Being Edgy: Ecotones of Ground Cover Vegetation in Managed Black Alder Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
2.2. Measurements
- (1)
- The length of the established transect does not exceed the length of the shared edge between the managed stand and the black alder stand;
- (2)
- The length of the transect placed in the black alder stand does not exceed the distance to the edges of other forest stands bordering the habitat;
- (3)
- The distance between two transects is not less than the width of one transect (5 m).
2.3. Data Analysis
3. Results and Discussion
The Diversity of Forest Ground Cover Vegetation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ries, L.; Fletcher, R.J., Jr.; Battin, J.; Sisk, T.D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 491–522. [Google Scholar] [CrossRef]
- Finér, L.; Jurgensen, M.; Palviainen, M.; Piirainen, S.; Page-Dumroese, D. Does clear-cut harvesting accelerate initial wood decomposition? A five-year study with standard wood material. For. Ecol. Manag. 2016, 372, 10–18. [Google Scholar] [CrossRef]
- Tonteri, T.; Hotanen, J.-P.; Kuusipalo, J. The Finnish forest site type approach: Origins, concepts, and applications. For. Ecol. Manag. 1990, 42, 151–166. [Google Scholar]
- Dieler, J.; Uhl, E.; Biber, P. Effect of Forest Stand Management on Species Composition, Structural Diversity, and Productivity in the Temperate Zone of Europe. For. Ecol. Manag. 2017, 391, 364–374. [Google Scholar] [CrossRef]
- Cesonieňe, L.; Daubaras, R.; Tamutis, V.; Kaškonienė, V.; Kaškonas, P.; Stakėnas, V.; Zych, M. Effect of Clear-Cutting on the Understory Vegetation, Soil and Diversity of Litter Beetles in Scots Pine-Dominated Forest. J. Sustain. For. 2019, 38, 791–808. [Google Scholar] [CrossRef]
- Esseen, P.-A.; Ehnström, B.; Ericson, L.; Sjöberg, K. Boreal forests. Ecol. Bull. 1997, 46, 16–47. [Google Scholar]
- Franklin, J.F.; Lindenmayer, D.B.; MacMahon, J.A.; McKee, A.; Magnusson, J.; Perry, D.A.; Waide, R.; Foster, D.R. Threads of continuity: Ecosystem disturbances, biological legacies and ecosystem recovery. Conserv. Sci. Pract. 2000, 1, 8–16. [Google Scholar] [CrossRef]
- Chen, J.Q.; Franklin, J.F.; Spies, T.A. Growing-season microclimatic gradients from clear-cut edges into old-growth Douglas-fir forests. Ecol. Appl. 1995, 5, 74–86. [Google Scholar] [CrossRef]
- Gehlhausen, S.M.; Schwartz, M.W.; Augspurger, C.K. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 2000, 147, 21–35. [Google Scholar] [CrossRef]
- Hughes, J.W.; Fahey, T.J. Colonization dynamics of herbs and shrubs in a disturbed northern hardwood forest. J. Ecol. 1991, 79, 605–616. [Google Scholar] [CrossRef]
- Dovčiak, M.; Halpern, C.B.; Saracco, J.F.; Evans, S.A.; Liguori, D.A. Persistence of ground-layer bryophytes in a structural retention experiment: Initial effects of level and pattern of overstory retention. Can. J. For. Res. 2006, 36, 3039–3052. [Google Scholar] [CrossRef]
- Baker, S.C.; Spies, T.A.; Wardlaw, T.J.; Balmer, J.; Franklin, J.F.; Jordan, G.I. The harvested side of edges: Effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. For. Ecol. Manag. 2013, 302, 107–121. [Google Scholar] [CrossRef]
- Chen, J.Q.; Franklin, J.F.; Spies, T.A. Vegetation responses to edge environments in old-growth Douglas-fir forests. Ecol. Appl. 1992, 2, 387–396. [Google Scholar] [CrossRef]
- Laurance, W.F.; Ferreira, L.V.; Rankin-de Merona, J.M.; Laurance, S.G. Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 1998, 79, 2032–2040. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E. Structure and composition of edges next to regenerating clear-cuts in mixed-wood boreal forest. J. Veg. Sci. 2002, 13, 535–546. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Esseen, P.A. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Dovčiak, M.; Halpern, C.B. Positive diversity–stability relationships in forest herb populations during four decades of community assembly. Ecol. Lett. 2010, 13, 1300–1309. [Google Scholar] [CrossRef]
- Franklin, J.F.; Spies, T.A.; Van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C.; et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Morrissey, R.C.; Jacobs, D.F.; Seifert, J.R.; Fischer, B.; Kershaw, J.A. Competitive success of natural oak regeneration in clearcuts during the stem exclusion stage. Can. J. For. Res. 2008, 38, 1419–1430. [Google Scholar] [CrossRef]
- Dovčiak, M.; Brown, J. Secondary edge effects in regenerating forest landscapes: Vegetation and microclimate patterns and their implications for management and conservation. New For. 2014, 45, 733–744. [Google Scholar] [CrossRef]
- Myers, J.A.; Harms, K.E. Seed arrival, ecological filters, and plant species richness: A meta-analysis. Ecol. Lett. 2009, 12, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Matlack, G.R. Microenvironment variation within and among forest edge sites in the Eastern United States. Biol. Conserv. 1993, 66, 185–194. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Quideau, S.; Mackenzie, M.D.; Landhäusser, S.M. Forest floor development and biochemical properties in reconstructed boreal forest soils. Appl. Soil Ecol. 2011, 49, 139–147. [Google Scholar] [CrossRef]
- Chipman, S.J.; Johnson, E.A. Understory Vascular Plant Species Diversity in the Mixedwood Boreal Forest of Western Canada. Ecol. Appl. 2002, 12, 588–601. [Google Scholar] [CrossRef]
- Felton, A.M.; Felton, A.; Cromsigt, J.P.G.M.; Edenius, L.; Malmsten, J.; Warm, H.K. Interactions between ungulates, forests, and supplementary feeding: The role of nutritional balancing in determining outcomes. Mammal Res. 2016, 62, 1–7. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, H.; Girardello, M.; Pellissier, V.; Nielsen, S.E.; Svenning, J.C. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. R. Soc. B 2018, 285, 20180949. [Google Scholar] [CrossRef]
- Schnitzler, A. European alluvial hardwood forests of large floodplains. J. Biogeogr. 1994, 21, 605–623. [Google Scholar] [CrossRef]
- Hylander, K. Living on the edge: Effectiveness of buffer strips in protecting biodiversity in boreal riparian forests. J. Appl. Ecol. 2004, 42, 518–525. [Google Scholar] [CrossRef]
- Douda, J.; Boublík, K.; Slezák, M.; Biurrun, I.; Nociar, J.; Havrdová, A.; Zimmermann, N.E. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl. Veg. Sci. 2016, 19, 147–163. [Google Scholar] [CrossRef]
- Slezák, M.; Hrivnák, R.; Machava, J. Environmental controls of plant species richness and species composition in black alder floodplain forests of central Slovakia. Tuexenia 2017, 37, 79–94. [Google Scholar]
- Natlandsmyr, B.; Hjelle, K.L. Long-term vegetation dynamics and land-use history: Providing a baseline for conservation strategies in protected Alnus glutinosa swamp woodlands. For. Ecol. Manag. 2016, 372, 78–92. [Google Scholar] [CrossRef]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen. In Ökologischer, Dynamischer und Historischer Sicht; Utb: Stuttgart, Germany, 2010; Volume 8104. [Google Scholar]
- Claessens, H.; Oosterbaan, A.; Savill, P.; Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 2010, 83, 163–175. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation. Bioscience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Palmer, M.A.; Lettenmaier, D.P.; Poff, L.N.; Postel, S.L.; Ritcher, B.; Warner, R.R. Climate change and river ecosystems: Protection and adaptation options. Environ. Manag. 2009, 44, 1053–1068. [Google Scholar] [CrossRef]
- Attorre, F.; Alfò, M.; De Sanctis, M.; Francesconi, F.; Valenti, R.; Vitale, M.; Bruno, F. Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl. Veg. Sci. 2011, 14, 242–255. [Google Scholar] [CrossRef]
- Gignac, L.D.; Dale, M.R.T. Effect of fragment size and habitat heterogeneity on cryptogam diversity in the low-boreal forest of western Canada. Bryologist 2005, 108, 50–66. [Google Scholar] [CrossRef]
- Stockdale, C.; Flannigan, M.; Macdonald, E. Is the END (emulation of natural disturbance) a new beginning? A critical analysis of the use of fire regimes as the basis of forest ecosystem management with examples from the Canadian western Cordillera. Environ. Rev. 2016, 24, 233–243. [Google Scholar] [CrossRef]
- Grandpré, L.D.; Waldron, K.; Bouchard, M.; Gauthier, S.; Beaudet, M.; Ruel, J.C.; Hébert, C.; Kneeshaw, D.D. Incorporating insect and wind disturbances in a natural disturbance-based management framework for the boreal forest. Forests 2018, 9, 471. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Bušs, K. Forest ecosystem classification in Latvia. Proc. Latv. Acad. Sci. Sect. B 1997, 51, 5. [Google Scholar]
- Auniņš, A. (Ed.) Eiropas Savienības Aizsargājamie Biotopi Latvijā. Noteikšanas Rokasgrāmata, 2nd ed.; Latvijas Dabas Fonds: Rīga, Latvia, 2013; p. 320. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hill, M.O.; Gauch, H.G. Detrended correspondence analysis: An improved ordination technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Correa-Metrio, A.; Dechnik, Y.; Lozano-García, S.; Caballero, M. Detrended correspondence analysis: A useful tool to quantify ecological changes from fossil data sets. Bol. Soc. Geol. Mex. 2014, 66, 135–143. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 9 April 2025).
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package, R Package Version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 9 April 2025).
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. Am. Stat. 1980, 34, 216–221. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Darell, P.; Cronberg, N. Bryophytes in black alder swamps in south Sweden: Habitat classification, environmental factors and life-strategies. Lindbergia 2011, 34, 9–29. [Google Scholar]
- Douda, J.; Doudová-Kochánková, J.; Boublík, K.; Drašnarová, A. Plant species coexistence at local scale in temperate swamp forest: Test of habitat heterogeneity hypothesis. Oecologia 2012, 169, 523–534. [Google Scholar] [CrossRef]
- Stefańska-Krzaczek, E.; Kącki, Z.; Szypuła, B. Coexistence of ancient forest species as an indicator of high species richness. For. Ecol. Manag. 2016, 365, 12–21. [Google Scholar] [CrossRef]
- Haapalehto, T.O.; Kotiaho, J.S.; Matilainen, R.; Tahvanainen, T. The effects of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatlands. J. Hydrol. 2014, 519, 1493–1505. [Google Scholar] [CrossRef]
- Paal, J.; Jürjendal, I.; Kull, A. Impact of drainage on vegetation of transitional mires in Estonia. Mires Peat 2016, 18, 2. [Google Scholar]
- Sikström, U.; Hökkä, H. Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fenn. 2016, 50, 1416. [Google Scholar] [CrossRef]
- Maanavilja, L.; Aapala, K.; Haapalehto, T.; Kotiaho, J.S.; Tuittila, E.S. Impact of drainage and hydrological restoration on vegetation structure in boreal spruce swamp forests. For. Ecol. Manag. 2014, 330, 115–125. [Google Scholar] [CrossRef]
- Hrivnák, R.; Kostál, J.; Slezák, M.; Petrásová, A.; Feszterová, M. Black Alder dominated forest vegetation in the western part of central Slovakia: Species composition and ecology. Hacquetia 2013, 12, 23. [Google Scholar] [CrossRef]
- Paal, J. Diversity of Alnus glutinosa dominated swamp forests in Estonia. Balt. For. 2023, 29, id701. [Google Scholar] [CrossRef]
- Ellenberg, H. Vegetation Ecology of Central Europe, 4th ed.; Cambridge University Press: Cambridge, UK, 1988; pp. 1–731. [Google Scholar]
- Wagner, V.; Večeřa, M.; Jiménez-Alfaro, B.; Pergl, J.; Lenoir, J.; Svenning, J.C.; Pyšek, P.; Agrillo, E.; Biurrun, I.; Campos, J.A.; et al. Alien plant invasion hotspots and invasion debt in European woodlands. J. Veg. Sci. 2021, 32, e13014. [Google Scholar] [CrossRef]
- Sorrell, B.K.; Partridge, T.R.; Clarkson, B.R.; Jackson, R.J.; Chagué-Goff, C.; Ekanayake, J.; Payne, J.; Gerbeaux, P.; Grainger, N.P.J. Soil and vegetation responses to hydrological manipulation in a partially drained polje fen in New Zealand. Wetl. Ecol. Manag. 2007, 15, 361–383. [Google Scholar] [CrossRef]
- Obidzinski, T.; Symonides, E. The influence of the groundlayer structure on the invasion of small balsam (Impatiens parviflora DC.) to natural and degraded forests. Acta Soc. Bot. Pol. 2000, 69, 311–318. [Google Scholar] [CrossRef]
- Bosley-Smith, C.; D’Amato, A.W.; Rogers, N.S.; Tabak, N.; Fraver, S. Understorey vegetation response to post-tornado salvage logging. Appl. Veg. Sci. 2024, 27, e70006. [Google Scholar] [CrossRef]
- LaPaix, R.; Freedman, B.; Patriquin, D. Ground vegetation as an indicator of ecological integrity. Environ. Rev. 2009, 17, 249–265. [Google Scholar] [CrossRef]
- Remm, L.; Lõhmus, P.; Leis, M.; Lõhmus, A. Long-Term Impacts of Forest Ditching on Non-Aquatic Biodiversity: Conservation Perspectives for a Novel Ecosystem. PLoS ONE 2013, 8, e63086. [Google Scholar] [CrossRef] [PubMed]
- Ingerpuu, N.; Vellak, K.; Liira, J.; Pärtel, M. Relationships between species richness patterns in deciduous forests at the north Estonian limestone escarpment. J. Veg. Sci. 2003, 14, 773–780. [Google Scholar] [CrossRef]
- Löbel, S.; Dengler, J.; Hobohm, C. Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot. 2006, 41, 377–393. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. J. Veg. Sci. 2013, 24, 543–552. [Google Scholar] [CrossRef]
- Wolski, G.J.; Sobisz, Z.; Mitka, J.; Kruk, A.; Jukonienė, I.; Popiela, A. Vascular plants and mosses as bioindicators of variability of the coastal pine forest (Empetro nigri-Pinetum). Sci. Rep. 2024, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Pöpperl, F.; Seidl, R. Effects of stand edges on the structure, functioning, and diversity of a temperate mountain forest landscape. Ecosphere 2021, 12, e03692. [Google Scholar] [CrossRef]
- Söderström, L.; Jonsson, B.G. Fragmentation of old growth forests and bryophytes on temporary substrates. Svensk Bot. Tidskr. 1992, 86, 185–198. [Google Scholar]
- Zobel, M. The relative role of species pools in determining plant species richness: An alternative explanation of species coexistence? Trends Ecol. Evol. 1997, 12, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Heinken, T.; Diekmann, M.; Liira, J.; Orczewska, A.; Schmidt, M.; Brunet, J.; Chytrý, M.; Chabrerie, O.; Decocq, G.; De Frenne, P.; et al. The European forest plant species list (EuForPlant): Concept and applications. J. Veg. Sci. 2022, 33, e13132. [Google Scholar] [CrossRef]
- Parker, K.C.; Bendix, J. Landscape-scale geomorphic influences on vegetation patterns in four environments. Phys. Geogr. 1996, 17, 113–141. [Google Scholar] [CrossRef]
- De Jager, N.R.; Thomsen, M.; Yin, Y. Threshold effects of flood duration on the vegetation and soils of the Upper Mississippi River floodplain, USA. For. Ecol. Manag. 2012, 270, 135–146. [Google Scholar] [CrossRef]
Vegetation Layer | Alder Swamp Woods (ASW) | Alder Stands Growing on Eutrophic Drained Peat Soils (EDP) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Number of Plots | Frequency, % | Mean Cover, % | Sd, % | Species | Number of Plots | Frequency, % | Mean Cover, % | Sd, % | |
Herbaceous | OxalAcet | 76 | 66.1 | 10.4 | 10.9 | OxalAcet | 133 | 98.5 | 23.1 | 12.0 |
GaliPalu | 53 | 46.1 | 1.1 | 1.6 | ImpaParv | 96 | 71.1 | 10.7 | 11.6 | |
LysiVulg | 49 | 42.6 | 1.4 | 2.3 | GaleLute | 67 | 49.6 | 3.9 | 5.3 | |
DryoCart | 42 | 36.5 | 3.5 | 7.1 | DryoCart | 65 | 48.1 | 5.3 | 7.9 | |
CareElon | 41 | 35.7 | 3.8 | 6.5 | UrtiDioi | 56 | 41.5 | 5.0 | 9.6 | |
Shrub and tree | FranAlnu | 20 | 17.4 | 0.5 | 1.4 | RubuIdae | 74 | 54.8 | 8.9 | 12.3 |
RubuSaxa | 19 | 16.5 | 1.0 | 3.0 | RubuSaxa | 32 | 23.7 | 2.4 | 5.4 | |
RubuIdae | 13 | 11.3 | 0.9 | 3.0 | SorbAucu | 19 | 14.1 | 0.5 | 2.1 | |
SorbAucu | 11 | 9.6 | 0.2 | 1.0 | FranAlnu | 10 | 7.4 | 0.2 | 1.0 | |
QuerRobu | 5 | 4.3 | 0.0 | 0.2 | FraxExce | 6 | 4.4 | 0.1 | 0.9 | |
Lichen and moss | CaliCusp | 61 | 53.0 | 8.4 | 12.2 | PlagAffi | 59 | 43.7 | 7.2 | 12.4 |
PlagAffi | 25 | 21.7 | 2.2 | 6.4 | EuriAngu | 41 | 30.4 | 5.7 | 11.9 | |
ThuiTama | 15 | 13.0 | 1.7 | 5.9 | PlagElli | 31 | 23.0 | 3.4 | 8.2 | |
DicrPoly | 14 | 12.2 | 1.0 | 3.9 | CaliCusp | 14 | 10.4 | 1.1 | 4.0 | |
EuriAngu | 14 | 12.2 | 1.7 | 5.5 | PlagCusp | 10 | 7.4 | 0.8 | 3.5 |
Predictor | Total Number of Species (χ2 Values) | Number of Species in the Herbaceous Layer (χ2 Values) | Number of Species in the Shrub and Tree Layer (χ2 Values) | Number of Species in the Lichen and Moss Layer (χ2 Values) | Shannon Diversity Index (F-Value) |
---|---|---|---|---|---|
Age of the adjacent stand | 4.3 * | 8.4 ** | - | 6.7 ** | - |
Type of the alder stand | 10.7 ** | 4.9 * | - | - | 10.7 ** |
Exposure of the sample plots (angle) | 6.0 * | - | - | 7.2 ** | - |
Age of the adjacent stand by the type of the alder stand | 17.3 *** | 10.8 ** | - | - | 19.1 *** |
Exposure of the sample plots (angle) by type of alder stand | - | - | 5.5 * | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liepiņa, A.A.; Elferts, D.; Matisons, R.; Jansons, Ā.; Jansone, D. Being Edgy: Ecotones of Ground Cover Vegetation in Managed Black Alder Habitats. Forests 2025, 16, 846. https://doi.org/10.3390/f16050846
Liepiņa AA, Elferts D, Matisons R, Jansons Ā, Jansone D. Being Edgy: Ecotones of Ground Cover Vegetation in Managed Black Alder Habitats. Forests. 2025; 16(5):846. https://doi.org/10.3390/f16050846
Chicago/Turabian StyleLiepiņa, Agnese Anta, Didzis Elferts, Roberts Matisons, Āris Jansons, and Diāna Jansone. 2025. "Being Edgy: Ecotones of Ground Cover Vegetation in Managed Black Alder Habitats" Forests 16, no. 5: 846. https://doi.org/10.3390/f16050846
APA StyleLiepiņa, A. A., Elferts, D., Matisons, R., Jansons, Ā., & Jansone, D. (2025). Being Edgy: Ecotones of Ground Cover Vegetation in Managed Black Alder Habitats. Forests, 16(5), 846. https://doi.org/10.3390/f16050846