Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = heterogeneous electrocatalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2905 KB  
Article
Development of a Au/TiO2/Ti Electrocatalyst for the Oxygen Reduction Reaction in a Bicarbonate Medium
by Mostafizur Rahaman, Md. Fahamidul Islam, Mohebul Ahsan, Mohammad Imran Hossain, Faruq Mohammad, Tahamida A. Oyshi, Md. Abu Rashed, Jamal Uddin and Mohammad A. Hasnat
Catalysts 2025, 15(11), 1074; https://doi.org/10.3390/catal15111074 - 13 Nov 2025
Viewed by 1320
Abstract
The oxygen reduction reaction (ORR) is a pivotal electrochemical process in energy technologies and in the generation of hydrogen peroxide (H2O2), which serves as both an effective agent for dye degradation and a fuel in H2O2 [...] Read more.
The oxygen reduction reaction (ORR) is a pivotal electrochemical process in energy technologies and in the generation of hydrogen peroxide (H2O2), which serves as both an effective agent for dye degradation and a fuel in H2O2-based fuel cells. In this regard, a titanium (Ti) sheet was anodized to generate a TiO2 layer, and then the oxide layer was modified with gold (presented as Au/TiO2/Ti) via electrodeposition. The developed electrocatalyst was confirmed by X-ray photoelectron spectroscopy (XPS), which showed characteristic binding energies for Ti4+ in TiO2 and metallic Au. In addition, the Nyquist plot verified the electrode modification process, since the diameter of the semicircular arc, corresponding to charge transfer resistance, significantly decreased due to Au deposition. Voltametric studies revealed that the TiO2 layer with a Ti surface exhibited a good synergistic effect on Au and the ORR in a bicarbonate medium (0.1 M KHCO3) by lowering the overpotential, enhancing current density, and boosting durability. The scan rate-dependent study of the ORR produced by the developed electrocatalyst showed a Tafel slope of 180 ± 2 mV dec−1 over a scan rate range of 0.05–0.4 V s−1, thereby indicating a 2e transfer process in which the initial electron transfer process was the rate-limiting step. The study also revealed that the Au/TiO2/Ti electrode caused oxygen electro-reduction with a heterogenous rate constant (k0) of 4.40×103 cm s−1 at a formal potential (E0′) of 0.54 V vs. RHE. Full article
Show Figures

Figure 1

21 pages, 1987 KB  
Review
Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning
by Yidi Wang, Dan Sun, Bei Zhao, Tianyu Zhu, Chengcheng Liu, Zixuan Xu, Tianhang Zhou and Chunming Xu
Processes 2025, 13(10), 3049; https://doi.org/10.3390/pr13103049 - 24 Sep 2025
Viewed by 2790
Abstract
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning [...] Read more.
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning (ML) in accelerating perovskite discovery. By harnessing existing experimental datasets and high-throughput computational results, ML models elucidate structure-property relationships and predict performance metrics for solar cells, (photo)electrocatalysts, oxygen carriers, and energy-storage materials, with experimental validation confirming their predictive reliability. While data scarcity and heterogeneity inherently limit ML-based prediction of material property, integrating high-throughput computational methods as external mechanistic constraints—supplementing standardized, large-scale training data and imposing loss penalties—can improve accuracy and efficiency in bandgap prediction and defect engineering. Moreover, although embedding high-throughput simulations into ML architectures remains nascent, physics-embedded approaches (e.g., symmetry-aware networks) show increasing promise for enhancing physical consistency. This dual-driven paradigm, integrating data and physics, provides a versatile framework for perovskite design, achieving both high predictive accuracy and interpretability—key milestones toward a rational design strategy for functional materials discovery. Full article
Show Figures

Figure 1

16 pages, 5434 KB  
Article
Facile Engineering of CoS@NiS Heterostructures for Efficient Oxygen Evolution Reaction
by Ting Yang, Aiyi Dong, Weimin Liao, Xun Zhang, Yinhua Ma, Li Che and Honglin Gao
Nanomaterials 2025, 15(16), 1216; https://doi.org/10.3390/nano15161216 - 8 Aug 2025
Cited by 2 | Viewed by 884
Abstract
Hydrogen production by the electrolysis of water has become an important way to prepare green hydrogen because of its simple process and high product purity. However, the oxygen evolution reaction (OER) in the electrolysis process has a high overpotential, which leads to the [...] Read more.
Hydrogen production by the electrolysis of water has become an important way to prepare green hydrogen because of its simple process and high product purity. However, the oxygen evolution reaction (OER) in the electrolysis process has a high overpotential, which leads to the increase of energy consumption. Developing efficient, stable and low-cost electrolytic water catalyst is the core challenge to reduce the reaction energy barrier and improve the energy conversion efficiency. CoS@NiS-80% nanosheets with rich heterogeneous interfaces were successfully synthesized by hydrothermal reaction and sulfuration. Heterogeneous interface not only promotes the effective charge transfer between different materials and reduces the charge transfer resistance but also accelerates the four-electron transfer process through the synergistic effect of nickel and cobalt atoms. Under alkaline conditions, the overpotential of CoS@NiS-80% nanosheets was only 280 mV at a current density of 10 mA cm−2, with a Tafel slope of 100.87 mV dec−1. Furthermore, it could work continuously for 100 h, exhibiting its outstanding stability. This work provides a novel approach for improving the OER performance of transition metal sulfide-based electrocatalysts through heterogeneous interface engineering. Full article
Show Figures

Figure 1

12 pages, 671 KB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Cited by 3 | Viewed by 2214
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Catalysis Sciences)
Show Figures

Figure 1

27 pages, 3653 KB  
Review
Design and Application of Atomically Dispersed Transition Metal–Carbon Cathodes for Triggering Cascade Oxygen Reduction in Wastewater Treatment
by Shengnan Huang, Guangshuo Lyu, Chuhui Zhang, Chunye Lin and Hefa Cheng
Molecules 2025, 30(15), 3258; https://doi.org/10.3390/molecules30153258 - 4 Aug 2025
Viewed by 1305
Abstract
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous [...] Read more.
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous electro-Fenton systems based on cascade oxygen reduction reactions (ORRs), which require low operational voltage and cause pollutant degradation through both direct electron transfer and ROS generation, have emerged as a promising alternative. Recent studies showed that carbon cathodes decorated with atomically dispersed transition metals can effectively integrate the excellent conductivity of carbon supports with the tunable surface chemistry of metal centers. However, the electronic structure of active sites intrinsically hinders the simultaneous achievement of high activity and selectivity in cascade ORRs. This review summarizes the advances, specifically from 2020 to 2025, in understanding the mechanism of cascade ORRs and the synthesis of transition metal-based single-atom catalysts in cathode electrocatalysis for efficient wastewater treatment, and discusses the key factors affecting treatment performance. While employing atomically engineered cathodes is a promising approach for energy-efficient wastewater treatment, future efforts should overcome the barriers in active site control and long-term stability of the catalysts to fully exploit their potential in addressing water pollution challenges. Full article
Show Figures

Graphical abstract

13 pages, 2832 KB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 999
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

20 pages, 3918 KB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 866
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

11 pages, 2195 KB  
Article
Highly Dispersed Pt on TiOx Embedded in Porous Carbon as Electrocatalyst for Hydrogen Evolution Reaction
by Zihan Wei, Xin Chen, Pengfei Diao, Jiayi Liao, Zhaonan Chong, Change Yao, Zhong Ma and Guisheng Li
Catalysts 2025, 15(5), 487; https://doi.org/10.3390/catal15050487 - 17 May 2025
Cited by 1 | Viewed by 1061
Abstract
In conventionally used carbon-supported heterogeneous platinum catalysts for hydrogen evolution reaction (HER), low Pt utilization efficiency and poor stability, resulting from weak interactions with the carbon supports, are crucial issues. Here, we report a novel hierarchical structure of TiOx nanoparticles embedded in [...] Read more.
In conventionally used carbon-supported heterogeneous platinum catalysts for hydrogen evolution reaction (HER), low Pt utilization efficiency and poor stability, resulting from weak interactions with the carbon supports, are crucial issues. Here, we report a novel hierarchical structure of TiOx nanoparticles embedded in porous carbon with the in situ growth of highly dispersed Pt on the TiOx surface (Pt-TiOx@C). The as-prepared Pt-TiOx@C electrocatalyst showed excellent catalytic activity during HER with an overpotential of only 10 mV when the current density reached 10 mA cm−2 and the mass activity was 9.24 A mgPt−1 at an overpotential of 30 mV in 0.5 M H2SO4 solution, thus outperforming commercial Pt/C catalysts. Furthermore, it also exhibited highly stable catalytic activity over 10,000 CV cycles of an accelerated degradation test (ADT). This high HER activity and durability could be ascribed to the highly dispersed Pt feature and the strong metal–support interaction (SMSI) between Pt and TiOx. This study also provides a simple and effective method for designing highly active and stable electrocatalysts. Full article
Show Figures

Figure 1

15 pages, 2863 KB  
Article
Tailoring Electrocatalytic Properties of sp2-Bonded Carbon Nanoforms Through Doping
by Paweł Szroeder, Agnieszka Banaszak-Piechowska and Ihor Sahalianov
Molecules 2025, 30(6), 1265; https://doi.org/10.3390/molecules30061265 - 12 Mar 2025
Cited by 1 | Viewed by 1137
Abstract
The symmetry of the valence and conduction bands in graphene and carbon nanotubes allows for easy modification of the electronic structure, which is correlated with their electrocatalytic activity. Modifying the electronic structure of the sp2-bonded nanocarbons by substituting carbon atoms with [...] Read more.
The symmetry of the valence and conduction bands in graphene and carbon nanotubes allows for easy modification of the electronic structure, which is correlated with their electrocatalytic activity. Modifying the electronic structure of the sp2-bonded nanocarbons by substituting carbon atoms with electron donors/acceptors and through covalent functionalization can facilitate heterogeneous electron transfer (HET), which is beneficial for designing carbon-based, high-performance electrocatalysts. Based on the Gerischer–Marcus model, we discuss how we can match the density of π-electron states (DOS) of a nanocarbon electrode to the redox potential of redox species using electron and hole doping. Along with the results, this article provides guidance on how to match the properties of nanocarbons to specific electroactive analytes, oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER). Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

50 pages, 9829 KB  
Review
Substrate Engineering of Single Atom Catalysts Enabled Next-Generation Electrocatalysis to Power a More Sustainable Future
by Saira Ajmal, Junfeng Huang, Jianwen Guo, Mohammad Tabish, Muhammad Asim Mushtaq, Mohammed Mujahid Alam and Ghulam Yasin
Catalysts 2025, 15(2), 137; https://doi.org/10.3390/catal15020137 - 1 Feb 2025
Cited by 10 | Viewed by 4263
Abstract
Single-atom catalysts (SACs) are presently recognized as cutting-edge heterogeneous catalysts for electrochemical applications because of their nearly 100% utilization of active metal atoms and having well-defined active sites. In this regard, SACs are considered renowned electrocatalysts for electrocatalytic O2 reduction reaction (ORR), [...] Read more.
Single-atom catalysts (SACs) are presently recognized as cutting-edge heterogeneous catalysts for electrochemical applications because of their nearly 100% utilization of active metal atoms and having well-defined active sites. In this regard, SACs are considered renowned electrocatalysts for electrocatalytic O2 reduction reaction (ORR), O2 evolution reaction (OER), H2 evolution reaction (HER), water splitting, CO2 reduction reaction (CO2RR), N2 reduction reaction (NRR), and NO3 reduction reaction (NO3RR). Extensive research has been carried out to strategically design and produce affordable, efficient, and durable SACs for electrocatalysis. Meanwhile, persistent efforts have been conducted to acquire insights into the structural and electronic properties of SACs when stabilized on an adequate matrix for electrocatalytic reactions. We present a thorough and evaluative review that begins with a comprehensive analysis of the various substrates, such as carbon substrate, metal oxide substrate, alloy-based substrate, transition metal dichalcogenides (TMD)-based substrate, MXenes substrate, and MOF substrate, along with their metal-support interaction (MSI), stabilization, and coordination environment (CE), highlighting the notable contribution of support, which influences their electrocatalytic performance. We discuss a variety of synthetic methods, including bottom-up strategies like impregnation, pyrolysis, ion exchange, atomic layer deposition (ALD), and electrochemical deposition, as well as top-down strategies like host-guest, atom trapping, ball milling, chemical vapor deposition (CVD), and abrasion. We also discuss how diverse regulatory strategies, including morphology and vacancy engineering, heteroatom doping, facet engineering, and crystallinity management, affect various electrocatalytic reactions in these supports. Lastly, the pivotal obstacles and opportunities in using SACs for electrocatalytic processes, along with fundamental principles for developing fascinating SACs with outstanding reactivity, selectivity, and stability, have been highlighted. Full article
(This article belongs to the Special Issue Feature Review Papers in Electrocatalysis)
Show Figures

Figure 1

36 pages, 7819 KB  
Review
Recent Advances in Transition Metal Chalcogenides Electrocatalysts for Oxygen Evolution Reaction in Water Splitting
by Honglin Gao, Ting Yang, Aiyi Dong, Yuliang Xing, Dajun Liu, Yinhua Ma and Kaixin Zhu
Catalysts 2025, 15(2), 124; https://doi.org/10.3390/catal15020124 - 27 Jan 2025
Cited by 6 | Viewed by 4249
Abstract
Rapid industrial growth has overexploited fossil fuels, making hydrogen energy a crucial research area for its high energy and zero carbon emissions. Water electrolysis is a promising method as it is greenhouse gas-free and energy-efficient. However, OER, a slow multi-electron transfer process, is [...] Read more.
Rapid industrial growth has overexploited fossil fuels, making hydrogen energy a crucial research area for its high energy and zero carbon emissions. Water electrolysis is a promising method as it is greenhouse gas-free and energy-efficient. However, OER, a slow multi-electron transfer process, is the limiting step. Thus, developing efficient, low-cost, abundant electrocatalysts is vital for large-scale water electrolysis. In this paper, the application and progress of transition metal chalcogenides (TMCs) as catalysts for the oxygen evolution reaction in recent years are comprehensively reviewed. The key findings highlight the catalytic mechanism and performance of TMCs synthesized using single or multiple transition metals. Notably, modifications through recombination, heterogeneous interface engineering, vacancy, and atom doping are found to effectively regulate the electronic structure of metal chalcogenides, increasing the number of active centers and reducing the adsorption energy of reaction intermediates and energy barriers in OER. The paper further discusses the shortcomings and challenges of TMCs as OER catalysts, including low electrical conductivity, limited active sites, and insufficient stability under harsh conditions. Finally, potential research directions for developing new TMC catalysts with enhanced efficiency and stability are proposed. Full article
(This article belongs to the Special Issue Recent Advances in Electrocatalysis and Future Perspective)
Show Figures

Graphical abstract

12 pages, 2493 KB  
Article
Tungsten Carbide/Tungsten Oxide Catalysts for Efficient Electrocatalytic Hydrogen Evolution
by Jian Ouyang, Yu Sun, Yiqiong Zhang, Juzhe Liu, Xin Bo and Zenglin Wang
Molecules 2025, 30(1), 84; https://doi.org/10.3390/molecules30010084 - 29 Dec 2024
Cited by 3 | Viewed by 2379
Abstract
Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (W2C) is one of the most promising non-noble-metal-based catalysts with low cost, replicable [...] Read more.
Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (W2C) is one of the most promising non-noble-metal-based catalysts with low cost, replicable catalytic performance, and durability. However, the preparation access to scalable production of W2C catalysts is inevitable. Herein, we introduced a facile protocol to achieve the tungsten carbide species by plasma treatment under a CH4 atmosphere from the WO3 precursor. Moreover, the heterogeneous structure of the tungsten carbide/tungsten oxide nanosheets further enhances the catalytic activity for HER with the enlarged specific surface area and the synergism on the interfaces. The prepared tungsten carbide/tungsten oxide heterostructure nanosheets (WO3-x-850-P) exhibit exceptional HER catalytic activity and stable longevity in acid electrolytes. This work provides a facile and effective method to construct high-performance and non-precious-metal-based electrocatalysts for industrial-scale water electrolysis. Full article
Show Figures

Figure 1

36 pages, 6366 KB  
Review
Catalyst for the Generation of OH Radicals in Advanced Electrochemical Oxidation Processes: Present and Future Perspectives
by Raciel Jaimes-López, Adriana Jiménez-Vázquez, Samuel Pérez-Rodríguez, Luis Alberto Estudillo-Wong and Nicolas Alonso-Vante
Catalysts 2024, 14(10), 703; https://doi.org/10.3390/catal14100703 - 9 Oct 2024
Cited by 12 | Viewed by 6250
Abstract
Heterogeneous Advanced Oxidation Processes (H-AOPs) are considered a new process for removing emerging pollutants. In this case, the high reactivity of hydroxyl radicals is used to degrade persistent organic pollutants. This review explores the state-of-the-art catalyst for hydroxyl radical generation in AOPs. As [...] Read more.
Heterogeneous Advanced Oxidation Processes (H-AOPs) are considered a new process for removing emerging pollutants. In this case, the high reactivity of hydroxyl radicals is used to degrade persistent organic pollutants. This review explores the state-of-the-art catalyst for hydroxyl radical generation in AOPs. As a parasite reaction, chloride ions appear in alkaline conditions and compete with the active sites. The theoretical foundation of catalyst performance is explored, focusing on the fundamental principles that govern the efficiency and mechanism of hydroxyl or chloride radical production. The synthesis and electronic modification sections explore the modifications of catalysts. It discusses key methodologies for catalyst preparation, with a particular emphasis on electronic modification that enhances both activity and stability. Finally, laboratory and pilot applications highlight the effectiveness of novel or modified catalysts in different scenarios. These last findings provide insights into the future directions for research and application, aiming to draw attention to the gap between laboratory studies and real-world implementations. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

11 pages, 6157 KB  
Article
Harnessing Heterogeneous Interface and Oxygen Vacancy in Cu/Cu2O for Efficient Electrocatalytic Nitrate Reduction to Ammonia
by Yaxuan Li, Ling Fang and Yuanjuan Bai
Energies 2024, 17(17), 4467; https://doi.org/10.3390/en17174467 - 5 Sep 2024
Cited by 4 | Viewed by 2133
Abstract
In recent years, the electrocatalytic reduction of nitrate to ammonia (NRA) has garnered significant research attention. However, the complex multi-step proton–electron transfer process often results in various by-products, limiting NH3 production. Therefore, designing and developing highly active and selective electrocatalysts for efficient [...] Read more.
In recent years, the electrocatalytic reduction of nitrate to ammonia (NRA) has garnered significant research attention. However, the complex multi-step proton–electron transfer process often results in various by-products, limiting NH3 production. Therefore, designing and developing highly active and selective electrocatalysts for efficient NRA is crucial. This study proposes a method to construct Cu/Cu2O nanosheet arrays with heterogeneous interfaces and oxygen vacancies on copper foam surfaces through electrochemical reduction. The interface coupling between Cu and Cu2O significantly optimizes the catalyst’s surface electronic structure, providing sufficient active sites. In addition, the presence of oxygen vacancies in Cu/Cu2O can optimize the adsorption kinetics of intermediates in the NRA process and effectively inhibit the formation of by-products. The results show that Cu/CuO2 nanosheet arrays are superior NRA catalysts, achieving a Faradaic efficiency of up to 91.1%, a nitrate conversion of 96.25%, and an NH3 yield rate of 6.11 mg h−1 cm−2. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

21 pages, 7976 KB  
Article
A3B Zn(II)-Porphyrin-Coated Carbon Electrodes Obtained Using Different Procedures and Tested for Water Electrolysis
by Bogdan-Ovidiu Taranu, Florina Stefania Rus and Eugenia Fagadar-Cosma
Coatings 2024, 14(8), 1048; https://doi.org/10.3390/coatings14081048 - 16 Aug 2024
Cited by 3 | Viewed by 1374
Abstract
In the context of water electrolysis being highlighted as a promising technology for the large-scale sustainable production of hydrogen, the water-splitting electrocatalytic properties of an asymmetrically functionalized A3B zinc metalated porphyrin, namely, Zn(II) 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin, were evaluated in a wide pH range. [...] Read more.
In the context of water electrolysis being highlighted as a promising technology for the large-scale sustainable production of hydrogen, the water-splitting electrocatalytic properties of an asymmetrically functionalized A3B zinc metalated porphyrin, namely, Zn(II) 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin, were evaluated in a wide pH range. Two different electrode manufacturing procedures were employed to outline the porphyrin’s applicative potential for the O2 and H2 evolution reactions (OER and HER). The electrode, manufactured by coating the catalyst on a graphite support from a dimethylsulfoxide solution, displayed electrocatalytic activity for the OER in an acidic electrolyte. An overpotential value of 0.44 V (at i = 10 mA/cm2) and a Tafel slope of 0.135 V/dec were obtained. The modified electrode that resulted from applying a Zn(II)-porphyrin-containing catalyst ink onto the same substrate type was identified as a bifunctional water-splitting catalyst in a neutral medium. OER and HER overpotentials of 0.78 and 1.02 V and Tafel slopes of 0.39 and 0.249 V/dec were determined. This is the first Zn(II)-porphyrin to be reported as a heterogenous bifunctional water-splitting electrocatalyst in neutral aqueous electrolyte solution and is one of very few porphyrins behaving as such. The TEM analysis of the porphyrin’s self-assembly behavior revealed a wide variety of architectures. Full article
(This article belongs to the Special Issue Environmentally Friendly Energy Conversion Materials and Thin Films)
Show Figures

Figure 1

Back to TopTop