadentate N6 donors can help to achieve lanthanoid complexes with coordination number 8. But the geometry of these complexes depends on the flexibility of the bases. Accordingly, in this communication we present the synthesis and crystallographic characterization of the dysprosium complex [DyLN6Cl2]Cl·2H2O, where LN6 is a flexible hexaaza donor. Full article
Show Figures

Figure 1

13 pages, 2567 KB  
Article
Transition Metals Meet Scorpiand-like Ligands
by Salvador Blasco, Begoña Verdejo, María Paz Clares and Enrique García-España
Crystals 2023, 13(9), 1338; https://doi.org/10.3390/cryst13091338 - 1 Sep 2023
Cited by 1 | Viewed by 1705
Abstract
Scorpiand-like ligands combine the preorganization of the donor atoms of macrocycles and the degrees of freedom of the linear ligands. We prepared the complexes of several of these ligands with transition metal ions and made a crystallographic and water solution speciation studies. The [...] Read more.
Scorpiand-like ligands combine the preorganization of the donor atoms of macrocycles and the degrees of freedom of the linear ligands. We prepared the complexes of several of these ligands with transition metal ions and made a crystallographic and water solution speciation studies. The analysis of the resulting crystal structures show that the ligands have the ability to accommodate several metal ions and that the coordination geometry is mostly determined by the ligand. Ligand 6-[3,7-diazaheptyl]-3,6,9–triaza-1-(2,6)-pyridinacyclodecaphane (L3) is an hexadentate ligand that affords a family of isostructural crystals with Cu(II), Mn(II), Ni(II) and Zn(II). The attempts to obtain Co(II) crystals afforded the Co(III) structures instead. Ligand 6-[4-(2-pyridyl)-3-azabutyl]-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane (L2) is very similar to L3 and yields structures similar to it, but its behavior in solution is very different due to the different interaction with protons. Ligand 6-(2-aminoethyl)-3,6,9–triaza-1-(2,6)-pyridinacyclodecaphane (L1) is pentadentate and its complexes allow the metal to be more accessible from the solvent. A Zn(II) structure with L1 shows the species [ZnBrHL1]2+, which exists in a narrow pH range. Full article
(This article belongs to the Special Issue The Polyhedral Face of Coordination Chemistry)
Show Figures

Figure 1

20 pages, 22717 KB  
Article
Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC—An Improved Approach to More Robust Thermodynamics
by Sebastian Friedrich, Claudia Sieber, Björn Drobot, Satoru Tsushima, Astrid Barkleit, Katja Schmeide, Thorsten Stumpf and Jerome Kretzschmar
Molecules 2023, 28(12), 4881; https://doi.org/10.3390/molecules28124881 - 20 Jun 2023
Cited by 21 | Viewed by 4384
Abstract
The complex formation of Eu(III) and Cm(III) was studied via tetradentate, hexadentate, and octadentate coordinating ligands of the aminopolycarboxylate family, viz., nitrilotriacetate (NTA3−), ethylenediaminetetraacetate (EDTA4−), and ethylene glycol-bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetate (EGTA4− [...] Read more.
The complex formation of Eu(III) and Cm(III) was studied via tetradentate, hexadentate, and octadentate coordinating ligands of the aminopolycarboxylate family, viz., nitrilotriacetate (NTA3−), ethylenediaminetetraacetate (EDTA4−), and ethylene glycol-bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetate (EGTA4−), respectively. Based on the complexones’ pKa values obtained from 1H nuclear magnetic resonance (NMR) spectroscopic pH titration, complex formation constants were determined by means of the parallel-factor-analysis-assisted evaluation of Eu(III) and Cm(III) time-resolved laser-induced fluorescence spectroscopy (TRLFS). This was complemented by isothermal titration calorimetry (ITC), providing the enthalpy and entropy of the complex formation. This allowed us to obtain genuine species along with their molecular structures and corresponding reliable thermodynamic data. The three investigated complexones formed 1:1 complexes with both Eu(III) and Cm(III). Besides the established Eu(III)–NTA 1:1 and 1:2 complexes, we observed, for the first time, the existence of a Eu(III)–NTA 2:2 complex of millimolar metal and ligand concentrations. Demonstrated for thermodynamic studies on Eu(III) and Cm(III) interaction with complexones, the utilized approach is commonly applicable to many other metal–ligand systems, even to high-affinity ligands. Full article
Show Figures

Figure 1

14 pages, 2615 KB  
Article
Chelating Silicone Dendrons: Trying to Impact Organisms by Disrupting Ions at Interfaces
by Miguel Melendez-Zamudio, Kevina Chavda and Michael A. Brook
Molecules 2022, 27(6), 1869; https://doi.org/10.3390/molecules27061869 - 14 Mar 2022
Cited by 9 | Viewed by 2712
Abstract
The viability of pathogens at interfaces can be disrupted by the presence of (cationic) charge and chelating groups. We report on the synthesis of silicone dendrimers and linear polymers based on a motif of hexadentate ligands with the ability to capture and deliver [...] Read more.
The viability of pathogens at interfaces can be disrupted by the presence of (cationic) charge and chelating groups. We report on the synthesis of silicone dendrimers and linear polymers based on a motif of hexadentate ligands with the ability to capture and deliver metal ions. Mono-, di- or trialkoxysilanes are converted in G1 to analogous vinylsilicones and then, iteratively using the Piers-Rubinsztajn reaction and hydrosilylation, each vinyl group is transformed into a trivinyl cluster at G2. The thiol-ene reaction with cysteamine or 3-mercaptopropionic acid and the trivinyl cluster leads to hexadentate ligands 3 × N–S or 3 × HOOC–S. The compounds were shown to effectively capture a variety of metals ions. Copper ion chelation was pursued in more detail, because of its toxicity. On average, metal ions form chelates with 2.4 of the three ligands in a cluster. Upon chelation, viscous oils are converted to (very) soft elastomers. Most of the ions could be stripped from the elastomers using aqueous EDTA solutions, demonstrating the ability of the silicones to both sequester and deliver ions. However, complete ion removal is not observed; at equilibrium, the silicones remain ionically crosslinked. Full article
(This article belongs to the Special Issue Dendrimers for Biomedical Applications)
Show Figures

Graphical abstract

15 pages, 2687 KB  
Article
Functionalized Tris(anilido)triazacyclononanes as Hexadentate Ligands for the Encapsulation of U(III), U(IV) and La(III) Cations
by Alasdair Formanuik, Fabrizio Ortu, Iñigo J. Vitorica-Yrezabal, Floriana Tuna, Eric J. L. McInnes, Louise S. Natrajan and David P. Mills
Inorganics 2021, 9(12), 86; https://doi.org/10.3390/inorganics9120086 - 28 Nov 2021
Cited by 3 | Viewed by 3280
Abstract
Tripodal multidentate ligands have become increasingly popular in f-element chemistry for stabilizing unusual bonding motifs and supporting small molecule activation processes. The steric and electronic effects of ligand donor atom substituents have proved crucial in both of these applications. In this study we [...] Read more.
Tripodal multidentate ligands have become increasingly popular in f-element chemistry for stabilizing unusual bonding motifs and supporting small molecule activation processes. The steric and electronic effects of ligand donor atom substituents have proved crucial in both of these applications. In this study we functionalized the previously reported tris-anilide ligand {tacn(SiMe2NPh)3} (tacn = 1,3,7-triazacyclononane) to incorporate substituted aromatic rings, with the aim of modifying f-element complex solubility and ligand steric effects. We report the synthesis of two proligands, {tacn(SiMe2NHAr)3} (Ar = C6H3Me2-3,5 or C6H4Me-4), and their respective group 1 transfer agents—{tacn(SiMe2NKAr)3}, M(III) complexes [M{tacn(SiMe2NAr)3}] for M = La and U, and U(IV) complexes [M{tacn(SiMe2NAr)3}(Cl)]. These compounds were characterized by multinuclear NMR and FTIR spectroscopy and elemental analysis. The paramagnetic uranium complexes were also characterized by solid state magnetic measurements and UV/Vis/NIR spectroscopy. U(III) complexes were additionally studied by EPR spectroscopy. The solid state structures of all f-block complexes were authenticated by single-crystal X-ray diffraction (XRD), together with a minor byproduct [U{tacn(SiMe2NC6H4Me-4)3}(I)]. Comparisons of the characterization data of our f-element complexes with similar literature examples containing the {tacn(SiMe2NPh)3} ligand set showed minor changes in physicochemical properties resulting from the different aromatic ring substitution patterns we investigated. Full article
(This article belongs to the Special Issue Cornerstones in Contemporary Inorganic Chemistry)
Show Figures

Figure 1

23 pages, 2997 KB  
Review
The Race for Hydroxamate-Based Zirconium-89 Chelators
by Irene V. J. Feiner, Marie Brandt, Joseph Cowell, Tori Demuth, Daniëlle Vugts, Gilles Gasser and Thomas L. Mindt
Cancers 2021, 13(17), 4466; https://doi.org/10.3390/cancers13174466 - 4 Sep 2021
Cited by 40 | Viewed by 6334
Abstract
Metallic radionuclides conjugated to biological vectors via an appropriate chelator are employed in nuclear medicine for the diagnosis (imaging) and radiotherapy of diseases. For the application of radiolabeled antibodies using positron emission tomography (immunoPET), zirconium-89 has gained increasing interest over the last decades [...] Read more.
Metallic radionuclides conjugated to biological vectors via an appropriate chelator are employed in nuclear medicine for the diagnosis (imaging) and radiotherapy of diseases. For the application of radiolabeled antibodies using positron emission tomography (immunoPET), zirconium-89 has gained increasing interest over the last decades as its physical properties (t1/2 = 78.4 h, 22.6% β+ decay) match well with the slow pharmacokinetics of antibodies (tbiol. = days to weeks) allowing for late time point imaging. The most commonly used chelator for 89Zr in this context is desferrioxamine (DFO). However, it has been shown in preclinical studies that the hexadentate DFO ligand does not provide 89Zr-complexes of sufficient stability in vivo and unspecific uptake of the osteophilic radiometal in bones is observed. For clinical applications, this might be of concern not only because of an unnecessary dose to the patient but also an increased background signal. As a consequence, next generation chelators based on hydroxamate scaffolds for more stable coordination of 89Zr have been developed by different research groups. In this review, we describe the progress in this research field until end of 2020, including promising examples of new candidates of chelators currently in advanced stages for clinical translation that outrun the performance of the current gold standard DFO. Full article
Show Figures

Graphical abstract

15 pages, 2826 KB  
Article
Synthesis, Biological and In Silico Studies of a Tripodal Schiff Base Derived from 2,4,6-Triamino-1,3,5-triazine and Its Trinuclear Dy(III), Er(III), and Gd(III) Salen Capped Complexes
by Uchechukwu Susan Oruma, Pius Oziri Ukoha, Chiamaka Peace Uzoewulu, Joseph Chinedum Ndefo, Sabastine Chinweike Ugwuoke, Nkechinyere Nwanneka Ukwueze, Tochukwu Emmanuella Eze, Lilian Chinenye Ekowo, Florence Uchenna Eze, Uchenna Vivian Chinaegbomkpa, Sunday Nwankwo Okafor and Chigozie Julius Ezeorah
Molecules 2021, 26(14), 4379; https://doi.org/10.3390/molecules26144379 - 20 Jul 2021
Cited by 20 | Viewed by 4344
Abstract
A tripodal Schiff base ligand, 2,4,6-Tris(4-carboxybenzimino)-1,3,5-triazine (MT) and its trinuclear Dy(III), Er(III), and Gd(III) complexes were synthesized. These were characterized using UV-visible, IR, 1H, and 13C NMR spectroscopies, elemental analysis, and molar conductivity measurements. The spectral studies indicate that the ligand [...] Read more.
A tripodal Schiff base ligand, 2,4,6-Tris(4-carboxybenzimino)-1,3,5-triazine (MT) and its trinuclear Dy(III), Er(III), and Gd(III) complexes were synthesized. These were characterized using UV-visible, IR, 1H, and 13C NMR spectroscopies, elemental analysis, and molar conductivity measurements. The spectral studies indicate that the ligand is hexadentate and coordinates to the Ln(III) ions through the oxygen atoms of the carboxylic group. The trinuclear complexes were characterized as being bridged by carboxylate anions to the Dy(III), Er(III), and Gd(III) salen centers and displaying a coordination number of six. Biological studies revealed that MT is more active against the test micro-organisms relative to the trinuclear complexes. Acute toxicity studies revealed that MT is safe and has a wide range of effective doses (ED50). In vivo antimalarial studies indicate that MT could serve as an effective antimalarial agent since it has parasitemia inhibition of 84.02% at 50 mg/kg and 65.81% at 25 mg/kg, close to the value (87.22%) of the standard drug—Artesunate. Molecular docking simulation studies on the compounds against SARS-CoV-2 (6Y84) and E. coli DNA gyrase (5MMN) revealed effective binding interactions through multiple bonding modes. The binding energy calculated for Er(III)MT-6Y84 and Er(III)MT-5MMN complexes showed active molecules with the ability to inhibit SARS-CoV-2 and E. coli DNA gyrase. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

17 pages, 2973 KB  
Article
NHS-Functionalized THP Derivative for Efficient Synthesis of Kit-Based Precursors for 68Ga Labeled PET Probes
by Giuseppe Floresta, George P. Keeling, Siham Memdouh, Levente K. Meszaros, Rafael T. M. de Rosales and Vincenzo Abbate
Biomedicines 2021, 9(4), 367; https://doi.org/10.3390/biomedicines9040367 - 1 Apr 2021
Cited by 17 | Viewed by 4367
Abstract
Hexadentate tris(3,4-hydroxypyridinone) ligands (THP) complex Fe3+ at very low iron concentrations and their high affinities for oxophilic trivalent metal ions have led to their development for new applications as bifunctional chelators for the radiometal gallium-68 (68Ga). THP-peptide bioconjugates rapidly and [...] Read more.
Hexadentate tris(3,4-hydroxypyridinone) ligands (THP) complex Fe3+ at very low iron concentrations and their high affinities for oxophilic trivalent metal ions have led to their development for new applications as bifunctional chelators for the radiometal gallium-68 (68Ga). THP-peptide bioconjugates rapidly and quantitatively complex 68Ga at room temperature, neutral pH, and micromolar ligand concentrations, making them amenable to kit-based radiosynthesis of 68Ga PET radiopharmaceuticals. With the aim to produce an N-hydroxysuccinimide-(NHS)-THP reagent for kit-based 68Ga-labeling and PET imaging, THP-derivatives were designed and synthesized to exploit the advantages of NHS chemistry for coupling with peptides, proteins, and antibodies. The more stable five-carbon atoms linker product was selected for a proof-of-concept conjugation and radiolabeling study with an anti-programmed death ligand 1 (PD-L1) camelid single domain antibody (sdAb) under mild conditions and further evaluated for site-specific amide bond formation with a synthesized glucagon-like peptide-1 (GLP-1) targeting peptide using solid-phase synthesis. The obtained THP-GLP-1 conjugate was tested for its 68Ga chelating ability, demonstrating to be a promising candidate for the detection and monitoring of GLP-1 aberrant malignancies. The obtained sdAb-THP conjugate was radiolabeled with 68Ga under mild conditions, providing sufficient labeling yields after 5 min, demonstrating that the novel NHS-THP bifunctional chelator can be widely used to easily conjugate the THP moiety to different targeting molecules (e.g., antibodies, anticalins, or peptides) under mild conditions, paving the way to the synthesis of different imaging probes with all the advantages of THP radiochemistry. Full article
(This article belongs to the Special Issue Amino Acid and Peptide Synthesis)
Show Figures

Figure 1

12 pages, 4358 KB  
Article
New Mononuclear Mn(III) Complexes with Hydroxyl-Substituted Hexadentate Schiff Base Ligands
by Peng-Yu Xu, Yu-Ting Wang, Zong-Mei Yu, Yong-Hua Li and Shi Wang
Magnetochemistry 2021, 7(1), 12; https://doi.org/10.3390/magnetochemistry7010012 - 13 Jan 2021
Cited by 7 | Viewed by 3311
Abstract
This paper reports the syntheses, crystal structures and magnetic properties of Mn(III) hexadentate Schiff base complexes [Mn(4-OH-sal-N-1,5,8,12)]NO3(1) and [Mn(4-OH-sal-N-1,5,8,12)]ClO4(2), where (4-OH-sal-N-1,5,8,12)2− (4,4′-((1E,13E)-2,6,9,13-tetraazatetradeca-1,13-diene-1,14-diyl)bis(3-methoxyphenol) is a new hydroxyl-substituted hexadentate Schiff base ligand. The introduction of the (4-OH-sal-N-1,5,8,12)2− ligand [...] Read more.
This paper reports the syntheses, crystal structures and magnetic properties of Mn(III) hexadentate Schiff base complexes [Mn(4-OH-sal-N-1,5,8,12)]NO3(1) and [Mn(4-OH-sal-N-1,5,8,12)]ClO4(2), where (4-OH-sal-N-1,5,8,12)2− (4,4′-((1E,13E)-2,6,9,13-tetraazatetradeca-1,13-diene-1,14-diyl)bis(3-methoxyphenol) is a new hydroxyl-substituted hexadentate Schiff base ligand. The introduction of the (4-OH-sal-N-1,5,8,12)2− ligand induces more hydrogen bonding interactions, in addition to promoting the formation of intermolecular interactions among the cations. However, the close-packing structures of both complexes lead to their stabilization in the high-spin state in the temperature range of 2−300 K. Full article
(This article belongs to the Special Issue Molecular Magnetism 2021: Paradigmatic Landmarks and Horizons)
Show Figures

Figure 1

Back to TopTop