The Accuracy of the Step Point Vegetation Sampling Method for Herbaceous Layer Monitoring in South African Savannas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Letlapa Pula Game Reserve
2.1.2. Selati Game Reserve
2.1.3. Kempiana Nature Reserve
2.2. Methods
2.2.1. Sampling Framework
2.2.2. Total Count Quadrats: Control Population Parameters
2.2.3. The Step Point Method: Relative Population Parameters
2.3. Data Analysis
3. Results
3.1. Central Bushveld
- Recorded 48.1% of herbaceous species;
- Underestimated the species richness of grasses, forbs and sedges by 22.2%, 65.2% and 100%, respectively.
- Overestimated the relative species richness of grasses by 20.5% while underestimating that of forbs by 17.7%;
- Overestimated the relative abundance of grasses by up to 25% while underestimating that of forbs by 18.1%;
- Underestimated the herbaceous species diversity by 12% while overestimating evenness by 5% overall;
- Showed an underestimation in diversity by 4.6% and 14% for grasses and forbs, respectively;
- Showed an overestimation of evenness by 2.5% and 14.5% for grasses and forbs, respectively;
- Did not record any sedge species.
3.2. Mopane Veld
- Recorded 41.67% of herbaceous species;
- Underestimated the species richness of grasses, forbs and sedges by 35.71%, 59.26% and 100%, respectively;
- Overestimated the relative species richness of grasses by 15.8% while underestimating that of forbs by 11.6%;
- Overestimated the relative abundance of grasses by 33.7% while underestimating that of forbs by 31.8%;
- Underestimated the herbaceous species diversity by 14.3% while overestimating evenness by 6.25% overall;
- Showed an underestimation of diversity by 7.8% and 18.7% for grasses and forbs, respectively;
- Showed an overestimation of evenness by 6.2% and 9.5% for grasses and forbs, respectively;
- Did not record any sedge species.
3.3. Lowveld
- Recorded 50% of herbaceous species;
- Underestimated the species richness of grasses, forbs and sedges by 20%, 58.82% and 100%, respectively;
- Overestimated the relative species richness of grasses by 16.2% while underestimating that of forbs by 12.1%;
- Overestimated the relative abundance of grasses by 38.6% while underestimating that of forbs by 35.4%;
- Underestimated the herbaceous species diversity and evenness by 26.12% and 12.05% overall, respectively;
- Showed an underestimation of diversity by 18.6% and 8.4% for grasses and forbs, respectively;
- Showed an underestimation of the evenness of grasses by 12.2% and an overestimation of that of forbs by 17.7%;
- Did not record any sedge species.
4. Discussion
4.1. Species Richness
4.2. Abundance and Dominance
4.3. Alpha Diversity and Evenness
4.4. Beta Diversity and Spatial Variation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bonham, C.D. Measurements for Terrestrial Vegetation, 2nd ed.; Wiley-Blackwell: Chichester, UK; Hoboken, NJ, USA, 2013; ISBN 978-0-470-97258-8. [Google Scholar]
- Jamali, H.; Ebrahimi, A.; Ardestani, E.G.; Pordel, F. Evaluation of Plotless Density Estimators in Different Plant Density Intensities and Distribution Patterns. Glob. Ecol. Conserv. 2020, 23, e01114. [Google Scholar] [CrossRef]
- Notarangelo, M.; Carrer, M.; Lingua, E.; Puletti, N.; Torresan, C. Performance Assessment of Two Plotless Sampling Methods for Density Estimation Applied to Some Alpine Forests of Northeastern Italy. iForest Biogeosciences For. 2023, 16, 385–391. [Google Scholar] [CrossRef]
- Tidmarsh, C.E.M.; Havenga, C.M. The Wheel-Point Method of Survey and Measurement of Semi-Open Grasslands and Karroo Vegetation in South Africa. In Memoirs of the Botanical Survey of South Africa; Government Printer: Pretoria, South Africa, 1955. [Google Scholar]
- Foran, B.D.; Tainton, N.M.; Booysen, P.D.V. The Development of a Method for Assessing Veld Condition in Three Grassveld Types in Natal. Proc. Annu. Congr. Grassl. Soc. South. Afr. 1978, 13, 27–33. [Google Scholar] [CrossRef]
- Tainton, N.M.; Edwards, P.J.; Mentis, M.T. A Revised Method for Assessing Veld Condition. Proc. Annu. Congr. Grassl. Soc. South. Afr. 1980, 15, 37–42. [Google Scholar] [CrossRef]
- Mentis, M.T. Evaluation of the Wheel-point and Step-point Methods of Veld Condition Assessment. Proc. Annu. Congr. Grassl. Soc. South. Afr. 1981, 16, 89–94. [Google Scholar] [CrossRef]
- Trollope, W.S.W. Development of a Technique for Assessing Veld Condition in the Kruger National Park Using Key Grass Species. J. Grassl. Soc. South. Afr. 1990, 7, 46–51. [Google Scholar] [CrossRef]
- Everson, T.M.; Clarke, G.P.Y.; Everson, C.S. Precision in Monitoring Plant Species Composition in Montane Grasslands. Vegetatio 1990, 88, 135–141. [Google Scholar] [CrossRef]
- Brockett, B. Sampling Efficiency for Species Composition Assessments Using the Wheel-Point Method in a Semi-Arid Savanna. Afr. J. Range Forage Sci. 2001, 18, 93–101. [Google Scholar] [CrossRef]
- Short, A.; Morris, C. The Nearest-Plant Method Is Robust and Powerful Enough for Different Survey Teams to Monitor Change in Mesic Grassland Species Composition. Afr. J. Range Forage Sci. 2016, 33, 59–65. [Google Scholar] [CrossRef]
- Steenekamp, S.J.; Bosch, O.J.H. Construction and Evaluation of Condition Assessment and Grazing Capacity Models for Use in Grazing Management in the Eastern Mixed Bushveld of Southern Africa. J. Arid Env. 1995, 30, 351–360. [Google Scholar] [CrossRef]
- Kellner, K.; Booysen, J. ISPD Integrated System for Plant Dynamics: A Decision Support System for Rangeland Management. In Towards Sustainable Management in the Kalahari Region: Some Essential Background and Critical Issues; Ringrose, S., Chanda, R., Eds.; Directorate of Research and Development, University of Botswana: Gaborone, Botswana, 2000; pp. 151–155. [Google Scholar]
- Panagos, M.D.; Zacharias, P.J.K. Research Note: A Time and Motion Study for Two Vegetation Survey Techniques. Afr. J. Range Forage Sci. 1995, 12, 81–84. [Google Scholar] [CrossRef]
- Reilly, B.K.; Panagos, M.D. Statistical Power of Commonly Used Point Methods in Grassland Monitoring. Afr. J. Range Forage Sci. 2002, 19, 117–122. [Google Scholar] [CrossRef]
- Stohlgren, T.J. Measuring Plant Diversity; Oxford University Press: New York, NY, USA, 2007; ISBN 978-0-19-517233-1. [Google Scholar]
- Trollope, W.S.W.; Trollope, L.A.; Bosch, O.J.H. Veld and Pasture Management Terminology in Southern Africa. J. Grassl. Soc. South. Afr. 1990, 7, 52–61. [Google Scholar] [CrossRef]
- O’Connor, T.G.; Haines, L.M.; Snyman, H.A. Influence of Precipitation and Species Composition on Phytomass of a Semi-arid African Grassland. J. Ecol. 2001, 89, 850–860. [Google Scholar] [CrossRef]
- O’Connor, T.G.; Roux, P.W. Vegetation Changes (1949-71) in a Semi-Arid, Grassy Dwarf Shrubland in the Karoo, South Africa: Influence of Rainfall Variability and Grazing by Sheep. J. Appl. Ecol. 1995, 32, 612. [Google Scholar] [CrossRef]
- Short, A.D.; O’Connor, T.G.; Hurt, C.R. Medium-Term Changes in Grass Composition and Diversity of Highland Sourveld Grassland in the Southern Drakensberg in Response to Fire and Grazing Management. Afr. J. Range Forage Sci. 2003, 20, 1–10. [Google Scholar] [CrossRef]
- Scott-Shaw, R.; Morris, C.D. Grazing Depletes Forb Species Diversity in the Mesic Grasslands of KwaZulu-Natal, South Africa. Afr. J. Range Forage Sci. 2015, 32, 21–31. [Google Scholar] [CrossRef]
- Elzinga, C.L.; Salzer, D.W.; Willoughby, J.W. Measuring and Monitoring Plant Populations; BLM Technical Reference 1739-1; Bureau of Land Management: Denver, CO, USA, 1998. [Google Scholar]
- Stohlgren, T.J.; Bull, K.A.; Otsuki, Y. Comparison of Rangeland Vegetation Sampling Techniques in the Central Grasslands. J. Range Manag. 1998, 51, 164. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 2006, 19, 1–807. [Google Scholar]
- Kruger, A.C. Climate of South Africa. Climate Region. WS45; South African Weather Service: PRetoria, South Africa, 2004; ISBN 0-9584463-3-4. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Chao, A.; Lee, S.-M. Estimating the Number of Classes via Sample Coverage. J. Am. Stat. Assoc. 1992, 87, 210–217. [Google Scholar] [CrossRef]
- Chao, A.; Shen, T.J. SPADE: Species Prediction and Diversity Estimation. Program and User’s Guide. 2010. Available online: http://chao.stat.nthu.edu.tw/softwareCE.html (accessed on 23 September 2022).
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science: Oxford, UK, 2004; ISBN 978-0-632-05633-0. [Google Scholar]
- Magurran, A.E.; McGill, B.J. Biological Diversity: Frontiers in Measurement and Assessment; Oxford University Press: Oxford, UK, 2011; ISBN 978-0-19-958066-8. [Google Scholar]
- Berger, W.H.; Parker, F.L. Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Science 1970, 168, 1345–1347. [Google Scholar] [CrossRef]
- Seaby, R.M.; Henderson, P.A. Species Diversity and Richness IV; Pisces Conservation Ltd.: Lymington, UK, 2007. [Google Scholar]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the Evidence for Biodiversity Effects on Ecosystem Functioning and Services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and Its Impact on Humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Yoccoz, N.G.; Nichols, J.D.; Boulinier, T. Monitoring of Biological Diversity in Space and Time. Trends Ecol. Evol. 2001, 16, 446–453. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K. In Search of the Best Correlates for Local Organismal Biodiversity in Cultivated Areas. Biodivers. Conserv. 1998, 7, 297–309. [Google Scholar] [CrossRef]
- Panagos, M.D.; Reilly, B.K. Use of an Area-Based Survey Technique to Detect Vegetation Changes in Sour Bushveld. Koedoe 2006, 49, 69–78. [Google Scholar] [CrossRef]
- Gaston, K.J. Valuing Common Species. Science 2010, 327, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty; Chapman and Hall: Boston, MA, USA, 1992. [Google Scholar] [CrossRef]
- Begon, M.; Townsend, C.R. Ecology: From Individuals to Ecosystems, 5th ed.; Blackwell Publishing: Oxford, UK, 2021. [Google Scholar]
- Wilson, M.V.; Shmida, A. Measuring Beta Diversity with Presence-Absence Data. J. Ecol. 1984, 72, 1055. [Google Scholar] [CrossRef]
- Swenson, N.G.; Enquist, B.J. Opposing Assembly Mechanisms in a Neotropical Dry Forest: Implications for Phylogenetic and Functional Community Ecology. Ecology 2009, 90, 2161–2170. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. The global biogeography of roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Garbach, K.; Milder, J.C.; Montenegro, M.; Karp, D.S.; DeClerck, F.A.J. Biodiversity and ecosystem services in agroecosystems. Encycl. Agric. Food Syst. 2014, 2, 21–40. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and Productivity in a Long-Term Grassland Experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef]
- Wilsey, B.J.; Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 2000, 81, 887–892. [Google Scholar] [CrossRef]
- Panagos, M.D. A comparative classification of the Sourish-Mixed Bushveld on the farm Roodeplaat (293 JR) Using Quadrat and Point Methods. Master’s Thesis, University of Natal, Natal, South Africa, 1995. [Google Scholar]
- Kambatuku, J.R.; Cramer, M.D.; Ward, D. Savanna Tree-Grass Competition Is Modified by Substrate Type and Herbivory. J. Veg. Sci. 2011, 22, 225–237. [Google Scholar] [CrossRef]
- Archibald, S.; Bond, W.J.; Hoffmann, W.; Lehmann, C.; Staver, C.; Stevens, N. Distribution and Determinants of Savannas. In Savanna Woody Plants and Large Herbivores; Scogings, P.F., Sankaran, M., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 1–24. ISBN 978-1-119-08110-4. [Google Scholar]
- Baer, S.G.; Collins, S.L.; Blair, J.M.; Knapp, A.K.; Fiedler, A.K. Soil Heterogeneity Effects on Tallgrass Prairie Community Heterogeneity: An Application of Ecological Theory to Restoration Ecology. Restor. Ecol. 2005, 13, 413–424. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Moilanen, A.; Wintle, B.A.; Thomas, C.D. Habitat Area, Quality and Connectivity: Striking the Balance for Efficient Conservation. J. Appl. Ecol. 2011, 48, 148–152. [Google Scholar] [CrossRef]
- Legendre, P.; Borcard, D.; Peres-Neto, P.R. analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 2005, 75, 435–450. [Google Scholar] [CrossRef]
- Siebert, F.; Dreber, N. Forb Ecology Research in Dry African Savannas: Knowledge, Gaps, and Future Perspectives. Ecol. Evol. 2019, 9, 7875–7891. [Google Scholar] [CrossRef] [PubMed]
- Siebert, F.; Chamane, S.; Ntuli, N.; Siebert, S.J. The Functional Importance of Forbs in Grassland Ecosystems. In Proceedings of the XXIV International Grassland Congress, Virtually, 25–29 October 2021. [Google Scholar]
- Higgins, S.I.; Bond, W.J.; Trollope, W.S.W. Fire, Resprouting and Variability: A Recipe for Grass–Tree Coexistence in Savanna. J. Ecol. 2000, 88, 213–229. [Google Scholar] [CrossRef]
Grasses | Forbs | Sedges | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
Results | D (%) | Results | D (%) | Results | D (%) | Results | D (%) | ||
Species richness | TCQ | 36 | −22.2 | 69 | −65.20 | 3 | −100.00 | 108 | −51.90 |
SPM | 28 | 24 | 0 | 52 | |||||
Relative species richness (%) | TCQ | 33.3 | 20.50 | 63.9 | −17.70 | 2.8 | −2.80 | ||
SPM | 53.8 | 46.2 | 0 | ||||||
Relative abundance (%) | TCQ | 48.2 | 25.00 | 44.9 | −18.10 | 6.9 | 6.90 | ||
SPM | 73.2 | 26.8 | 0 | ||||||
Species diversity (H) | TCQ | 2.84 | −4.60 | 3.21 | −14.00 | 0.8 | −100.00 | 3.76 | −12.00 |
SPM | 2.71 | 2.76 | 0 | 3.31 | |||||
Species evenness (He) | TCQ | 0.79 | 2.50 | 0.76 | 14.50 | 0.73 | N/A | 0.8 | 5.00 |
SPM | 0.81 | 0.87 | N/A | 0.84 |
Grasses | Forbs | Sedges | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
Results | D (%) | Results | D (%) | Results | D (%) | Results | D (%) | ||
Species Richness | TCQ | 28 | −35.71 | 54 | −59.26 | 4 | −100.00 | 96 | −58.33 |
SPM | 18 | 22 | 0 | 40 | |||||
Relative species richness (%) | TCQ | 29.2 | 15.80 | 66.6 | −11.60 | 4.2 | −4.20 | ||
SPM | 45 | 55 | 0 | ||||||
Relative abundance (%) | TCQ | 34 | 33.70 | 64.1 | −31.80 | 1.9 | −1.90 | ||
SPM | 67.7 | 32.3 | 0 | ||||||
Species diversity (H) | TCQ | 2.69 | −7.81 | 3.1 | −18.71 | 0.95 | −100.00 | 3.64 | −14.29 |
SPM | 2.48 | 2.52 | 0 | 3.12 | |||||
Species evenness (He) | TCQ | 0.81 | 6.17 | 0.74 | 9.46 | 0.69 | N/A | 0.8 | 6.25 |
SPM | 0.86 | 0.81 | N/A | 0.85 |
Grasses | Forbs | Sedges | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
Results | D (%) | Results | D (%) | Results | D (%) | Results | D (%) | ||
Species Richness | TCQ | 20 | −20.00 | 51 | −58.82 | 3 | −100.00 | 74 | −50.00 |
SPM | 16 | 21 | 0 | 37 | |||||
Relative species richness (%) | TCQ | 27 | 16.20 | 68.9 | −12.10 | 4.1 | −4.10 | ||
SPM | 43.2 | 56.8 | 0 | ||||||
Relative abundance (%) | TCQ | 43.2 | 38.60 | 53.6 | −35.40 | 3.2 | −3.20 | ||
SPM | 81.8 | 18.2 | 0 | ||||||
Species diversity (H) | TCQ | 2.47 | −18.62 | 3.09 | −8.41 | 0.93 | −100.00 | 3.56 | −26.12 |
SPM | 2.01 | 2.83 | 0 | 2.63 | |||||
Species evenness (He) | TCQ | 0.82 | −12.20 | 0.79 | 17.72 | 0.84 | N/A | 0.83 | −12.05 |
SPM | 0.72 | 0.93 | N/A | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biko’o, A.A.; Myburgh, W.J.; Reilly, B.K. The Accuracy of the Step Point Vegetation Sampling Method for Herbaceous Layer Monitoring in South African Savannas. Diversity 2025, 17, 146. https://doi.org/10.3390/d17030146
Biko’o AA, Myburgh WJ, Reilly BK. The Accuracy of the Step Point Vegetation Sampling Method for Herbaceous Layer Monitoring in South African Savannas. Diversity. 2025; 17(3):146. https://doi.org/10.3390/d17030146
Chicago/Turabian StyleBiko’o, Armand A., Willem J. Myburgh, and Brian K. Reilly. 2025. "The Accuracy of the Step Point Vegetation Sampling Method for Herbaceous Layer Monitoring in South African Savannas" Diversity 17, no. 3: 146. https://doi.org/10.3390/d17030146
APA StyleBiko’o, A. A., Myburgh, W. J., & Reilly, B. K. (2025). The Accuracy of the Step Point Vegetation Sampling Method for Herbaceous Layer Monitoring in South African Savannas. Diversity, 17(3), 146. https://doi.org/10.3390/d17030146