A Comparative Study of the Chemical Properties and Antibacterial Activity of Four Different Ozonated Oils for Veterinary Purposes
Abstract
:Simple Summary
Abstract
1. Introduction
Animal Species | Bacterial Pathogens |
---|---|
Cattle | Actinomyces bovis, Bacteroide melaninogenicus, Staphylococcus aureus, Streptococcus dysgalactiae, Fusobacterium necroforum, Moraxella bovis, Trueperella pyogenes |
Pigs | Dermatophylus congolensis, S. hyicus, S. intermedius, S. chromogenes, S. sciuri |
Goats | Dermatophylus congolensis, S. aureus, S. hyicus, S. haemolyticus, S. warneri, S. epidermidis, S. chromogenes, S. caprae, S. simulans |
Sheep | Dermatophylus congolensis, Corynebacterium pseudotuberculosis, Pithomyces fungus, S. aureus, S. xylosus, S. epidermidis, Str. Dysgalactiae |
Poultry | S. aureus, S. hyicus |
Dogs | Staphylococcus pseudintermedius, Pseudomonas aeruginosa, coagulase-negative Staphylococcus (CoNS) (S. xylosus, S. simulans, S. epidermidis, S. sciuri, S. chromogenes, S. hyicus, and S. cohnii), Streptococcus (S. canis, S. mitis, S. dysgalactiae, S. agalactiae), E. coli and Enterobacterales (Klebsiella pneumoniae, Proteus mirabilis, Raoultella ornithinolytica, Enterobacter cloacae, Serratia marcescens, and Citrobacter youngae), E. faecalis |
Cats | coagulase-negative Staphylococcus, S. aureus, S. pseudintermedius, Streptococcus canis, Pseudomonas aeruginosa, E. coli and Klebsiella pneumoniae |
2. Materials and Methods
2.1. Materials
2.2. Bacterial Strains
2.3. FT-IR Analysis
2.4. Peroxide Value
2.5. Acid Value and Acidity
2.6. Iodine Value
2.7. Viscosity
2.8. Minimum Inhibitory Concentration
2.9. Agar Well Diffusion Method
2.10. Statistical Analysis
3. Results
3.1. Acid Value (AV) Results
3.2. Iodine Value (IV) Results
3.3. Peroxide Value (PV) Results
3.4. Viscosity
3.5. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.6. Minimal Inhibitory Concentrations
3.7. Agar Well Diffusion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foster, A.P. Staphylococcal skin disease in livestock. Vet. Dermatol. 2012, 23, 342–351. [Google Scholar] [CrossRef]
- Costa, S.S.; Oliveira, V.; Serrano, M.; Pomba, C.; Couto, I. Phenotypic and Molecular Traits of Staphylococcus coagulans Associated with Canine Skin Infections in Portugal. Antibiotics 2021, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Mala, L.; Lalouckova, K.; Skrivanova, E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals 2021, 11, 2473. [Google Scholar] [CrossRef]
- Hoang, T.P.N.; Ghori, M.U.; Conway, B.R. Topical Antiseptic Formulations for Skin and Soft Tissue Infections. Pharmaceutics 2021, 13, 558. [Google Scholar] [CrossRef] [PubMed]
- Nocera, F.P.; Ambrosio, M.; Fiorito, F.; Cortese, L.; De Martino, L. On Gram-Positive- and Gram-Negative-Bacteria-Associated Canine and Feline Skin Infections: A 4-Year Retrospective Study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals 2021, 11, 1603. [Google Scholar] [CrossRef]
- Ruzauskas, M.; Couto, M.; Pavilonis, A.; Klimiene, I.; Siugzdiniene, R.; Virgailis, M.; Vaskeviciute, L.; Anskiene, L.; Pomba, C. Characterization of Staphylococcus pseudintermedius isolated from diseased dogs in Lithuania. Pol. J. Vet. Sci. 2016, 19, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Nakaminami, H.; Okamura, Y.; Tanaka, S.; Wajima, T.; Murayama, N.; Noguchi, N. Prevalence of antimicrobial-resistant staphylococci in nares and affected sites of pet dogs with superficial pyoderma. J. Vet. Med. Sci. 2021, 83, 214–219. [Google Scholar] [CrossRef]
- Silva, V.; Oliveira, A.; Manageiro, V.; Caniça, M.; Contente, D.; Capita, R.; Alonso-Calleja, C.; Carvalho, I.; Capelo, J.L.; Igrejas, G.; et al. Clonal Diversity and Antimicrobial Resistance of Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Canine Pyoderma. Microorganisms 2021, 9, 482. [Google Scholar] [CrossRef]
- Burke, M.; Santoro, D. Prevalence of multidrug-resistant coagulase-positive staphylococci in canine and feline dermatological patients over a 10-year period: A retrospective study. Microbiology 2023, 169, 001300. [Google Scholar] [CrossRef]
- Feßler, A.T.; Scholtzek, A.D.; Schug, A.R.; Kohn, B.; Weingart, C.; Hanke, D.; Schink, A.-K.; Bethe, A.; Lübke-Becker, A.; Schwarz, S. Antimicrobial and Biocide Resistance among Canine and Feline Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii Isolates from Diagnostic Submissions. Antibiotics 2022, 11, 152. [Google Scholar] [CrossRef]
- Rizzo, A.; Piccinno, M.; Lillo, E.; Carbonari, A.; Jirillo, F.; Sciorsci, R.L. Antimicrobial resistance and current alternatives in veterinary practice: A review. Curr. Pharm. Des. 2023, 29, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Anzolin, A.P.; Silveira-Kaross, N.L.; Bertol, C.D. Ozonated oil in wound healing: What has already been proven? Med. Gas Res. 2020, 10, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, D.; Merzouki, S.; Boukhebti, H.; Zerroug, M.M. Various Antimicrobial Agent of Ozonized Olive Oil. Ozone Sci. Eng. 2021, 43, 606–612. [Google Scholar] [CrossRef]
- Sechi, L.A.; Lezcano, I.; Nunez, N.; Espim, M.; Duprè, I.; Pinna, A.; Molicotti, P.; Fadda, G.; Zanetti, S. Antibacterial activity of ozonized sunflower oil (Oleozon). J. Appl. Microbiol. 2001, 90, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Radzimierska-Kaźmierczak, M.; Śmigielski, K.; Sikora, M.; Nowak, A.; Plucińska, A.; Kunicka-Styczyńska, A.; Czarnecka-Chrebelska, K.H. Olive Oil with Ozone-Modified Properties and Its Application. Molecules 2021, 26, 3074. [Google Scholar] [CrossRef] [PubMed]
- Ugazio, E.; Tullio, V.; Binello, A.; Tagliapietra, S. Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques. Molecules 2020, 25, 334. [Google Scholar] [CrossRef]
- Ledea-Lozano, O.E.; Fernández-García, L.A.; Gil-Ibarra, D.; Bootello, M.Á.; Garcés, R.; Martínez-Force, E.; Salas, J.J. Characterization of different ozonized sunflower oils II. Triacylglycerol condensation and physical properties. Grasas y Aceites 2019, 70, e330. [Google Scholar] [CrossRef]
- Díaz, M.F.; Veloso, M.C.C.; Pereira, P.A.P.; Sanchez, Y.; Fernandez, I.; Andrade, J.B. Assessment of the Physicochemical Quality Indicators and Microbiological Effects of Brazilian Ozonized Vegetable Oils. J. Braz. Chem. Soc. 2021, 32, 216–224. [Google Scholar] [CrossRef]
- Guillén, M.D.; Cabo, N. Relationships between the composition of edible oils and lard and the ratio of the absorbance of specific bands of their Fourier transform infrared spectra. Role of some bands of the fingerprint region. J. Agric. Food Chem. 1998, 46, 1788–1793. [Google Scholar] [CrossRef]
- van de Kassteele, J.; van Santen-Verheuvel, M.G.; Koedijk, F.D.H.; van Dam, A.P.; van der Sande, M.A.B.; de Neeling, A.J. New Statistical Technique for Analyzing MIC-Based Susceptibility Data. Antimicrob. Agents Chemother. 2012, 56, 1557–1563. [Google Scholar] [CrossRef]
- Currò, M.; Russo, T.; Ferlazzo, N.; Caccamo, D.; Antonuccio, P.; Arena, S.; Parisi, S.; Perrone, P.; Ientile, R.; Romeo, C.; et al. Anti-inflammatory and Tissue Regenerative Effects of Topical Treatment with Ozonated Olive Oil/Vitamin E Acetate in Balanitis Xerotica Obliterans. Molecules 2018, 23, 645. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Lim, Y.; Belmonte, G.; Miracco, C.; Zanardi, I.; Bocci, V.; Travagli, V. Ozonated sesame oil enhances cutaneous wound healing in SKH1 mice. Wound Rep. Reg. 2011, 19, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Varol, K.; Birdane, F.M.; Keles, I. Effect of ozonated olive oil on experimentally induced skin infection by Streptococcus pyogenes and Staphylococcus aureus in rats. Ind. J. Exp. Biol. 2018, 56, 665–673. [Google Scholar]
- Silva, V.; Peirone, C.; Capita, R.; Alonso-Calleja, C.; Marques-Magallanes, J.A.; Pires, I.; Maltez, L.; Pereira, J.E.; Igrejas, G.; Poeta, P. Topical Application of Ozonated Oils for the Treatment of MRSA Skin Infection in an Animal Model of Infected Ulcer. Biology 2021, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Altinok, Y.F.; Abuzer, A.; Mustafa, Y. Effect of some essential oils (Allium sativum L., Origanum majorana L.) and ozonated olive oil on the treatment of ear mites (Otodectes cynotis) in cats. Turk. J. Vet. Anim. Sci. 2016, 40, 782–787. [Google Scholar] [CrossRef]
- Szponder, T.; Zdziennicka, J.; Nowakiewicz, A.; Świeca, M.; Sobczyńska-Rak, A.; Żylińska, B.; Patkowski, K.; Junkuszew, A.; Wessely-Szponder, J. Effects of topical treatment of foot rot in sheep using ozonated olive ointment. J. Vet. Res. 2021, 65, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Spadea, L.; Tonti, E.; Spaterna, A.; Marchegiani, A. Use of Ozone-Based Eye Drops: A Series of Cases in Veterinary and Human Spontaneous Ocular Pathologies. Case Rep. Ophthalmol. 2018, 9, 287–298. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira Silva, J.I., Jr.; Florêncio dos Santos, C.S.; da Silva, B.M.; Charas dos Santos, I.F.; Ferro, B.S.; Silva Barros, T.I.; Tomacheuski, R.M.; Simões-Mattos, L. Topical Ozone Therapy in the Treatment of Pharmacodermia in a Dog (Canis lupus familiaris). Acta Sci. Vet. 2019, 47, 425. [Google Scholar] [CrossRef]
- Sega, A.; Zanardi, I.; Chiasserini, L.; Gabbrielli, A.; Bocci, V.; Travagli, V. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. Chem. Phys. Lipids 2010, 163, 148–156. [Google Scholar] [CrossRef]
- Skalska, K.; Ledakowicz, S.; Perkowski, J.; Sencio, B. Germicidal Properties of Ozonated Sunflower Oil, Ozone. Sci. Eng. 2009, 31, 232–237. [Google Scholar] [CrossRef]
- Amri, Z.; Hamida, S.B.; Dbeibia, A.; Ghorbel, A.; Mahdhi, A.; Mansour Znati, M.; Ambat, I.; Haapaniemi, E.; Sillanpää, M.; Hammami, M. Physico-chemical Characterization and Antibacterial Activity of Ozonated Pomegranate Seeds Oil, Ozone. Sci. Eng. 2020, 42, 531–538. [Google Scholar] [CrossRef]
- Díaz, M.F.; Sánchez, Y.; Gómez, M.; Hernández, F.; Da, C.; Veloso, M.C.; De, P.; Pereira, P.A.; De Andrade, J.B. Physicochemical characteristics of ozonated sunflower oils obtained by different procedures. Grasas y Aceites 2012, 63, 466–474. [Google Scholar] [CrossRef]
- Moureu, S.; Violleau, F.; Ali Haimoud-Lekhal, D.; Calmon, A. Ozonation of sunflower oils: Impact of experimental conditions on the composition and the antibacterial activity of ozonized oils. Chem. Phys. Lipids 2015, 186, 79–85. [Google Scholar] [CrossRef]
- Soriano, N.U.; Migo, V.P.; Matsumura, M. Ozonation of sunflower oil: Spectroscopic monitoring of the degree of unsaturation. J. Am. Oil Chem. Soc. 2003, 80, 997–1001. [Google Scholar] [CrossRef]
- Balea, A.; Ciotlăuș, I.; Pojar-Feneșan, M.; Carpa, R. Comparative chemical and antimicrobial characterization of non-ozonated and ozonated vegetable oils. Stud. Univ. Babes-Bolyai Chem. 2023, 285–301. [Google Scholar] [CrossRef]
- Guerra-Blanco, P.; Chairez, I.; Poznyak, T.; Brito-Arias, M. Kinetic Analysis of Ozonation Degree Effect on the Physicochemical Properties of Ozonated Vegetable Oils, Ozone. Sci. Eng. 2021, 43, 546–561. [Google Scholar] [CrossRef]
- Rodrigues De Almeida Kogawa, N.; José De Arruda, E.; Micheletti, A.C.; De Fatima Cepa Matos, M.; Silva De Oliveira, L.C.; Pires De Lima, D.; Pereira Carvalho, N.C.; Dias De Oliveira, P.; De Castro Cunha, M.; Ojeda, M.; et al. Synthesis, characterization, thermal behaviour, and biological activity of ozonides from vegetable oils. RSC Adv. 2015, 5, 65427–65436. [Google Scholar] [CrossRef]
- EN ISO 3960:2017; Animal and Vegetable Fats and Oils-Determination of Peroxide Value-Iodometric (Visual) Endpoint Determination. 5th ed. International Organization for Standardization: Geneva, Switzerland, 2017; pp. 1–10.
- LST EN ISO 660:2020; Animal and Vegetable Fats and Oils-Determination of Acid Value and Acidity. 4th ed. International Organization for Standardization: Geneva, Switzerland, 2020; pp. 1–12.
- EN ISO 3961:2018; Animal and Vegetable Fats and Oils-Determination of Iodine Value. 6th ed. International Organization for Standardization: Geneva, Switzerland, 2018; pp. 1–12.
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; Wiley: New York, NY, USA, 2014; pp. 73–119. [Google Scholar]
- Guillén, M.D.; Cabo, N. Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J. Agric. Food Chem. 2000, 80, 2028–2036. [Google Scholar] [CrossRef]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 2006, 573, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Uzun, H.; Kaynak, E.G.; Ibanoglu, E.; Ibanoglu, S. Chemical and structural variations in hazelnut and soybean oils after ozone treatments. Grasas y Aceites 2018, 69, e253. [Google Scholar] [CrossRef]
- Chung, K.T.; Kim, B.W. Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans. J. Life Sci. 2019, 29, 223–230. [Google Scholar] [CrossRef]
- Ouf, S.A.; Moussa, T.A.; Abd-Elmegeed, A.M.; Eltahlawy, S.R. Anti-fungal potential of ozone against some dermatophytes. Braz. J. Microbiol. 2016, 47, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zeng, L.; Gao, L.; Zeng, J.; Lu, J. Ozone therapy for skin diseases: Cellular and molecular mechanisms. Int. Wound J. 2022, 20, 2376–2385. [Google Scholar] [CrossRef] [PubMed]
- Sciorsci, R.L.; Lillo, E.; Occhiogrosso, L.; Rizzo, A. Ozone therapy in veterinary medicine: A review. Res. Vet. Sci. 2020, 130, 240–246. [Google Scholar] [CrossRef] [PubMed]
Ozonated Oil | Before Ozonation, mg KOH/g | After Ozonation, mg KOH/g |
---|---|---|
Linseed | 0.72 ± 0.01 | 13.00 ± 0.11 |
Hemp seed | 4.10 ± 0.02 | 11.45 ± 0.09 |
Sunflower | 2.20 ± 0.08 | 8.90 ± 0.02 |
Olive | 0.25 ± 0 | 3.65 ± 0.03 |
Oil | Before Ozonation | After Ozonation |
---|---|---|
Linseed | 0.36 | 6.51 |
Hemp seed | 2.06 | 5.75 |
Sunflower | 1.11 | 4.47 |
Olive | 0.25 | 1.84 |
g Iodine/100 g Oil | Linseed Oil | Hemp Seed Oil | Sunflower Oil | Olive Oil |
---|---|---|---|---|
Before ozonation | 86.84 ± 5.98 | 84.42 ± 3.32 | 74.08 ± 0 | 51.11 ± 0.36 |
After ozonation | 47.50 ± 11.94 | 44.77 ± 1.41 | 29.50 ± 1.21 | 3.36 ± 2.43 |
Consumption | 39.34 | 39.65 | 44.58 | 47.75 |
Consumption in % | 45 | 47 | 60 | 93 |
Linseed Oil | Hemp Seed Oil | Sunflower Oil | Olive Oil | |
---|---|---|---|---|
Before ozonation | 1 ± 0 | 13 ± 0 | 18 ± 2 | 0 ± 0 |
After ozonation | 222.5 ± 12.4 | 247 ± 4.1 | 382 ± 9.8 | 240.5 ± 3.7 |
38 °C | 22 °C | 5 °C | |
---|---|---|---|
OLO | 1011.1 | 2968.8 | 12,375.0 |
OHO | 507.04 | 1326.7 | 4475.6 |
OSO | 491.93 | 1546.5 | 11,129.0 |
OOO | 132.12 | 3325.2 | 226,270.0 |
OLO | OHO | OSO | OOO | |
---|---|---|---|---|
S. aureus | 25 | 25 | 50 | 280 |
S. aureus ATCC 25923 | 13.5 | 18.5 | 4.7 | 190.5 |
MRSA | 4.6 | 37.0 | 37.0 | 280.0 |
S. pseudintermedius | 13.5 | 74.0 | 74.6 | 280.0 |
E. coli | 50 | 60 | 67 | 300 |
E. coli ATCC 25922 | 35 | 35 | 80 | 280 |
P. aeruginosa | 25 | 25 | 25 | 280 |
P. aeruginosa ATCC 27859 | 25 | 25 | 50 | 280 |
Linseed Oil | Hemp Seed Oil | Sunflower Oil | Olive Oil | |
---|---|---|---|---|
S. aureus | 20.0 ± 0 | 15.17 ± 0.39 | 13.42 ± 1.08 | 11.25 ± 0.45 |
S. aureus ATCC 25923 | 20.67 ± 0.98 | 16.0 ± 0 | 14.33 ± 0.98 | 11.33 ± 0.49 |
MRSA | 20.25 ± 0.45 | 18.50 ± 0.52 | 15.50 ± 0.52 | 11.17 ± 0.39 |
S. pseudintermedius | 18.25 ± 0.45 | 15.08 ± 0.67 | 16.17 ± 0.39 | 12.67 ± 0.49 |
E. faecalis | 15.0 ± 0 | n.a. | n.a. | n.a. |
E. faecalis ATCC 29212 | 15.0 ± 0 | 13.42 ± 0.79 | 11.0 ± 0.43 | n.a. |
E. coli | 18.50 ± 0.52 | 14.75 ± 0.62 | 19.58 ± 0.99 | n.a. |
E. coli ATCC 25922 | 21.58 ± 0.79 | 19.50 ± 0.52 | 20.42 ± 0.79 | n.a. |
P. aeruginosa | 13.0 ± 0.43 | 12.0 ± 0 | 10.0 ± 0 | n.a. |
P. aeruginosa ATCC 27859 * | 12.17 ± 0.83 | 11.75 ± 0.45 | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slavinskienė, G.; Grigonis, A.; Ivaškienė, M.; Sinkevičienė, I.; Andrulevičiūtė, V.; Ivanauskas, L.; Juodžentė, D.; Ramanauskienė, K.; Daunoras, G. A Comparative Study of the Chemical Properties and Antibacterial Activity of Four Different Ozonated Oils for Veterinary Purposes. Vet. Sci. 2024, 11, 161. https://doi.org/10.3390/vetsci11040161
Slavinskienė G, Grigonis A, Ivaškienė M, Sinkevičienė I, Andrulevičiūtė V, Ivanauskas L, Juodžentė D, Ramanauskienė K, Daunoras G. A Comparative Study of the Chemical Properties and Antibacterial Activity of Four Different Ozonated Oils for Veterinary Purposes. Veterinary Sciences. 2024; 11(4):161. https://doi.org/10.3390/vetsci11040161
Chicago/Turabian StyleSlavinskienė, Gabrielė, Aidas Grigonis, Marija Ivaškienė, Ingrida Sinkevičienė, Vaida Andrulevičiūtė, Liudas Ivanauskas, Dalia Juodžentė, Kristina Ramanauskienė, and Gintaras Daunoras. 2024. "A Comparative Study of the Chemical Properties and Antibacterial Activity of Four Different Ozonated Oils for Veterinary Purposes" Veterinary Sciences 11, no. 4: 161. https://doi.org/10.3390/vetsci11040161
APA StyleSlavinskienė, G., Grigonis, A., Ivaškienė, M., Sinkevičienė, I., Andrulevičiūtė, V., Ivanauskas, L., Juodžentė, D., Ramanauskienė, K., & Daunoras, G. (2024). A Comparative Study of the Chemical Properties and Antibacterial Activity of Four Different Ozonated Oils for Veterinary Purposes. Veterinary Sciences, 11(4), 161. https://doi.org/10.3390/vetsci11040161