Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = hemp skins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9487 KiB  
Article
Polymer Composite Sandwich Panels Composed of Hemp and Plastic Skins and Composite Wood, Recycled Plastic, and Styrofoam Cores
by Ashiqul Islam, Wahid Ferdous, Paulomi (Polly) Burey, Kamrun Nahar, Libo Yan and Allan Manalo
Polymers 2025, 17(10), 1359; https://doi.org/10.3390/polym17101359 - 15 May 2025
Viewed by 620
Abstract
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores [...] Read more.
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores (composite wood, recycled plastic, and styrofoam) materials. The skins of these sandwich panels were investigated under five different environmental conditions (normal air, water, hygrothermal, saline solution, and 80 °C elevated temperature) over seven months to evaluate their durability performance. In addition, the tensile and dynamic mechanical properties of those sandwich panels were studied. The bending behavior of cores and sandwich panels was also investigated and compared. The results indicated that elevated temperatures are 30% more detrimental to fiber composite laminates than normal water. Composite laminates made of hemp are more sensitive to environmental conditions than composite laminates made of recycled PET. A higher-density core makes panels more rigid and less susceptible to indentation failure. The flexible plastic cores are found to be up to 25% more effective at increasing the strength of sandwich panels than brittle wood cores. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

17 pages, 4041 KiB  
Article
Characterization and Biological Evaluation of Composite Nanofibrous Membranes Prepared from Hemp Salmon (Oncorhynchus keta) Skin Collagen
by Yu Liu, Mochi Zhu, Rui Duan and Junjie Zhang
Cells 2025, 14(7), 537; https://doi.org/10.3390/cells14070537 - 3 Apr 2025
Viewed by 653
Abstract
Aquatic collagen, a natural macromolecule protein with excellent biocompatibility, has attracted attention in the field of medical materials. Compared to mammalian collagen, aquatic collagen offers unique advantages, including the absence of zoonotic disease risks and religious concerns. In this study, salmon skin collagen [...] Read more.
Aquatic collagen, a natural macromolecule protein with excellent biocompatibility, has attracted attention in the field of medical materials. Compared to mammalian collagen, aquatic collagen offers unique advantages, including the absence of zoonotic disease risks and religious concerns. In this study, salmon skin collagen nanofiber membrane (GS) was prepared by electrostatic spinning. Then, skin collagen was combined with silk sericin (SS) and sodium hyaluronate (HA) to fabricate composite collagen nanofiber membrane (GF) using electrostatic spinning technology. GF membranes were further cross-linked (GFL) for use in a mouse wound healing model. The physicochemical properties and biocompatibility of GS, GF, and GFL were evaluated. FTIR analysis revealed that GFL exhibited a more stable secondary structure compared to GS and GF. DSC and TGA results indicated that GFL had the highest thermal stability, followed by GF. Cytotoxicity tests confirmed that GS, GF, and GFL were non-cytotoxic, with GF showing the highest cell viability rate of 175.23 ± 1.77%. In the wound healing model, GFL group achieved nearly complete healing by day 14 (98 ± 0.1%), compared to 76.04 ± 0.01% in the blank group. Measurement of TGF-β1 and VEGF levels in the healing tissue on day 14 indicated that the GFL group had progressed to the late stage of healing, whereas the blank group remained in the early stage. These results suggest that GFL holds significant potential as a medical biomaterial for wound healing applications. Full article
Show Figures

Figure 1

23 pages, 6802 KiB  
Article
Thermal Comfort Properties of Biodegradable Hemp and Polylactide Fiber Knitted Fabrics
by Ingrida Padleckienė, Laimutė Stygienė, Sigitas Krauledas, Aušra Abraitienė and Audronė Sankauskaitė
Polymers 2025, 17(7), 903; https://doi.org/10.3390/polym17070903 - 27 Mar 2025
Viewed by 837
Abstract
According to the global strategy of Green course, the production of sustainable textiles using different biodegradable fibres has immense potential for the development of sustainable products. Using one of the most sustainable biobased pure hemp and polylactide fibers yarns, four new biodegradable three-layer [...] Read more.
According to the global strategy of Green course, the production of sustainable textiles using different biodegradable fibres has immense potential for the development of sustainable products. Using one of the most sustainable biobased pure hemp and polylactide fibers yarns, four new biodegradable three-layer weft knitted fabrics with good thermal comfort properties were developed. The inner layer (worn next to the skin) and the middle layer of the knits were formed of hydrophobic polylactide fibers, the outer layer of different amounts (36–55%) of hydrophilic natural hemp fibers. Biodegradable polylactide fiber yarns were used as a replacement for conventional petroleum-based synthetic fibers. Natural hemp fibers are one of the most sustainable fibers derived directly from Cannabis sativa L. plants. The properties of the knitted fabrics were analysed and compared under thermoregulatory-moisture management, thermal resistance, air and water vapour permeability-properties. The results showed that all newly developed knits are ascribed to ‘moisture management’ fabrics according to the summary grading of all indices of moisture management parameters. In addition, it was found that the highest overall moisture management capability is related to the quantity of natural hemp fiber composition in different knitting structures. Based on the overall moisture management capacity (OMMC) index and thermal resistance values of developed knitted fabrics, the performance levels for these materials contacting the skin and intended for the intermediate layer were determined. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 547 KiB  
Article
Efficacy of Natural β-Carotene Chewable Tablets Derived from Banana (Musa AA) Pulp in Reducing UV-Induced Skin Erythema
by Chatnarong Putthong, Thanasorn Panmanee, Pensri Charoensit, Sukunya Ross, Kongaphisith Tongpoolsomjit and Jarupa Viyoch
Nutrients 2025, 17(1), 65; https://doi.org/10.3390/nu17010065 - 27 Dec 2024
Cited by 2 | Viewed by 1490
Abstract
Background/Objectives: UV radiation is a primary cause of skin damage and photoaging. β-carotene, a potent antioxidant, aids in mitigating UV-induced oxidative stress and enhancing skin photoprotection. This research aimed to evaluate the efficacy of a nutraceutical product designed to prevent photoaging. Methods: The [...] Read more.
Background/Objectives: UV radiation is a primary cause of skin damage and photoaging. β-carotene, a potent antioxidant, aids in mitigating UV-induced oxidative stress and enhancing skin photoprotection. This research aimed to evaluate the efficacy of a nutraceutical product designed to prevent photoaging. Methods: The product consists of a blend of hemp seed oil and banana (Musa AA), formulated as a chewable tablet. Healthy male participants aged 35–50 years were enrolled in a randomized, parallel, single-blind, placebo-controlled clinical trial. Participants received either the chewable nutraceutical (five tablets after meals in the morning and evening, equivalent to 8 ± 2 mg/day of β-carotene and 400 mg/day of PUFA) or a chewable placebo for 16 weeks. A total of thirty-six participants successfully completed the entire 16-week study. Results: Administration of the nutraceutical resulted in a significant reduction (p < 0.05) in UV solar light stimulator-induced erythema on the dorsal skin at week 4, with a mean value of 3.76 ± 0.46 AU, compared to the initial value of 4.88 ± 0.62 AU at week 0. Additionally, serum β-carotene concentration significantly increased from 0.45 ± 0.02 µg/mL at week 0 to 0.61 ± 0.06 µg/mL at week 16 (p < 0.05). Moreover, skin intensity in the sun-exposed arm area also significantly improved at week 16, increasing from 71.33 ± 3.50 at week 0 to 81.80 ± 4.45 (p < 0.05). Conclusions: The results indicate that the developed nutraceutical may offer effective protection against erythema, making it a promising option for preventing photoaging. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

35 pages, 1290 KiB  
Systematic Review
Cannabinoids in Integumentary Wound Care: A Systematic Review of Emerging Preclinical and Clinical Evidence
by Dhakshila Niyangoda, Mohammed Muayad, Wubshet Tesfaye, Mary Bushell, Danish Ahmad, Indira Samarawickrema, Justin Sinclair, Shida Kebriti, Vincent Maida and Jackson Thomas
Pharmaceutics 2024, 16(8), 1081; https://doi.org/10.3390/pharmaceutics16081081 - 17 Aug 2024
Cited by 4 | Viewed by 4572
Abstract
This systematic review critically evaluates preclinical and clinical data on the antibacterial and wound healing properties of cannabinoids in integument wounds. Comprehensive searches were conducted across multiple databases, including CINAHL, Cochrane library, Medline, Embase, PubMed, Web of Science, and LILACS, encompassing records up [...] Read more.
This systematic review critically evaluates preclinical and clinical data on the antibacterial and wound healing properties of cannabinoids in integument wounds. Comprehensive searches were conducted across multiple databases, including CINAHL, Cochrane library, Medline, Embase, PubMed, Web of Science, and LILACS, encompassing records up to May 22, 2024. Eighteen studies met the inclusion criteria. Eleven were animal studies, predominantly utilizing murine models (n = 10) and one equine model, involving 437 animals. The seven human studies ranged from case reports to randomized controlled trials, encompassing 92 participants aged six months to ninety years, with sample sizes varying from 1 to 69 patients. The studies examined the effects of various cannabinoid formulations, including combinations with other plant extracts, crude extracts, and purified and synthetic cannabis-based medications administered topically, intraperitoneally, orally, or sublingually. Four animal and three human studies reported complete wound closure. Hemp fruit oil extract, cannabidiol (CBD), and GP1a resulted in complete wound closure in twenty-three (range: 5–84) days with a healing rate of 66–86% within ten days in animal studies. One human study documented a wound healing rate of 3.3 cm2 over 30 days, while three studies on chronic, non-healing wounds reported an average healing time of 54 (21–150) days for 17 patients by oral oils with tetrahydrocannabinol (THC) and CBD and topical gels with THC, CBD, and terpenes. CBD and tetrahydrocannabidiol demonstrated significant potential in reducing bacterial loads in murine models. However, further high-quality research is imperative to fully elucidate the therapeutic potential of cannabinoids in the treatment of bacterial skin infections and wounds. Additionally, it is crucial to delineate the impact of medicinal cannabis on the various phases of wound healing. This study was registered in PROSPERO (CRD42021255413). Full article
Show Figures

Figure 1

19 pages, 9043 KiB  
Article
New Bio-Based Binding Systems for Plywood Panels
by Electra Papadopoulou, Dimitrios Moutousidis, Sotirios Kountouras, Aikaterini Argyropoulou, Panagiotis Stathopoulos, Alexios Leandros Skaltsounis, Rafail O. Ioannidis, Eleftheria Xanthopoulou, Lamprini Malletzidou and Konstantinos Chrissafis
Appl. Sci. 2024, 14(13), 5862; https://doi.org/10.3390/app14135862 - 4 Jul 2024
Viewed by 1477
Abstract
This study investigated the use of non-formaldehyde binders in the production of plywood panels, focusing on mixtures containing 70% poly 4,4’-methylene diphenyl isocyanate (pMDI) and 30% soy flour (SF), along with blends of soy flour and agricultural residues (olive by-products—with and without extraction [...] Read more.
This study investigated the use of non-formaldehyde binders in the production of plywood panels, focusing on mixtures containing 70% poly 4,4’-methylene diphenyl isocyanate (pMDI) and 30% soy flour (SF), along with blends of soy flour and agricultural residues (olive by-products—with and without extraction of their bioactive ingredients—and defatted hemp seeds). The basic properties of these biomaterials, such as moisture content, pH, and buffering capacity, were determined with laboratory analysis. Adhesive mixtures were characterized using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis (TGA). The adhesive’s bonding ability was evaluated by manufacturing plywood panels on a laboratory scale, simulating industrial practices. The glue lines were visually inspected with a stereomicroscope. Micro-ATR-FTIR study of the cross-sections of plywood panels showed the full consumption of isocyanate groups indicating effective curing of the adhesive. Mixtures containing olive residues, particularly olive skin and stones, showed improved thermal stability in the TGA study. The mechanical properties of the plywood panels were assessed with three-point bending tests, while their shear strength and wood failure performance were tested according to the European standards used in the relevant industry (EN 314.1:2004 and EN 314.2:1993). In terms of flexural properties, the adhesive with non-extracted (NE) residual olive skin (ROS) showed the highest flexural strength of around 17 MPa and a flexural modulus of 650 MPa. The formulations containing extracted materials from hemp seeds (HSs) and residual olive skin (ROS) showed the best overall performance with wood failure values of 85% and 75% after the most severe cyclic test (EN314.1:2004-Pretreatment 5.1.3). Overall, the results showed that binders prepared with residual olive skin and defatted hemp seeds have promising performance and can be used in the manufacture of plywood panels. Full article
(This article belongs to the Special Issue Advances in Engineered Wood Products and Timber Structures)
Show Figures

Figure 1

13 pages, 3256 KiB  
Article
Cheungsam Seed Husk Extract Reduces Skin Inflammation through Regulation of Inflammatory Mediator in TNF-α/IFN-γ-Induced HaCaT Cells
by Ji-Ye Han, Yun Jung Lee, Do-Won Lim, Hyun-Ju Jung, EunJeong Kwon, Jongki Hong and Young-Mi Lee
Plants 2024, 13(12), 1704; https://doi.org/10.3390/plants13121704 - 19 Jun 2024
Cited by 4 | Viewed by 2153
Abstract
Cannabis contains numerous natural components and has several effects such as anticancer, anti-inflammatory and antioxidant. Cheungsam is a variety of non-drug-type hemp, developed in Korea and is used for fiber (stem) and oil (seed). The efficacy of Cheungsam on skin is not yet [...] Read more.
Cannabis contains numerous natural components and has several effects such as anticancer, anti-inflammatory and antioxidant. Cheungsam is a variety of non-drug-type hemp, developed in Korea and is used for fiber (stem) and oil (seed). The efficacy of Cheungsam on skin is not yet known, and although there are previous studies on Cheungsam seed oil, there are no studies on Cheungsam seed husk. In this study, we investigated the potential of Cheungsam seed husk ethanol extract (CSSH) to alleviate skin inflammation through evaluating the gene and protein expression levels of inflammatory mediators. The results showed that CSSH reduced pro-inflammatory cytokines (IL-1β, IL-6, IL-8, MCP-1 and CXCL10) and atopic dermatitis-related cytokines (IL-4, CCL17, MDC and RANTES) in TNF-α/IFN-γ-induced HaCaT cells. Furthermore, ERK, JNK and p38 phosphorylation were decreased and p-p65, p-IκBα, NLRP3, caspase-1, p-JAK1 and p-STAT6 were suppressed after CSSH treatment. CSSH significantly increased the level of the skin barrier factors filaggrin and involucrin. These results suggest that Cheungsam seed husk ethanol extract regulates the mechanism of skin inflammation and can be used as a new treatment for skin inflammatory diseases. Full article
Show Figures

Figure 1

24 pages, 2159 KiB  
Review
Comprehensive Insight into Cutaneous Application of Hemp
by Ana Žugić, Milica Martinović, Vanja Tadić, Miloš Rajković, Gordana Racić, Ivana Nešić and Anamarija Koren
Pharmaceutics 2024, 16(6), 748; https://doi.org/10.3390/pharmaceutics16060748 - 31 May 2024
Cited by 5 | Viewed by 2697
Abstract
Known for its natural bio-compounds and therapeutic properties, hemp is being utilized in the development of skin products. These products offer a wide range of applications and benefits in the fields of natural bio-compounds, pharmaceutical technology, topical delivery systems, and cosmeceuticals. This manuscript [...] Read more.
Known for its natural bio-compounds and therapeutic properties, hemp is being utilized in the development of skin products. These products offer a wide range of applications and benefits in the fields of natural bio-compounds, pharmaceutical technology, topical delivery systems, and cosmeceuticals. This manuscript deals with hemp actives, such as cannabinoids, terpenes, and flavonoids, and their diverse biological properties relative to topical application, including anti-inflammatory, antimicrobial, and antioxidant effects. Also, the paper reviews strategies to overcome poor penetration of hemp actives, as well as the integration of hemp actives in cosmeceuticals that provide natural and sustainable alternatives to traditional skincare products offering a range of benefits, including anti-aging, moisturizing, and soothing properties. The review aims to provide a comprehensive understanding of the development and manufacturing processes of skin products containing hemp actives. By delving into the science behind hemp-based products, the paper provides valuable insights into the potential of hemp as a versatile ingredient in the pharmaceutical and cosmetic industries. The utilization of hemp in these innovative products not only offers therapeutic benefits but also promotes natural and sustainable approaches to skincare. Full article
(This article belongs to the Special Issue Advances in Natural Products for Cutaneous Application)
Show Figures

Figure 1

14 pages, 1678 KiB  
Article
A Comparative Study of the Chemical Properties and Antibacterial Activity of Four Different Ozonated Oils for Veterinary Purposes
by Gabrielė Slavinskienė, Aidas Grigonis, Marija Ivaškienė, Ingrida Sinkevičienė, Vaida Andrulevičiūtė, Liudas Ivanauskas, Dalia Juodžentė, Kristina Ramanauskienė and Gintaras Daunoras
Vet. Sci. 2024, 11(4), 161; https://doi.org/10.3390/vetsci11040161 - 1 Apr 2024
Cited by 4 | Viewed by 2727
Abstract
Infectious skin diseases are quite common in veterinary medicine. These diseases can be caused by both bacteria and pathogenic fungi. Antimicrobial drugs are usually used for treatment. An alternative to these drugs could be ozonated oils with antibacterial and antifungal properties. Four different [...] Read more.
Infectious skin diseases are quite common in veterinary medicine. These diseases can be caused by both bacteria and pathogenic fungi. Antimicrobial drugs are usually used for treatment. An alternative to these drugs could be ozonated oils with antibacterial and antifungal properties. Four different ozonated oils (linseed, hemp seed, sunflower, and olive) were tested in order to develop an optimal pharmaceutical form for the treatment of skin infections in animals. Chemical parameters such as acid and acidity value, iodine and peroxide value, viscosity, and infrared spectres were analysed. The ozonation of oils resulted in changes in their chemical composition. The antimicrobial activity of the tested oils was evaluated by determining the minimum inhibitory concentrations and zones of inhibition in agar. After ozonation, the acid content increased in all the tested oils. The highest acidity was found in linseed oil (13.00 ± 0.11 mg KOH/g; 6.1%). Hemp oil, whose acidity was also significant (second only to linseed oil), was the least acidified by ozonation (11.45 ± 0.09 mg KOH/g; 5.75%). After ozonation, the iodine value in oils was significantly reduced (45–93%), and the highest amounts of iodine value remained in linseed (47.50 ± 11.94 g Iodine/100 g oil) and hemp (44.77 ± 1.41 Iodine/100 g oil) oils. The highest number of peroxides after the ozonation of oils was found in sunflower oil (382 ± 9.8 meqO2/kg). It was found that ozonated hemp and linseed oils do not solidify and remain in liquid form when the temperature drops. The results showed a tendency for the reference strains of S. aureus, E. faecalis, and E. coli to have broader zones of inhibition (p < 0.001) than clinical strains. Overall, ozonated linseed oil had the highest antibacterial activity, and ozonated olive oil had the lowest, as determined by both methods. It was found that ozonated linseed oil was the most effective on bacteria, while the most sensitive were S. aureus ATCC 25923, MRSA, and S. pseudointermedius (MIC 13.5 mg/mL, 4.6 mg/mL, and 13.5 mg/mL, respectively, and sterile zones 20.67 ± 0.98 mm, 20.25 ± 0.45 mm, and 18.25 ± 0.45 mm, respectively). The aim and new aspect of this work is the characterisation of selected ozonated vegetable oils, especially hemp oil, according to chemical and antibacterial parameters, in order to select suitable candidates for preclinical and clinical animal studies in the treatment of bacterial or fungal skin infections in terms of safety and efficacy. Full article
Show Figures

Figure 1

12 pages, 1336 KiB  
Article
Anti-Aging Properties of Cannabis sativa Leaf Extract against UVA Irradiation
by Kunlathida Luangpraditkun, Preeyanuch Pimjuk, Preeyawass Phimnuan, Wisanee Wisanwattana, Chothip Wisespongpand, Neti Waranuch and Jarupa Viyoch
Cosmetics 2024, 11(2), 45; https://doi.org/10.3390/cosmetics11020045 - 18 Mar 2024
Cited by 4 | Viewed by 5604
Abstract
Hemp extract has garnered interest as a potential cosmeceutical agent with multifunctional activities, particularly in protecting against UV-induced skin cell aberrations and restoring aged skin cells. The ethanolic extract of Cannabis sativa leaves was prepared into an aqueous solution (CLES) to investigate its [...] Read more.
Hemp extract has garnered interest as a potential cosmeceutical agent with multifunctional activities, particularly in protecting against UV-induced skin cell aberrations and restoring aged skin cells. The ethanolic extract of Cannabis sativa leaves was prepared into an aqueous solution (CLES) to investigate its anti-photoaging ability. HPLC analysis revealed that the CLES contained 1.64 ± 0.01% w/w of cannabidiol and 0.11% w/w of ∆9-tetrahydrocannabinol. Additionally, the total phenolic content was found to be 4.08 ± 0.30 mg gallic acid equivalent per g of solution using the Folin–Ciocalteu method. The CLES exhibited potent scavenging activity using a DPPH assay, with an EC50 value of 277.9 ± 2.41 μg/mL, comparable to L-ascorbic acid, with 2.19 ± 0.28 μg/mL. The anti-photoaging potential of the CLES was evaluated using UVA-irradiated and in vitro-aged fibroblasts as a model. Pre-treatment with 20 μg/mL CLES for 24 h significantly alleviated the reduction in type I procollagen and suppressed the overproduction of MMP-1 and IL-6 induced by UVA. Moreover, the percentage of senescence-associated β-galactosidase-expressing cells decreased significantly to 11.9 ± 0.5% in the aged cells treated with CLES compared with untreated cells (18.8 ± 3.8%). These results strongly indicate the cosmeceutical potential of the CLES as an effective active agent for the anti-photoaging prevention and/or treatment. Full article
Show Figures

Figure 1

13 pages, 6299 KiB  
Article
Shear Performance of the Interface of Sandwich Specimens with Fabric-Reinforced Cementitious Matrix Vegetal Fabric Skins
by Lluís Gil, Luis Mercedes, Virginia Mendizabal and Ernest Bernat-Maso
Appl. Sci. 2024, 14(2), 883; https://doi.org/10.3390/app14020883 - 19 Jan 2024
Cited by 2 | Viewed by 1247
Abstract
The utilization of the vegetal fabric-reinforced cementitious matrix (FRCM) represents an innovative approach to composite materials, offering distinct sustainable advantages when compared to traditional steel-reinforced concrete and conventional FRCM composites employing synthetic fibers. This article introduces a design for sandwich solutions based on [...] Read more.
The utilization of the vegetal fabric-reinforced cementitious matrix (FRCM) represents an innovative approach to composite materials, offering distinct sustainable advantages when compared to traditional steel-reinforced concrete and conventional FRCM composites employing synthetic fibers. This article introduces a design for sandwich solutions based on a core of extruded polystyrene and composite skins combining mortar as a matrix and diverse vegetal fabrics as fabrics such as hemp and sisal. The structural behavior of the resulting sandwich panel is predominantly driven by the interaction between materials (mortar and polyurethane) and the influence of shear connectors penetrating the insulation layer. This study encompasses an experimental campaign involving double-shear tests, accompanied by heuristic bond-slip models for the potential design of sandwich solutions. The analysis extends to the examination of various connector types, including hemp, sisal, and steel, and their impact on the shear performance of the sandwich specimens. The results obtained emphasize the competitiveness of vegetal fabrics in achieving an effective composite strength comparable to other synthetic fabrics like glass fiber. Nevertheless, this study reveals that the stiffness of steel connectors outperforms vegetal connectors, contributing to an enhanced improvement in both stiffness and shear strength of the sandwich solutions. Full article
Show Figures

Figure 1

20 pages, 4574 KiB  
Article
Biodegradation Properties of Cellulose Fibers and PLA Biopolymer
by Ružica Brunšek, Dragana Kopitar, Ivana Schwarz and Paula Marasović
Polymers 2023, 15(17), 3532; https://doi.org/10.3390/polym15173532 - 24 Aug 2023
Cited by 34 | Viewed by 4742
Abstract
This paper investigates the biodegradation properties of cellulose fibers and PLA biopolymer. For that purpose, hemp, jute, and sisal fibers as lignocellulose fibers; viscose fibers (CV) as regenerated cellulose; and polylactide (PLA) as biopolymer were buried in farmland soil for periods of 2, [...] Read more.
This paper investigates the biodegradation properties of cellulose fibers and PLA biopolymer. For that purpose, hemp, jute, and sisal fibers as lignocellulose fibers; viscose fibers (CV) as regenerated cellulose; and polylactide (PLA) as biopolymer were buried in farmland soil for periods of 2, 4, 7, 9 and 11 days under controlled conditions. The influence of their biodegradation on the fiber mechanical properties, bacteria and fungi population, as well as on the soil quality were investigated. After exposure to microorganisms, analyses of the fibers’ morphological (SEM), chemical (FTIR), and thermal (TGA) properties were conducted to achieve a comprehensive understanding of their biodegradability. The analysis concluded that lignin and pectin content have a greater impact on the biodegradation of hemp, jute, and sisal fibers than factors like crystallinity and degree of polymerization. The viscose fibers showed lower biodegradability despite their lower degree of polymerization, indicating a resistance to biodegradation due to the “skin” formed during the spinning process. PLA fibers experienced chemical hydrolysis and significant microbial attack, resulting in reduced tenacity. The acquired findings yield valuable insights into the biodegradability of the fibers, thereby facilitating the selection of appropriate fibers for the development of environmentally sustainable products. Notably, a literature review revealed a paucity of research on fiber biodegradability, underscoring the significance of the present study’s contributions. Full article
Show Figures

Figure 1

12 pages, 3975 KiB  
Article
Cannabidiol and Minor Phytocannabinoids: A Preliminary Study to Assess Their Anti-Melanoma, Anti-Melanogenic, and Anti-Tyrosinase Properties
by Katarzyna Gaweł-Bęben, Karolina Czech and Simon Vlad Luca
Pharmaceuticals 2023, 16(5), 648; https://doi.org/10.3390/ph16050648 - 26 Apr 2023
Cited by 19 | Viewed by 3946
Abstract
Currently, there is an increased interest from both scientists and consumers in the application of cannabis/hemp/phytocannabinoids in skin-related disorders. However, most previous investigations assessed the pharmacological properties of hemp extracts, cannabidiol (CBD), or tetrahydrocannabinol (THC), with very few studies focusing on minor phytocannabinoids [...] Read more.
Currently, there is an increased interest from both scientists and consumers in the application of cannabis/hemp/phytocannabinoids in skin-related disorders. However, most previous investigations assessed the pharmacological properties of hemp extracts, cannabidiol (CBD), or tetrahydrocannabinol (THC), with very few studies focusing on minor phytocannabinoids from hemp. In this context, the current work explored the in vitro anti-melanoma, anti-melanogenic, and anti-tyrosinase effects of cannabidiol (CBD) and three minor phytocannabinoids, namely cannabigerol (CBG), cannabinol (CBN), and cannabichromene (CBC). Among the tested human malignant melanoma cells (A375, SH4, and G361), only A375 cells were highly susceptible to the 48 h treatment with the four phytocannabinoids (IC50 values between 12.02 and 25.13 μg/mL). When melanogenesis was induced in murine melanoma B16F10 cells by α-melanocyte stimulating hormone (αMSH), CBD, CBG, and CBN significantly decreased the extracellular (29.76–45.14% of αMSH+ cells) and intracellular (60.59–67.87% of αMSH+ cells) melanin content at 5 μg/mL. Lastly, CBN (50–200 μg/mL) inhibited both mushroom and murine tyrosinase, whereas CBG (50–200 μg/mL) and CBC (100–200 μg/mL) down-regulated only the mushroom tyrosinase activity; in contrast, CBD was practically inactive. The current data show that tyrosinase inhibition might not be responsible for reducing the melanin biosynthesis in α-MSH-treated B16F10 cells. By evaluating for the first time the preliminary anti-melanoma, anti-melanogenic, and anti-tyrosinase properties of CBN and CBC and confirming similar effects for CBD and CBG, this study can expand the utilization of CBD and, in particular, of minor phytocannabinoids to novel cosmeceutical products for skin care. Full article
Show Figures

Figure 1

19 pages, 2681 KiB  
Article
Film Forming Systems for Delivery of Active Molecules into and across the Skin
by Elka Touitou, Hiba Natsheh and Jana Zailer
Pharmaceutics 2023, 15(2), 397; https://doi.org/10.3390/pharmaceutics15020397 - 24 Jan 2023
Cited by 7 | Viewed by 3584
Abstract
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the [...] Read more.
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the incorporated molecules. These delivery systems are composed of one or more phospholipids, a short-chain alcohol, a polymer and optionally water. In this work, we continue the investigation and characterization of Weblike carriers focusing on some factors affecting the delivery properties such as components concentration and mode of application on the skin. Upon non-occluded application on the skin, the systems dry rapidly, forming a web-like structured film. Lidocaine, Ibuprofen, FITC and Cannabidiol are molecules with various physico-chemical properties that were incorporated in the carrier. The systems were tested in a number of in vitro and in vivo experiments. Results of the in vitro permeation of Ibuprofen through porcine skin indicated two-fold delivery through the skin of Ibuprofen when applied from our Weblike system in comparison with a nanovesicular carrier, the ethosome. We also have investigated weblike systems containing hemp seed oil (HSO). This addition enhanced the film’s ability to deliver lipophilic molecules to the deeper skin layers, leading to an improved pharmacodynamic effect. In analgesic tests carried out in a pain mice model following one hour application of CBD in Weblike system with and without HSO, the number of writhing episodes was decreased from 29 in the untreated animals to 9.5 and 18.5 writhes, respectively. The results of our work open the way towards a further investigation of Weblike film forming systems containing drugs for improved dermal and transdermal treatment of various ailments. Full article
Show Figures

Figure 1

16 pages, 3629 KiB  
Article
Natural Hemp-Ginger Extract and Its Biological and Therapeutic Efficacy
by Taja Žitek, Dragana Bjelić, Petra Kotnik, Andrej Golle, Staša Jurgec, Uroš Potočnik, Željko Knez, Matjaž Finšgar, Ivan Krajnc, Igor Krajnc and Maša Knez Marevci
Molecules 2022, 27(22), 7694; https://doi.org/10.3390/molecules27227694 - 9 Nov 2022
Cited by 5 | Viewed by 3026
Abstract
The prevention and treatment of skin diseases remains a major challenge in medicine. The search for natural active ingredients that can be used to prevent the development of the disease and complement treatment is on the rise. Natural extracts of ginger and hemp [...] Read more.
The prevention and treatment of skin diseases remains a major challenge in medicine. The search for natural active ingredients that can be used to prevent the development of the disease and complement treatment is on the rise. Natural extracts of ginger and hemp offer a wide range of bioactive compounds with potential health benefits. This study evaluates the effectiveness of hemp and ginger extract as a supportive treatment for skin diseases. It reports a synergistic effect of hemp and ginger extract. The contents of cannabinoids and components of ginger are determined, with the highest being CBD (587.17 ± 8.32 µg/g) and 6-gingerol (60.07 ± 0.40 µg/g). The minimum inhibitory concentration for Staphylococcus aureus (156.5 µg/mL), Escherichia coli (625.2 µg/mL) and Candida albicans (78.3 µg/mL) was also analyzed. Analysis of WM-266-4 cells revealed the greatest decrease in metabolic activity in cells exposed to the extract at a concentration of 1.00 µg/mL. Regarding the expression of genes associated with cellular processes, melanoma aggressiveness, resistance and cell survival, a significant difference was found in the expression of ABCB5, CAV1 and S100A9 compared with the control (cells not exposed to the extract). Full article
Show Figures

Graphical abstract

Back to TopTop