Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = herbaceous layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6525 KiB  
Article
Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress
by Yanlei Zhang, Shaowei Hu, Xiaxia Wang, Jie Yue, Dongmei Chen, Mingzhi Han, Wanmin Qiao, Yifan Wang and Haixia Wang
Plants 2025, 14(14), 2223; https://doi.org/10.3390/plants14142223 - 18 Jul 2025
Viewed by 265
Abstract
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) [...] Read more.
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) and alkali (Na2CO3 and NaHCO3) stress on the growth, anatomical adaptations, and metabolite accumulation of A. venetum (Apocynum venetum L.). Results showed that alkali stress (100 mM Na2CO3 and 50 mM NaHCO3) inhibited growth more than saline stress (NaCl 240 mM), reducing plant height by 29.36%. Anatomical adaptations included a 40.32% increase in the root cortex-to-diameter ratio (100 mM Na2CO3 and 50 mM NaHCO3), a 101.52% enlargement of xylem vessel diameter (NaCl 240 mM), and a 68.69% thickening of phloem fiber walls in the stem (NaCl 240 mM), enhancing water absorption, salt exclusion, and structural support. Additionally, leaf palisade tissue densification (44.68% increase at NaCl 160 mM), along with epidermal and wax layer adjustments, balanced photosynthesis and water efficiency. Metabolic responses varied with stress conditions. Root soluble sugar content increased 49.28% at NaCl 160 mM. Flavonoid accumulation in roots increased 53.58% at Na2CO3 100 mM and NaHCO3 50 mM, enhancing antioxidant defense. However, chlorophyll content and photosynthetic efficiency declined with increasing stress intensity. This study emphasizes the coordinated adaptations of A. venetum, providing valuable insights for the development of salt-tolerant crops. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

15 pages, 1192 KiB  
Article
Contrasting Herbaceous Communities in South African Savannas: A Comparative Analysis of Density, Composition, and Diversity Across Three Bioregions
by Armand Arthur Biko’o, Willem Johannes Myburgh and Brian Kevin Reilly
Diversity 2025, 17(7), 475; https://doi.org/10.3390/d17070475 - 10 Jul 2025
Viewed by 385
Abstract
This study provides novel insight into herbaceous-layer dynamics across three distinct South African savanna bioregions (Central Bushveld, Lowveld, and Mopane) using a Total Count Quadrat approach to investigate species densities, community composition, diversity, and spatial patterns. A total of 196 unique herbaceous species [...] Read more.
This study provides novel insight into herbaceous-layer dynamics across three distinct South African savanna bioregions (Central Bushveld, Lowveld, and Mopane) using a Total Count Quadrat approach to investigate species densities, community composition, diversity, and spatial patterns. A total of 196 unique herbaceous species were recorded across all bioregions. Contrary to typical expectations, our findings reveal no statistically significant differences in overall herbaceous density (ranging from 24.3 ± 2.31 to 32.0 ± 1.28 individuals/m2; F2,6 = 1.89, p = 0.23), species richness (F2,6 = 1.91, p = 0.23), or Shannon diversity (F2,6 = 3.23, p = 0.11) among bioregions, suggesting a more complex interplay of environmental drivers beyond broad climatic gradients. However, there was significant within-bioregion spatial heterogeneity in density, notably in the Central Bushveld (F2,87 = 4.96, p = 0.009) and Mopane (F2,87 = 7.54, p < 0.001) regions, indicating important fine-scale variation, unlike in the Lowveld region (F2,87 = 1.25, p = 0.292). Growth form analysis revealed that forbs consistently dominated species richness across all three bioregions (Central Bushveld: ~64%; Lowveld: ~70%; and Mopane: ~67%) and were also the dominant growth form by density in the Lowveld (54.3%) and Mopane (63.8%) regions. While numerical differences in grass density were observed, no statistically significant difference was found across bioregions (F2,6 = 4.15, p = 0.07). Sedges consistently contributed a small proportion to both species richness and total density. Non-metric multidimensional scaling further revealed patterns of dispersion in herbaceous community compositions between the Lowveld and Mopane regions, with Central Bushveld communities exhibiting greater variability. These findings underscore the critical ecological importance of forbs in South African savannas, not only for biomass but also for driving herbaceous diversity and highlighting the necessity of considering fine-scale spatial variation in future ecological research and conservation strategies. Full article
Show Figures

Graphical abstract

14 pages, 2770 KiB  
Article
Soil Structure Characteristics in Three Mountainous Regions in Bulgaria Under Different Land Uses
by Milena Kercheva, Tsvetina Paparkova, Emil Dimitrov, Katerina Doneva, Kostadinka Nedyalkova, Jonita Perfanova, Rosica Sechkova, Emiliya Velizarova and Maria Glushkova
Forests 2025, 16(7), 1065; https://doi.org/10.3390/f16071065 - 26 Jun 2025
Viewed by 274
Abstract
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots [...] Read more.
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots Pine and NS—Norway Spruce) vegetation was conducted at three experimental stations—Gabra, Govedartsi, and Igralishte, located correspondingly in the Lozenska, Rila, and Maleshevska Mountains in South-West Bulgaria. The data set obtained includes soil structure indicators and physical, physicochemical, chemical, mineralogical, and microbiological parameters of the A and AC horizons of 11 soil profiles. Under different vegetation conditions, soil structure indicators respond differently depending on climatic conditions and basic soil properties. Regarding the plant available water capacity (PAWC), air capacity (AC), and water-stable aggregates (WSAs), the surface soil layers have an optimal structure in Gabra (H, D), Govedartsi (H, SP, NS), and Igralishte (H). The values for the relative field capacity (RFC < 0.6) showed that the studied soils were water-limited. The WSAs correlated with SOC in Gabra, while in Govedartsi and Igralishte, the WSAs correlated with the β-glucosidase known to hydrolyze organic carbon compounds in soil. The information obtained is important for soil quality monitoring under climatic and anthropogenic changes. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 14936 KiB  
Article
Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices
by Vania Lanari, Luca Pallotti, Tania Lattanzi and Oriana Silvestroni
Plants 2025, 14(12), 1823; https://doi.org/10.3390/plants14121823 - 13 Jun 2025
Viewed by 537
Abstract
Grapevine root distribution and density influence mineral and water absorption and are affected by soil management and the use of cover crops. This study, conducted in a ten-year-old commercial Mediterranean vineyard with desiccant-managed inter-rows, compares the effects of three different soil management practices—minimum [...] Read more.
Grapevine root distribution and density influence mineral and water absorption and are affected by soil management and the use of cover crops. This study, conducted in a ten-year-old commercial Mediterranean vineyard with desiccant-managed inter-rows, compares the effects of three different soil management practices—minimum tillage (MT), spontaneous natural covering (NC), and a commercial grass mixture (GM)—on root development in Montepulciano vines grafted onto Kober 5BB rootstocks. Root length, diameter, and weight across different soil layers were analyzed by digging trenches. The results show that thin roots, primarily responsible for water and nutrient absorption, ensure greater soil volume exploration, while medium-to-large roots contribute mainly to root biomass. The presence of cover crops reduces root development in the upper soil layers due to competition with herbaceous species; however, this promotes deeper root exploration and increases the total root length per plant. In the deeper soil layers, root growth is limited by higher soil compaction. Tillage enhances the development of medium-to-large roots and increases the total root biomass per plant. In conclusion, soil management influences vine root development, and competition from cover crops stimulates the growth of absorbing roots in deeper soil layers. Full article
(This article belongs to the Collection Feature Papers in Plant‒Soil Interactions)
Show Figures

Figure 1

16 pages, 2043 KiB  
Article
Being Edgy: Ecotones of Ground Cover Vegetation in Managed Black Alder Habitats
by Agnese Anta Liepiņa, Didzis Elferts, Roberts Matisons, Āris Jansons and Diāna Jansone
Forests 2025, 16(5), 846; https://doi.org/10.3390/f16050846 - 19 May 2025
Viewed by 358
Abstract
Retention forestry creates anthropogenic ecotones that diversify forest landscapes in terms of age and biomass. Such diversification can have ambiguous ecological impacts, raising uncertainties, particularly for black alder swamp woodlands, which are considered sensitive and are prioritized in EU conservation policy. This study [...] Read more.
Retention forestry creates anthropogenic ecotones that diversify forest landscapes in terms of age and biomass. Such diversification can have ambiguous ecological impacts, raising uncertainties, particularly for black alder swamp woodlands, which are considered sensitive and are prioritized in EU conservation policy. This study aimed to examine the effects of adjacent clear-cutting on ground cover vegetation in 12 black alder stands in the hemiboreal zone in Latvia 11 to 120 years since the harvest. Ground cover vegetation was recorded by species along 40 m transects. The effects of the time since adjacent stand harvesting and exposure to the edge on species richness and Shannon diversity were assessed using linear mixed-effects models. A detrended correspondence analysis was used to explore the main environmental gradients. A total of 103 species were recorded: 15 in the tree and shrub layer, 66 in the herbaceous layer, and 22 in the moss and lichen layer. The exposure to the adjacent stand had a moderate positive effect on species diversity, while the effects of edge age were complex and varied by stand type. The scale of disturbance (the absolute length of the analyzed edge), rather than edge age or exposure, had the most pronounced effect on ground cover vegetation composition, suggesting persistent secondary edge effects that should be considered in forest management and conservation planning. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

20 pages, 5647 KiB  
Article
Trends and Influencing Factors of Summer Air Quality Changes in Four Forest Types
by Zichen Jia, Ruyi Zhou, Jiejie Jiao, Chunyu Pan, Zhihao Chen, Yichen Huang, Yufeng Zhou and Guomo Zhou
Forests 2025, 16(5), 833; https://doi.org/10.3390/f16050833 - 17 May 2025
Viewed by 411
Abstract
Forest ecosystems are crucial in mitigating air pollution and improving air quality. Therefore, investigating the relationships between air quality, forest structure, and environmental factors in different forest types is of significant importance. This study conducted three months of continuous monitoring (June–September 2023) of [...] Read more.
Forest ecosystems are crucial in mitigating air pollution and improving air quality. Therefore, investigating the relationships between air quality, forest structure, and environmental factors in different forest types is of significant importance. This study conducted three months of continuous monitoring (June–September 2023) of air quality factors (particulate matter (PM2.5 and PM10), ozone (O3), and negative air ions (NAI)) and environmental factors (air temperature (TA), relative humidity (RH), light intensity (LI), and wind speed (WS)) in four subtropical forest types, along with vegetation characteristic surveys. The effects of forest structure and environmental factors on air quality were determined by correlation and multiple regression analysis. The results showed that the forest air quality is at its best in July during the summer season. Concentrations of particulate matter (PM) and ozone (O3) in mixed coniferous and broadleaf forests (MCB), as well as deciduous broadleaf forests (DB), are lower than those in moso bamboo forests (MB) and evergreen broadleaf forests (EB). The troughs of PM concentrations occur in the early morning (4:00–6:00), while the troughs of O3 concentrations occur in the early morning (4:00–6:00) and in the evening (18:00). NAI concentrations were highest in DB (1287 ions/cm3), followed by MCB (1187 ions/cm3), MB (896 ions/cm3), and EB (584 ions/cm3), with NAI concentrations peaking between 14:00 and 16:00. PM concentrations in forest air were primarily influenced by stand density (SD) and the Shannon–Wiener index of herbaceous layer (SWH) (p < 0.05); ozone concentrations were significantly affected by tree height (TH) and canopy density (CD) (p < 0.05); and NAI concentrations were primarily related to TH and diameter at breast height (DBH). Air particulate matter concentrations were negatively affected by TA and RH (p < 0.01), and ozone concentrations were negatively influenced by RH and WS and were positively influenced by TA. TA has a direct and significant positive effect on the NAI concentration (p < 0.01), and RH indirectly influences the changes in NAI concentration through its interaction with TA. This study provides new insights for vegetation optimization in forest parks and planning forest health-promoting activities for sub-healthy populations. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

19 pages, 4912 KiB  
Article
Therapeutic Effects of Hemerocallis citrina Baroni Extract on Animal Models of Neurodegenerative Diseases Through Serotonin and HLH-30/TFEB-Dependent Mechanisms
by Jorge H. Fernandes, Marta Daniela Costa, Daniela Vilasboas-Campos, Bruna Ferreira-Lomba, Joana Pereira-Sousa, Qiong Wang, Andreia Teixeira-Castro, Xinmin Liu, Fengzhong Wang, Alberto C. P. Dias and Patrícia Maciel
Int. J. Mol. Sci. 2025, 26(9), 4145; https://doi.org/10.3390/ijms26094145 - 27 Apr 2025
Viewed by 606
Abstract
Hemerocallis citrina is an herbaceous perennial plant used in Asian cuisine and Traditional Chinese Medicine. Here, we tested the therapeutic potential of extracts (HCE30%, HCE50%, and HCN) in vivo, using models of two human genetic neurodegenerative diseases—Machado–Joseph Disease/Spinocerebellar Ataxia type 3 (MJD/SCA3) and [...] Read more.
Hemerocallis citrina is an herbaceous perennial plant used in Asian cuisine and Traditional Chinese Medicine. Here, we tested the therapeutic potential of extracts (HCE30%, HCE50%, and HCN) in vivo, using models of two human genetic neurodegenerative diseases—Machado–Joseph Disease/Spinocerebellar Ataxia type 3 (MJD/SCA3) and Frontotemporal Dementia with Parkinsonism associated to chromosome 17 (FTDP-17). Chronic treatment with HCE30% extract ameliorated the motor deficits typically observed in these models. Interestingly, we found that the effect on the motor phenotype of the MJD/SCA3 model was dependent on serotonergic signaling and on the action of the HLH-30/TFEB transcription factor, known to regulate the cellular response to amino acid starvation, the autophagy and mitophagy pathways, lysosome localization and biogenesis, exocytosis, and mitochondrial biogenesis. Altogether, our findings reinforce the idea that phytochemicals act through the modulation of serotonergic neurotransmission and introduce a novel layer to the HLH-30/TFEB regulatory network. Thus, it also strengthens the use of these pathways as therapeutic targets for protein-related neurodegenerative disorders and confirms the utility of medicinal plants as a source of innovation in the quest for new therapeutic agents. Full article
(This article belongs to the Special Issue Caenorhabditis elegans: A Model Organism for Human Health and Disease)
Show Figures

Figure 1

12 pages, 2163 KiB  
Article
Intra-Plant Variation in Leaf Dry Mass per Area (LMA): Effects of Leaf–Shoot Orientation and Vertical Position on Dry Mass and Area Scaling
by Xuchen Guo, Yiwen Zheng, Yuanmiao Chen, Zhidong Zhou and Jianhui Xue
Forests 2025, 16(5), 724; https://doi.org/10.3390/f16050724 - 24 Apr 2025
Viewed by 494
Abstract
The intra-plant plasticity of leaves plays a vital role in enabling plants to adapt to changing climatic conditions. However, limited research has investigated the extent of intra-plant leaf trait variation and leaf biomass allocation strategies in herbaceous plants. To address this gap, we [...] Read more.
The intra-plant plasticity of leaves plays a vital role in enabling plants to adapt to changing climatic conditions. However, limited research has investigated the extent of intra-plant leaf trait variation and leaf biomass allocation strategies in herbaceous plants. To address this gap, we collected a total of 1746 leaves from 217 Lamium barbatum Siebold and Zucc. plants and measured their leaf dry mass (M) and leaf area (A). Leaves were categorized by vertical position (upper vs. lower canopy layer) and leaf–shoot orientation (east, south, west, north). ANOVA with Tukey’s HSD test was used to compare differences in M, A, and leaf dry mass per unit area (LMA). Reduced major axis regression was employed to evaluate the scaling relationship between M and A, and the bootstrap percentile method was used to determine differences in scaling exponents. The data indicated that: (i) M, A, LMA, and the scaling exponents of M versus A did not differ significantly among leaf–shoot orientations, and (ii) lower layer leaves exhibited significantly greater M, A, and LMA than upper layer leaves, but their scaling exponents were significantly smaller. These findings highlight that plant vertical growth brings significant intra-plant plasticity in leaf traits and their scaling relationships in herbaceous plants. This plasticity differs from that observed in trees, but is also critical for balancing weight load and optimizing light-use efficiency, potentially enhancing stress resilience in herbaceous plants. Full article
(This article belongs to the Special Issue Forest Phenology Dynamics and Response to Climate Change)
Show Figures

Figure 1

22 pages, 20934 KiB  
Article
Urban Green Spaces Under Climate Warming: Controlling the Spread of Allergenic Pollution Through Residential Area Spatial Layout Optimization
by Ying Hui, Xina Ma, Fushun Han, Qi An and Jingyuan Zhao
Sustainability 2025, 17(7), 3235; https://doi.org/10.3390/su17073235 - 5 Apr 2025
Viewed by 565
Abstract
In response to the demands of climate change and urban sustainability, urban green space construction in China has rapidly expanded, while simultaneously giving rise to allergenic pollen pollution. Focusing on the central urban area of Xi’an, Shaanxi Province, China, this study utilizes urban [...] Read more.
In response to the demands of climate change and urban sustainability, urban green space construction in China has rapidly expanded, while simultaneously giving rise to allergenic pollen pollution. Focusing on the central urban area of Xi’an, Shaanxi Province, China, this study utilizes urban surveys, field measurements, and pollen particle microscopy to analyze the seasonal variation in allergenic pollen pollution concentrations and the physical dispersion characteristics of allergenic pollen particles in residential areas. The study also examines the impact of urban residential area spatial layout on regulating allergenic pollen pollution. The results show that (1) allergenic pollen pollution in Xi’an’s residential areas exhibits significant seasonal characteristics, with spring, summer, and autumn being the primary seasons. The highest concentrations occur in spring, dominated by tree pollen, followed by summer and autumn with a predominance of herbaceous pollen. (2) Pollution concentrations in residential areas are affected by the diurnal temperature variation, with higher concentrations observed in public green spaces compared to residential green spaces and roadside green spaces. (3) Allergenic pollen pollution shows a layered characteristic in the vertical direction, with concentrations concentrated around 13 m above ground due to the effects of diurnal temperature variation and local microclimate. (4) Urban pollen pollution concentrations are positively correlated with high temperatures and negatively correlated with high humidity, while local circulations influence pollen dispersion concentrations in residential areas. (5) Design indicators such as plot ratio and building stagger affect the dispersion concentrations of allergenic pollen pollution in residential areas. The findings provide a scientific basis for optimizing residential area spatial design to mitigate allergenic pollen pollution and offer strategic guidance for improving the health and livability of urban environments. Full article
Show Figures

Figure 1

17 pages, 2675 KiB  
Article
Unveiling the Carbon Secrets: How Forestry Projects Transform Biomass and Soil Carbon on the Tibet Plateau
by Man Cheng, Xia Xu, Zhixuan Chen, Yun Xiang, Yongli Wen and Xiao Wang
Forests 2025, 16(4), 631; https://doi.org/10.3390/f16040631 - 3 Apr 2025
Viewed by 361
Abstract
Afforestation is regarded as a crucial approach to enhancing terrestrial carbon sinks. Nevertheless, in ecologically fragile regions, the impacts of afforestation on carbon in biomass and soil remain highly uncertain. This study employed field investigations to explore the effects of forestry ecological projects [...] Read more.
Afforestation is regarded as a crucial approach to enhancing terrestrial carbon sinks. Nevertheless, in ecologically fragile regions, the impacts of afforestation on carbon in biomass and soil remain highly uncertain. This study employed field investigations to explore the effects of forestry ecological projects on carbon stocks in biomass and soil within the Qinghai–Tibet Plateau, and to deeply analyze its key influencing factors. The key findings are summarized as follows: (1) The total vegetation carbon stocks of arbor forests and shrub forests (ranging from 7.7 to 24.0 Mg/ha) are 1.3–6.8 times that of grasslands (ranging from 3.5 to 6.1 Mg/ha). Afforestation-induced changes in biomass carbon are primarily attributed to the increase in carbon storage within the arbor-shrub layer, while exhibiting negligible effects on herbaceous layer carbon. (2) The soil organic carbon (SOC) stocks (0–100 cm depth) of forestland, shrubland, and grassland are 39.6–64.5 Mg/ha, 40.7–100.2 Mg/ha, and 43.1–121.9 Mg/ha, respectively. There are no significant differences in SOC stocks among shrubland, forestland, and grassland at either the 10- or 25-year development stage. The SOC stocks of 40-year-old shrubland and forestland are 1.5 and 2.3 times that of grassland, respectively. (3) For 10-year-old and 25-year-old arbor and shrub afforestation, biomass carbon increased while SOC decreased, showing a trade-off. In the case of 40- year-old afforestation, both biomass carbon and SOC increased synergistically. (4) Results from the random forest analysis indicate that the understory herbaceous diversity in this region has a significant impact on biomass carbon sequestration, and that soil total nitrogen, ammonium nitrogen, and nitrate nitrogen determine SOC sequestration. (5) Partial least squares analysis further demonstrates that afforestation promotes the retention of SOC stocks by increasing soil nutrients (especially nitrogen and nitrogen availability). Afforestation in alpine and arid regions, especially 40-year shrub afforestation, holds great carbon sequestration potential. The supplementation of soil nitrogen and phosphorus can enhance the carbon sequestration of this system. Full article
(This article belongs to the Special Issue Effect of Vegetation Restoration on Forest Soil)
Show Figures

Figure 1

10 pages, 1346 KiB  
Brief Report
Vegetation Species Diversity and Dominance After Large-Scale Clear-Cutting: Case Study from Latvia
by Diāna Jansone, Agnese Anta Liepiņa, Didzis Elferts and Āris Jansons
Sustainability 2025, 17(7), 2849; https://doi.org/10.3390/su17072849 - 23 Mar 2025
Viewed by 671
Abstract
Retention forestry is the dominant practice in Northern Europe, with large-scale clear-cuts following natural disturbances becoming more frequent as the climate changes. Despite its widespread use, clear-cutting is criticized for its potential adverse effects on species diversity and ecosystem recovery, particularly in understory [...] Read more.
Retention forestry is the dominant practice in Northern Europe, with large-scale clear-cuts following natural disturbances becoming more frequent as the climate changes. Despite its widespread use, clear-cutting is criticized for its potential adverse effects on species diversity and ecosystem recovery, particularly in understory vegetation. This study examines early vegetation changes after large-scale clear-cutting in Latvia’s hemiboreal forests. The sampling was conducted in 2017 and 2020, three and six years post-harvest, using 210 systematically placed plots (1 × 1 m) to assess species abundance and vegetation cover across moss/lichen, herbaceous, and shrub/tree layers. The findings indicate that species diversity was initially higher following clear-cutting but declined after six years, with the herbaceous layer most affected. While clear-cutting temporarily increases species diversity, negative effects become evident over time. Recovery is prolonged, with succession progressing faster in wet areas. To fully understand the long-term impacts of clear-cutting, continued monitoring is necessary. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

15 pages, 4252 KiB  
Article
Seasonal Dynamics of C:N:P Stoichiometry in Tree–Soil Systems: Nutrient Competition and Adaptation Strategies of Four Deciduous Broadleaf Species in Northeast China
by Hao Zhang, Dan Xu, Tianhe Yuan and Ling Yang
Forests 2025, 16(3), 540; https://doi.org/10.3390/f16030540 - 19 Mar 2025
Viewed by 307
Abstract
This study investigates the seasonal dynamics and stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) in four representative tree species—Juglans mandshurica Maxim., Phellodendron amurense Rupr. Quercus mongolica Fischer ex Ledebour and Fraxinus mandschurica Rupr.—at the Harbin Urban Forestry Demonstration Base, [...] Read more.
This study investigates the seasonal dynamics and stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) in four representative tree species—Juglans mandshurica Maxim., Phellodendron amurense Rupr. Quercus mongolica Fischer ex Ledebour and Fraxinus mandschurica Rupr.—at the Harbin Urban Forestry Demonstration Base, over the period 2022–2024. We monitored the nutrient content in tree leaves, trunks, branches, shrubs, herbaceous plants, and soil. Specifically, leaf N content in J. mandshurica decreased from 2.5% in May to 1.2% in November, while leaf P content in P. amurense dropped from 0.15% in June to 0.08% by the end of the growing season. Nutrient content in tree trunks and branches increased in the later growth stages, with trunk C content in Q. mongolica rising from 45% in May to 52% in November. Soil nutrients generally decreased over the growing season, with soil P content in F. mandshurica plantations declining from 0.12% in May to 0.06% in September. Moreover, the C:N and C:P ratios in tree and herb leaves, as well as in soil, increased during the growing period, while the N:P ratio in shrubs increased towards the end of the growth cycle. The study found significant correlations between specific nutrients in the leaves of trees and their surrounding soils. For instance, leaf C in J. mandshurica was positively correlated with soil C, while herbaceous plant P was positively correlated with soil N and leaf N with soil P. These relationships suggest that leaf N absorption is limited by soil P and herbaceous P by soil N. The analysis of nutrient correlations between shrubs, herbs, and trees showed a partial positive correlation between understory plants and tree leaf nutrients, indicating relatively weak competition among different plant groups. Furthermore, in P. amurense plantations, the P content in understory herbs was significantly positively correlated with soil P, suggesting that low soil phosphorus limits tree growth in this area. No significant correlation between soil and leaf nutrients was found in Q. mongolica plantations. In contrast, in F. mandshurica plantations, soil C and N were significantly positively correlated with tree leaf C, and understory shrub P and herb P were positively correlated with soil P, suggesting that leaf C absorption is constrained by soil C and N. Overall, this study highlights the nutrient competition between understory vegetation and tree layers, with all species showing a negative correlation between understory vegetation and tree nutrients, indicating nutrient competition. These findings provide valuable insights into the ecological dynamics of urban forests and offer guidance for optimizing urban forest management strategies. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

20 pages, 3693 KiB  
Article
Analysis of Understory Plant Community Assembly Differences in Moso Bamboo Forests in the Subtropical Evergreen Broad-Leaved Forest Region of Eastern China
by Zhiwei Ge, Tao Yu, Xuying Tian, Xiangxiang Chen, Yiwen Yao and Lingfeng Mao
Forests 2025, 16(3), 478; https://doi.org/10.3390/f16030478 - 8 Mar 2025
Cited by 1 | Viewed by 885
Abstract
Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forests are a vital forest type in subtropical China. This study investigates the diversity, floristic composition, and phylogenetic structure of understory vegetation in these bamboo forests within evergreen broad-leaved forests of eastern subtropical China. Using [...] Read more.
Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forests are a vital forest type in subtropical China. This study investigates the diversity, floristic composition, and phylogenetic structure of understory vegetation in these bamboo forests within evergreen broad-leaved forests of eastern subtropical China. Using grid-based sampling, we calculated species diversity and phylogenetic indices, and employed correlation analysis, redundancy analysis, and structural equation modeling to assess the effects of canopy closure, soil properties, and topography. The understory exhibited high species richness, with shrub layer demonstrating phytogeographic characteristics predominantly associated with tropical distribution types, while the herbaceous layer is characterized by temperate distribution types. Canopy closure and environmental factors significantly influenced shrub diversity, showing a clustered phylogenetic structure (NTI > 0, NRI > 0) and a negative correlation with species diversity. In contrast, the herb layer displayed a divergent phylogenetic structure (NTI < 0, NRI < 0), shaped by neutral stochastic processes, reflecting endemic taxa and interspecific interactions. These findings emphasize the need for targeted management practices to conserve understory biodiversity, focusing on enhancing floristic and phylogenetic diversity while protecting endemic species and their ecological interactions. Full article
(This article belongs to the Special Issue Sustainable Management of Forest Stands)
Show Figures

Figure 1

12 pages, 223 KiB  
Article
The Accuracy of the Step Point Vegetation Sampling Method for Herbaceous Layer Monitoring in South African Savannas
by Armand A. Biko’o, Willem J. Myburgh and Brian K. Reilly
Diversity 2025, 17(3), 146; https://doi.org/10.3390/d17030146 - 21 Feb 2025
Viewed by 714
Abstract
Robust monitoring techniques, capable of showing change in the savanna when change has occurred, are a prerequisite for better managing this ecosystem. The Step Point Method is a well-established technique in South African range surveys (Short and Morris 2016). However, it is often [...] Read more.
Robust monitoring techniques, capable of showing change in the savanna when change has occurred, are a prerequisite for better managing this ecosystem. The Step Point Method is a well-established technique in South African range surveys (Short and Morris 2016). However, it is often considered inaccurate in describing vegetation dynamics in the savanna herbaceous layer due primarily to issues with sample sizes and cover estimates, its inability to capture the spatial heterogeneity and patchy distribution typical of these ecosystems, sensitivity to observer bias, reliance on relative values and poor inclusion of sparse or less common species. This study aimed to test the effectiveness and accuracy of the Step Point Method for monitoring the herbaceous layer of savanna by comparison to absolute densities of plants. The results show that the Step Point Method only recorded 41–50% of species richness. It overestimated the relative species richness of grasses by 17.4% while underestimating that of forbs by 13.8% on average. The relative abundance of grasses was overestimated by 32.4%, while that of forbs was underestimated on average by 28.4%. Dominance was overestimated by 115.5% on average, and species diversity was underestimated by 15%. Considering these shortcomings, the Step Point Method should be used with extreme caution in studies focusing on monitoring temporal and spatial changes in veld condition and for biodiversity management. Full article
(This article belongs to the Special Issue Biodiversity and Ecology of African Vegetation)
Show Figures

Graphical abstract

21 pages, 4283 KiB  
Article
Exploring the Morpho-Physiological Dormancy and Germination Potential of Paeonia peregrina Mill. Seeds In Vitro
by Virginia Sarropoulou, Eleni Maloupa and Katerina Grigoriadou
Seeds 2025, 4(1), 7; https://doi.org/10.3390/seeds4010007 - 29 Jan 2025
Viewed by 1056
Abstract
Herbaceous peonies, specifically the Balkan–Anatolian Paeonia peregrina Miller, are species with various uses such as ornamental and garden purposes, or they can be cut as flowers or potted, or they can be eaten or used for medicinal purposes due to the rich nutritional [...] Read more.
Herbaceous peonies, specifically the Balkan–Anatolian Paeonia peregrina Miller, are species with various uses such as ornamental and garden purposes, or they can be cut as flowers or potted, or they can be eaten or used for medicinal purposes due to the rich nutritional content of their seeds. However, conventional propagation methods, including rhizome division, grafting, and layering, are slow, while seed propagation is challenging due to double morpho-physiological dormancy. This study therefore evaluated the in vitro germination potential of P. peregrina seeds in darkness under different culture conditions, including different temperature regimes (constant at 15 °C or alternating from 22 °C to 15 °C); incubation periods [120 days: 22 °C (14 d) to 15 °C (0–105 d); 120 days: 22 °C (33 d) to 15 °C (0–87 d); 90 or 140 days at 15 °C]; seed cold storage period (none; 30 days; 3 months; or 2, 5, and 8 years); and gibberellic acid (GA3) concentrations (0, 250, 500, 750, and 1000 mg L−1), as dormancy release methods. The results indicated that 60-day-stored seeds (30 d at 15 °C and 30 d cold-storaged at 4–5 °C) exhibited 100% germination within an 80-day culture under 250 mg L−1 GA3 at 15 °C. A lower and constant temperature of 15 °C, a shorter 30-day seed cold storage period, and the lowest GA3 concentration of 250 mg L−1 comprised the most effective combination treatment for dormancy release and germination acceleration. An understanding of the underlying mechanisms of seed dormancy removal is imperative for successful germination, growth rate and seedling establishment, shortened breeding cycles, and germplasm conservation, leading to the field cultivation and economic production of these peony plants. Full article
Show Figures

Figure 1

Back to TopTop