Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = hemp by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1031 KiB  
Article
Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances
by Mohammad Moinul Islam, Kadambot H. M. Siddique and Zakaria M. Solaiman
Sustainability 2025, 17(13), 5844; https://doi.org/10.3390/su17135844 - 25 Jun 2025
Viewed by 554
Abstract
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an [...] Read more.
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an antinutritional compound limiting nutrient bioavailability in hemp seeds and seed meal are rising. Hemp seeds contain an array of nutrients, but their bioavailability is mostly unknown. Here, we report nutrient and phytate concentrations and phytate contents in source seeds and multiplied seeds of seven industrial hemp varieties. We estimated the bioavailability of specific nutrients based on calculated molar ratios of phytate to minerals. Seed multiplication was carried out in a phytotron using a compost-based growth medium. Five macronutrients (P, K, Mg, S, Ca), four micronutrients (Fe, Mn, Zn, Cu) and Cr were measured in seeds using ICP-OES. Seed phytate was determined using a UV-visible spectrophotometer rapid colourimetric assay. The results revealed significant differences between seven industrial hemp varieties for most macro- and micronutrient concentrations (not Fe), phytate concentration and content and phytate-to-mineral molar ratios in both source and multiplied seeds. Multiplied hemp seeds had higher K, Mn and Zn and, lower Cr and phytate concentrations and lower phytate content than source seeds. Considering nutrient bioavailability, Ca and Fe are non-bioavailable, and Zn is bioavailable in hemp seeds. Ferimon has increased Zn bioavailability in source and multiplied seeds, indicating the variety’s potential for seed production in Western Australia. Full article
Show Figures

Figure 1

27 pages, 2952 KiB  
Article
Promising Dietary Supplements with Potential Senotherapeutic Effects: Aqueous Extracts from Enzymatically Hydrolysed Hemp Seed Cake Flour and Hemp Seed Protein Concentrate
by Anthea Miller, Inga Kwiecień, Marek Bednarski, Małgorzata Zygmunt, Jacek Sapa, Mateusz Sablik, Giorgia Pia Lombardo, Concetta Condurso, Maria Merlino and Magdalena Kotańska
Antioxidants 2025, 14(6), 734; https://doi.org/10.3390/antiox14060734 - 15 Jun 2025
Viewed by 641
Abstract
In the present study, the primary by-products of the hemp-seed oil process—hemp seed cake flour and hemp seed protein concentrate—underwent enzymatic hydrolysis using proteases and carbohydrases, either individually or in combination. The effectiveness of these enzymatic treatments in releasing bioactive compounds was evaluated [...] Read more.
In the present study, the primary by-products of the hemp-seed oil process—hemp seed cake flour and hemp seed protein concentrate—underwent enzymatic hydrolysis using proteases and carbohydrases, either individually or in combination. The effectiveness of these enzymatic treatments in releasing bioactive compounds was evaluated by assessing the antioxidant and anti-inflammatory properties of the aqueous extracts of both hydrolysed and untreated hemp by-products. The aim was to explore their potential senotherapeutic properties and promote their application as dietary supplements. Secondary metabolites such as flavonoids, phenolic acids, and catechins were analysed using high-performance liquid chromatography. Total phenolic, flavonoid, and protein contents were determined using spectrophotometric methods. Scavenging activity (2,2-Diphenyl-1-picrylhydrazyl scavenging assay (DPPH assay)), antioxidant power (Ferric reducing antioxidant power assay (FRAP assay)), and lipid peroxidation-reducing activity (thiobarbituric acid-reactive substance analysis) were assessed through in vitro assays. Possible anti-inflammatory effects were evaluated by assessing haemolysis inhibition. The impact of extracts on albumin glycation induced by exposure to fructose was also determined. To assess the toxicity of extracts, a zebrafish larvae model was employed. All extracts contained significant amounts of phenolic compounds, flavonoids, and proteins, and they exhibited notable activities in reducing lipid peroxidation and stabilising erythrocyte cell membranes. However, they did not significantly influence protein glycation (the glycation inhibition was only in the range of 15–40%). Our research demonstrates the substantial health-promoting potential, including senescence delay, of aqueous extracts from by-products of the hemp-seed oil process, which are available in large quantities and can serve as valuable supplements to support the health of animals, including humans, rather than being discarded as waste from oil production. Full article
(This article belongs to the Special Issue Natural Antioxidants and Their Oxidized Derivatives in Processed Food)
Show Figures

Figure 1

15 pages, 1287 KiB  
Article
Potency Analysis of Semi-Synthetic Cannabinoids in Vaping Oils Using Liquid Chromatography Diode Array Detector with Electrospray Ionization Time-of-Flight Mass Spectrometry for Confirmation of Analyte Identity
by Shaozhong Zhang, Md Mahmud Alam, Brent D. Chandler, Jocelyn P. Lanorio, Caitlin Deskins and Liguo Song
Molecules 2025, 30(12), 2597; https://doi.org/10.3390/molecules30122597 - 15 Jun 2025
Viewed by 1513
Abstract
Since the 2018 Farm Bill legalized hemp, semi-synthetic cannabinoids, typically derived from hemp-extracted CBD, have been marketed as offering a “legal high”, raising concerns about consumer safety, labeling, and regulation. Consequently, the potency analysis of these compounds has become increasingly important. To address [...] Read more.
Since the 2018 Farm Bill legalized hemp, semi-synthetic cannabinoids, typically derived from hemp-extracted CBD, have been marketed as offering a “legal high”, raising concerns about consumer safety, labeling, and regulation. Consequently, the potency analysis of these compounds has become increasingly important. To address this need, an LC-DAD method was developed for the quantification of seventeen cannabinoids, selected based on the synthetic pathways of semi-synthetic cannabinoids. These included naturally occurring compounds, semi-synthetic derivatives, and byproducts (CBC, CBD, CBDV, CBG, CBN, CBN-O-acetate, CBT, 9(R)-HHC, 9(S)-HHC, 9(R)-HHC-O-acetate, 9(S)-HHC-O-acetate, Δ8-THC, Δ9-THC, Δ9,11-THC, Δ8-THC-O-acetate, Δ9-THC-O-acetate, and Δ9-THCV), using abnormal CBD as an internal standard. The method was validated according to ISO 17025 guidelines, demonstrating a linear calibration range from 0.1 to 50 µg/mL. The method was further applied to the potency analysis of one Δ8-THC, two THC-O-acetate, two HHC, and one HHC-O-acetate vaping oil sample. Using an innovative method to recover the contents of vaping cartridges, cannabinoids were extracted using methanol, diluted to a concentration of 50 µg/mL, and analyzed using the validated LC-DAD method, which provided a quantifiable range of 0.1 to 100% (w/w). Method specificity was evaluated using ESI/TOFMS and showed minimal interference, despite the presence of other isomers of the semi-synthetic cannabinoids in the samples. Full article
Show Figures

Figure 1

38 pages, 943 KiB  
Review
Nutrients and Bioactive Compounds from Cannabis sativa Seeds: A Review Focused on Omics-Based Investigations
by Tiziana M. Sirangelo, Gianfranco Diretto, Alessia Fiore, Simona Felletti, Tatiana Chenet, Martina Catani and Natasha Damiana Spadafora
Int. J. Mol. Sci. 2025, 26(11), 5219; https://doi.org/10.3390/ijms26115219 - 29 May 2025
Cited by 2 | Viewed by 982
Abstract
Hemp (Cannabis sativa L.) is a versatile crop that can be processed to obtain different products with multiple applications. Its seeds are a well-documented ancient source of proteins, fibers and fats, all of which possess high nutritional value. Additionally, metabolites such as [...] Read more.
Hemp (Cannabis sativa L.) is a versatile crop that can be processed to obtain different products with multiple applications. Its seeds are a well-documented ancient source of proteins, fibers and fats, all of which possess high nutritional value. Additionally, metabolites such as flavones and phenols are present in the seeds, contributing to their antioxidant properties. Due to hemp seeds’ distinctive nutritional profile, the interest in exploring the potential use in food and nutraceuticals is growing, and they can be considered an interesting and promising alternative resource for human and animal feeding. Omics studies on hemp seeds and their by-products are also being developed, and they contribute to improving our knowledge about the genome, transcriptome, proteome, metabolome/lipidome, and ionome of these sustainable food resources. This review illustrates the main nutrients and bioactive compounds of hemp seeds and explores the most relevant omics techniques and investigations related to them. It also addresses the various products derived from processing the whole seed, such as oil, dehulled seeds, hulls, flour, cakes, meals, and proteins. Moreover, this work discusses research aimed at elucidating the molecular mechanisms underlying their protein, lipid, fiber, and metabolic profile. The advantages of using omics and multi-omics approaches to highlight the nutritional values of hemp seed by-products are also discussed. In our opinion, this work represents an excellent starting point for researchers interested in studying hemp seeds as source of nutrients and bioactive compounds from a multi-level molecular perspective. Full article
(This article belongs to the Special Issue Advances in Plant Metabolite Research)
Show Figures

Figure 1

18 pages, 301 KiB  
Article
Comparative Characterization of Hemp Seed Cakes from Dehulled and Hulled Cannabis sativa L. var. oleifera cv. ‘Henola’: Nutritional, Functional, and Storage Stability Insights
by Krystian Ambroziak and Anna Wenda-Piesik
Foods 2025, 14(9), 1605; https://doi.org/10.3390/foods14091605 - 1 May 2025
Cited by 1 | Viewed by 828
Abstract
This study investigated the nutritional composition, antinutritional factors, oxidative stability, microbiological safety, and sensory characteristics of hempseed cake (HC) derived from Cannabis sativa L. cv. ‘Henola’. The effects of dehulling and storage (1, 3, and 6 months) on dehulled (DHC) and hulled (HHC) [...] Read more.
This study investigated the nutritional composition, antinutritional factors, oxidative stability, microbiological safety, and sensory characteristics of hempseed cake (HC) derived from Cannabis sativa L. cv. ‘Henola’. The effects of dehulling and storage (1, 3, and 6 months) on dehulled (DHC) and hulled (HHC) hemp cake were systematically assessed. DHC exhibited significantly higher crude protein (up to 42.2%) and residual oil content (up to 37.5%), while HHC was richer in dietary fiber (up to 41.3%) and total carbohydrates (up to 48.2%). Despite comparable PUFA contents (63–72%) and favorable n-6/n-3 ratios (~3.1:1), DHC showed greater energy concentration and reduced levels of indigestible carbohydrates and phytates. Oxidative stability tests revealed increased acid and peroxide values in both HHC and DHC after six months, indicating quality deterioration (Totox index > 15). Microbiological analyses confirmed hygienic safety across all samples, with slightly higher microbial counts in HHC linked to hull-associated contamination. Sensory evaluations revealed stable color, odor, and texture during storage, with DHC rated more aromatic. These findings confirm that processing conditions—particularly dehulling—strongly affect the functional and nutritional profile of hempseed by-products. DHC emerges as a promising, shelf-stable, protein-rich ingredient for functional food and feed applications. Full article
20 pages, 7168 KiB  
Article
Cellulose Extraction from Soybean Hulls and Hemp Waste by Alkaline and Acidic Treatments: An In-Depth Investigation on the Effects of the Chemical Treatments on Biomass
by Antonella Moramarco, Edoardo Ricca, Elisa Acciardo, Enzo Laurenti and Pierangiola Bracco
Polymers 2025, 17(9), 1220; https://doi.org/10.3390/polym17091220 - 29 Apr 2025
Cited by 1 | Viewed by 789
Abstract
The agri-food supply chain and other industries that convert agricultural raw materials into various consumer goods generate large quantities of by-products, most of which end up in landfills. This waste, rich in cellulose, provides a significant opportunity for the conversion of agricultural residues [...] Read more.
The agri-food supply chain and other industries that convert agricultural raw materials into various consumer goods generate large quantities of by-products, most of which end up in landfills. This waste, rich in cellulose, provides a significant opportunity for the conversion of agricultural residues into valuable products. In this paper, soybean hulls and hemp waste were subjected to chemical treatments with alkaline (NaOH 2% w/v) and acidic solutions (HCl 1 M) to remove non-cellulosic components and isolate cellulose. The biomass was characterized after each chemical process through FTIR, SEM, EDX, elemental analysis, TGA, and XRD. Lignin was determined following two different procedures, a conventional TAPPI protocol and a method recently proposed in the literature (CASA method). The results indicated that the chemical treatments favored the removal of organic compounds and minerals, increasing the cellulose content in biomass after each step. The purified product of soybean hulls consists of fibers 35–50 µm long and 5–11 µm thick, containing nearly pure cellulose arranged in crystalline domains. Fibers of variable sizes, rich in crystalline cellulose, were isolated from hemp waste. These fibers have diameters ranging between 2 and 60 µm and lengths from 40 to 800 µm and contain considerable amounts of lignin (~14%). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

19 pages, 1486 KiB  
Article
Fatty Acid Composition and Bioactive Profiles in the Aerial Parts of Cannabis sativa
by Weronika Jacuńska, Wioletta Biel, Grzegorz Tokarczyk, Patrycja Biernacka, Grzegorz Bienkiewicz and Katarzyna Janda-Milczarek
Molecules 2025, 30(9), 1947; https://doi.org/10.3390/molecules30091947 - 27 Apr 2025
Viewed by 898
Abstract
The interest in Cannabis sativa L. has been on the rise recently, driven by its potential applications in various sectors, including the food industry, the medical sector, and other key areas. This crop possesses a diverse profile of essential fatty acids and a [...] Read more.
The interest in Cannabis sativa L. has been on the rise recently, driven by its potential applications in various sectors, including the food industry, the medical sector, and other key areas. This crop possesses a diverse profile of essential fatty acids and a range of bioactive compounds, which exhibit properties that are highly significant for functional food ingredients and nutraceutical purposes. The objective of this study was to investigate the characteristic lipid and bioactive profiles of different plant parts (e.g., inflorescences and leaves) to ascertain their possible uses in nutritional and therapeutic fields. The fat content of the plant material was determined by the Soxhlet method, and gas chromatography was employed for the assessment of the fatty acids and selected bioactive compounds profile. In addition, some lipid quality indices were calculated with the purpose of providing a more in-depth discussion of these aspects beyond the traditional n-6/n-3 ratio. A distinct lipid composition was evident among the various plant parts. Compared to inflorescence samples, leaves typically contain higher proportions of SFAs, MUFAs, PUFAs, and n-3 fatty acids, along with a more favorable n-6/n-3 ratio, which may significantly impact nutritional value. Phytol-rich leaves can suggest its potential application as a functional feed or even a nutraceutical. Furthermore, the occurrence of hexacosane and related antimicrobial and antifungal compounds serves to enhance the practical utility of the leaves. Notably, hemp leaves are not merely a by-product, but rather offer significant practical applications. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

25 pages, 2364 KiB  
Article
Hemp Seed-Based Foods and Processing By-Products Are Sustainable Rich Sources of Nutrients and Plant Metabolites Supporting Dietary Biodiversity, Health, and Nutritional Needs
by Ricardo Ramos-Sanchez, Nicholas J. Hayward, Donna Henderson, Gary J. Duncan, Wendy R. Russell, Sylvia H. Duncan and Madalina Neacsu
Foods 2025, 14(5), 875; https://doi.org/10.3390/foods14050875 - 4 Mar 2025
Cited by 1 | Viewed by 2499
Abstract
Processing hemp seeds into foods generates several by-products that are rich in nutrients and bioactive phytochemicals. This paper presents a thorough plant metabolite analysis and a comprehensive assessment of the nutrient content of 14 hemp seed-based foods and by-products and evaluates their feasibility [...] Read more.
Processing hemp seeds into foods generates several by-products that are rich in nutrients and bioactive phytochemicals. This paper presents a thorough plant metabolite analysis and a comprehensive assessment of the nutrient content of 14 hemp seed-based foods and by-products and evaluates their feasibility to deliver dietary needs and daily recommendations. The protein-85-product was the hemp food and hemp fudge the hemp by-product with the highest content of protein, 93.01 ± 0.18% and 37.66 ± 0.37%, respectively. Hemp seed-hull flour had the richest insoluble non-starch polysaccharide content (39.80 ± 0.07%). Linoleic acid was the most abundant fatty acid across all the hemp seed-based samples (ranging from 53.80 ± 2.02% in the protein-85-product to 69.53 ± 0.45% in the hemp cream). The omega-6 to omega-3 fatty acid ratio varied from 3:1 to 4:1 across all hemp seed-based samples. The majority of hemp seed-based samples were rich sources of potassium, magnesium, and phosphorus. Gentisic acid, p-coumaric acid, and syringaresinol were the most abundant plant metabolites measured and found mainly in bound form. Hemp seed by-products are valuable sources of nutrients capable of meeting dietary needs and, therefore, should be re-valorized into developing healthy food formulations to deliver a truly zero-waste hemp food production. Full article
(This article belongs to the Special Issue Comprehensive Utilization of By-Products in Food Industry)
Show Figures

Figure 1

18 pages, 2333 KiB  
Article
From Waste to Resource: Mineral and Biochemical Characterization of Hemp By-Products in the Fiber and Seed Supply Chain
by Ylenia Pieracci, Laura Pistelli, Benedetta D’Ambrosio, Roberta Paris, Guido Flamini and Laura Bassolino
Agronomy 2025, 15(3), 564; https://doi.org/10.3390/agronomy15030564 - 25 Feb 2025
Viewed by 709
Abstract
Industrial hemp (Cannabis sativa L.) is a versatile and sustainable multipurpose plant for agroecology services and a zero-waste circular economy. While the focus has traditionally been on primary products like fiber and seeds, nowadays there is an increasing awareness of the potential [...] Read more.
Industrial hemp (Cannabis sativa L.) is a versatile and sustainable multipurpose plant for agroecology services and a zero-waste circular economy. While the focus has traditionally been on primary products like fiber and seeds, nowadays there is an increasing awareness of the potential value of the by-products generated during hemp cultivation and processing. This article explores various methods of valorizing industrial hemp wastes, focusing on their mineral and biochemical composition, highlighting the benefits of utilizing what was once considered a mere by-product. The apical and the basal leaves of 12 industrial hemp varieties, six monoecious, and six dioecious, representing the main by-product of fiber supply chain, were assessed for their mineral (N, K, Na, Ca; Mg, Cu, Mn, Fe, and Zn), chlorophyll, carotenoids, and total soluble phenols contents, as well as for their antioxidant activity. The same parameters were also evaluated in the inflorescences; the main waste was derived from both hemp fiber and seed harvesting, which were collected at three stages of flower development for four selected genotypes, together with the yield and chemical composition of their essential oils. Differences in the evaluated parameters among genotypes and tissues were highlighted, showing the potential for diversifying the utilization of industrial hemp wastes. The possible uses of these residual biomasses are discussed based on their composition. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

17 pages, 1737 KiB  
Article
Characterization of New Flavored Oils Obtained Through the Co-Milling of Olives and Vegetable Food Products
by Celeste Lazzarini, Matilde Tura, Mara Mandrioli, Marco Setti, Noureddine Mokhtari, Abdelaziz Ait Elkassia, Sara Barbieri, Enrico Valli, Alessandra Bendini and Tullia Gallina Toschi
Foods 2025, 14(4), 687; https://doi.org/10.3390/foods14040687 - 17 Feb 2025
Cited by 1 | Viewed by 713
Abstract
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, [...] Read more.
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, black pepper, and hemp seeds, aiming to enhance their sensory and compositional properties while promoting sustainability through the valorization of agri-food by-products. The flavored olive oils and their control samples were analyzed for free acidity, tocopherols, phenolic compounds, volatiles, and sensory profiles. The flavored oils exhibited an acceptable hydrolytic state and peculiar sensory notes, depending on the ingredients used, as well as enhanced compositional qualities. This research highlights the potential of using oranges and hemp by-products in flavored oil production, offering an innovative approach to reducing food waste, with the possibility of future industrial applications. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

28 pages, 5483 KiB  
Article
Enhancing Industrial Hemp (Cannabis sativa) Leaf By-Products: Bioactive Compounds, Anti-Inflammatory Properties, and Potential Health Applications
by Luisa Frusciante, Michela Geminiani, Behnaz Shabab, Tommaso Olmastroni, Neri Roncucci, Pierfrancesco Mastroeni, Laura Salvini, Stefania Lamponi, Alfonso Trezza and Annalisa Santucci
Int. J. Mol. Sci. 2025, 26(2), 548; https://doi.org/10.3390/ijms26020548 - 10 Jan 2025
Cited by 5 | Viewed by 1975
Abstract
The sustainable utilization of biomass-derived bioactives addresses the growing demand for natural health products and supports sustainable development goals by reducing reliance on synthetic chemicals in healthcare. Cannabis sativa biomass, in particular, has emerged as a valuable resource within this context. This study [...] Read more.
The sustainable utilization of biomass-derived bioactives addresses the growing demand for natural health products and supports sustainable development goals by reducing reliance on synthetic chemicals in healthcare. Cannabis sativa biomass, in particular, has emerged as a valuable resource within this context. This study focuses on the hydroethanolic extract of C. sativa leaves (CSE), which exhibited significant levels of phenolic compounds contributing to robust antioxidant activity. Evaluation using potassium ferricyanide, ABTS, and DPPH methods revealed potent radical scavenging activity comparable to the Trolox standard. UPLC-MS/MS profiling identified cannabinoids as the predominant secondary metabolites in CSE, with flavonoids also present in substantial quantities. This study investigated the anti-inflammatory potential of CSE on RAW 264.7 macrophages and IL-1β-stimulated C-20/A4 immortalized human chondrocytes, demonstrating protective effects without cytotoxic or mutagenic effects. Mechanistically, CSE reduced inflammation by inhibiting the MAPK and NF-κB signaling pathways. In silico approaches showed the ability of CSE’s main metabolites to bind and influence MAPK and NF-κB activity, confirming in vitro evidence. Incorporating C. sativa leaf extract into a hyaluronic acid-based formulation showed biotechnological promise for treating joint inflammation. Future research should aim to elucidate the molecular mechanisms underlying these effects and explore the potential of CSE-derived compounds in mitigating osteoarthritis progression. This approach highlights the significance of utilizing annually increasing biomass waste for sustainable bioactivity and environmental impact reduction. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 6126 KiB  
Article
Influence of Lignin Type on the Properties of Hemp Fiber-Reinforced Polypropylene Composites
by Florin Ciolacu, Teodor Măluțan, Gabriela Lisa and Mariana Ichim
Polymers 2024, 16(23), 3442; https://doi.org/10.3390/polym16233442 - 8 Dec 2024
Cited by 3 | Viewed by 1834
Abstract
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. [...] Read more.
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. This research work aimed to investigate the effect of two types of lignin (lignosulfonate and soda lignin) on the properties of hemp fiber-reinforced polypropylene composites for furniture applications. The composites were produced by thermoforming six overlapping layers of nonwoven material. A 20% addition of soda lignin or lignosulfonate (relative to the nonwoven mass) was incorporated between the nonwoven layers made of 80% hemp and 20% polypropylene (PP). The addition of both types of lignin resulted in an increase in the tensile and bending strength of lignin-based composites, as well as a decrease in the absorbed water percentage. Compared to oriented strand board (OSB), lignin-based composites exhibited better properties. Regarding the two types of lignin used, the addition of lignosulfonate resulted in better composite properties than those containing soda lignin. Thermal analysis revealed that the thermal degradation of soda lignin begins long before the melting temperature of polypropylene. This early degradation explains the inferior properties of the composites containing soda lignin compared to those with lignosulfonate. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

14 pages, 2693 KiB  
Article
Thermal Properties of Seed Cake Biomasses and Their Valorisation by Torrefaction
by Elena Butnaru, Elena Stoleru, Daniela Ioniță and Mihai Brebu
Polymers 2024, 16(20), 2872; https://doi.org/10.3390/polym16202872 - 11 Oct 2024
Cited by 2 | Viewed by 1454
Abstract
Seed cakes, by-products from the cold press extraction of vegetable oils, are valuable animal feed supplements due to their high content of proteins, carbohydrates, and minerals. However, the presence of anti-nutrients, as well as the rancidification and development of aflatoxins, can impede their [...] Read more.
Seed cakes, by-products from the cold press extraction of vegetable oils, are valuable animal feed supplements due to their high content of proteins, carbohydrates, and minerals. However, the presence of anti-nutrients, as well as the rancidification and development of aflatoxins, can impede their intended use, requiring alternative treatment and valorisation methods. Thermal treatment as a procedure for the conversion of seed cakes from walnuts, hemp, pumpkin, flax, and sunflower into valuable products or energy has been investigated in this paper. Thermogravimetry shows the particular behaviour of seed cakes, with several degradation stages at around 230–280 and 340–390 °C, before and after the typical degradation of cellulose. These are related to the volatilisation of fatty acids, which are either free or bonded as triglycerides, and with the thermal degradation of proteins. Torrefaction at 250 °C produced ~75–82 wt% solids, with high calorific values of 24–26 kJ/g and an energy yield above 90%. The liquid products have a complex composition, with most parts of the compounds partitioning between the aqueous phase (strongly dominant) and the oily one (present in traces). The structural components of seed cakes (hemicelluloses, cellulose, and lignin) produce acetic acid, hydroxy ketones, furans, and phenols. In addition to these, most compounds are nitrogen-containing aromatic compounds from the degradation of protein components, which are highly present in seed cakes. Full article
(This article belongs to the Special Issue Thermal Properties Analysis of Polymers)
Show Figures

Figure 1

25 pages, 5552 KiB  
Article
Processing Hemp Shiv Particles for Building Applications: Alkaline Extraction for Concrete and Hot Water Treatment for Binderless Particle Board
by Maya-Sétan Diakité, Vincent Lequart, Alexandre Hérisson, Élise Chenot, Sébastien Potel, Nathalie Leblanc, Patrick Martin and Hélène Lenormand
Appl. Sci. 2024, 14(19), 8815; https://doi.org/10.3390/app14198815 - 30 Sep 2024
Viewed by 1894
Abstract
The building and construction sector is the largest emitter of greenhouse gases, accounting for 37% of global emissions. The production and use of materials such as cement, steel, and aluminum contribute significantly to this carbon footprint. Utilizing valorized agricultural by-products, such as hemp [...] Read more.
The building and construction sector is the largest emitter of greenhouse gases, accounting for 37% of global emissions. The production and use of materials such as cement, steel, and aluminum contribute significantly to this carbon footprint. Utilizing valorized agricultural by-products, such as hemp shiv and sunflower pith, in construction can enhance the insulating properties of materials and reduce their environmental impact by capturing CO2. Additionally, during the formulation process, molecules such as polyphenols and sugars are released, depending on process parameters like pH and temperature. In some cases, these releases can cause issues, such as delaying the hardening of agro-based concrete or serving as binding agents in binderless particle boards. This study focuses on the molecules released during the processing of these materials, with particular attention to the effects of pH and temperature, and the modifications to the plant particles resulting from these conditions. Physical, chemical, and morphological analyses were conducted on the treated hemp shiv particles (HS1 and HS2). No physical or morphological differences were observed between the samples. However, chemical differences, particularly in the lignin and soluble compound content, were noted and were linked to the release of plant substances during the process. Full article
Show Figures

Graphical abstract

23 pages, 2624 KiB  
Article
Sustainable Utilization of Hemp Press Cake Flour in Ice Cream Production: Physicochemical, Rheological, Textural, and Sensorial Properties
by Mirela Lučan Čolić, Marko Jukić, Gjore Nakov, Jasmina Lukinac and Martina Antunović
Sustainability 2024, 16(19), 8354; https://doi.org/10.3390/su16198354 - 26 Sep 2024
Cited by 5 | Viewed by 2032
Abstract
The aim of this study was to investigate the influence of replacing skim milk powder with hempseed press cake on the quality properties of ice cream. Four ice cream mix formulations were developed, three with hemp press cake (25.0%, 37.5% and 50.0% milk [...] Read more.
The aim of this study was to investigate the influence of replacing skim milk powder with hempseed press cake on the quality properties of ice cream. Four ice cream mix formulations were developed, three with hemp press cake (25.0%, 37.5% and 50.0% milk powder replacement) and one control sample. The physicochemical (basic composition, pH, titratable acidity, water activity) and rheological properties of the ice cream mixes and the fat destabilization index, overrun, texture profile, colour, and sensory attributes of the ice cream were analysed. The results showed that the partial replacement of milk powder with hemp flour had no significant effect on the total values of the main components of the ice cream; only the origin of the nutrients was changed, which affected the properties of the samples. In the enriched samples, a decrease in acidity (from 0.146% to 0.133% LA) and fat destabilization (43.70 to 26.84%); an increase in viscosity (from 1.319 to 1.908 Pa sn), thixotropy (from 1682.00 to 2120.50 Pa/s), overrun (from 26.83 to 35.00%) and hardness (from 6833.12 to 14,660.06 g); as well as a change in colour to darker shades of red were observed. Although the incorporation of hempseed cake led to a decrease in sensory scores (from 7.57 to 6.47–5.63 on the hedonic scale), all samples were rated as acceptable. This study demonstrated that hemp press cake can be utilized as a functional and sustainable ingredient in ice cream production, providing additional nutritional benefits and creating a novel sensory experience for consumers. Full article
Show Figures

Graphical abstract

Back to TopTop