Comparative Characterization of Hemp Seed Cakes from Dehulled and Hulled Cannabis sativa L. var. oleifera cv. ‘Henola’: Nutritional, Functional, and Storage Stability Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of ‘Henola’ Hemp
2.2. Agrotechnics
2.3. Laboratory Tests on Hemp Seeds
2.4. Method of Hulling and Processing Hemp Seeds
2.5. Analytical Methods for Testing Hemp Cakes
2.5.1. NIRs and Laboratory Methods
2.5.2. Dietary Fiber
2.5.3. Non-Starch Polysaccharides
2.5.4. Klason Lignin
2.5.5. Uronic Acid
2.5.6. Raffinose Family Oligosaccharides
2.5.7. Phytic Acid
2.5.8. Total Phenolic Content
2.5.9. Storage Tests
2.6. Statistics
3. Results and Discussion
3.1. Nutrients and Other Dietary Components from Hemp Cake
3.1.1. Key Nutrients
3.1.2. Fatty Acid Profile
3.1.3. Other Food Components
3.2. Content of Nutrients and Antinutritional Substances
3.2.1. Indigestible Carbohydrates and Phytates
3.2.2. Substances from Fiber Fractions
3.3. Storage Tests of Hemp By-Products
3.4. Storage Test of Hemp Oil
3.5. Microbiological Status of Hemp By-Products
3.6. Sensorial Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, D.W. (Ed.) Industrial Hemp as a Modern Commodity Crop; ASA, CSSA, and SSSA Books; American Society of Agronomy Crop Science Society of America Soil Science Society of America: Madison, WI, USA, 2019. [Google Scholar] [CrossRef]
- Dzierżanowski, T. Cannabinoids—The possible use in palliative medicine. Med. Paliatywna/Palliat. Med. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Rolnictwo i Rozwój Obszarów Wiejskich—Komisja Europejska. Available online: https://agriculture.ec.europa.eu/index_pl (accessed on 10 March 2025).
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C. Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Petrović, M.; Debeljak, Ž.; Kezić, N.; Džidara, P. Relationship between cannabinoids content and composition of fatty acids in hempseed oils. Food Chem. 2015, 170, 218–225. [Google Scholar] [CrossRef]
- di Giacomo, V.; Ferrante, C.; Menghini, L.; Orlando, G. Chapter 8—Nutraceutical potential of industrial hemp. In Industrial Hemp; Pojić, M., Tiwari, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 173–190. [Google Scholar] [CrossRef]
- Karabulut, G.; Kahraman, O.; Pandalaneni, K.; Kapoor, R.; Feng, H. A comprehensive review on hempseed protein: Production, functional and nutritional properties, novel modification methods, applications, and limitations. Int. J. Biol. Macromol. 2023, 253, 127240. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Sharma, B.; Gupta, A.; Shah, A.K.; Mahmud, M.C.; Agrawal, S.; Singh, J.; Rasane, P.; Shukla, A.C.; et al. Nutraceutical potential, phytochemistry of hemp seed (Cannabis sativa L.) and its application in food and feed: A review. Food Chem. Adv. 2024, 4, 100671. [Google Scholar] [CrossRef]
- Fraś, A.; Gzowska, M.; Wiśniewska, M. Nutritional Value Evaluation of New Pea Genotypes (Pisum sativum L.) Based on Their Chemical, Amino Acids and Dietary Fiber Composition. Molecules 2024, 29, 5033. [Google Scholar] [CrossRef]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the Quality of Protein from Hemp Seed (Cannabis sativa L.) Products Through the use of the Protein Digestibility-Corrected Amino Acid Score Method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Odani, S.; Odani, S. Isolation and Primary Structure of a Methionine- and Cystine-rich Seed Protein of Cannabis sativa. Biosci. Biotechnol. Biochem. 1998, 62, 650–654. [Google Scholar] [CrossRef]
- Apostol, L.; Popa, M. Cannabis sativa L. partially skimmed flour as source of bio-compounds in the bakery industry. Rom. Biotechnol. Lett. 2015, 20, 10835–10844. [Google Scholar]
- Worobiej, E.; Mądrzak, J.; Piecyk, M. Zawartość wybranych składników odżywczych i związków biologicznie aktywnych w produktach z konopi siewnych (Cannabis sativa L.) oraz kasztanów jadalnych (Castanea sativa Mill.). Bromat. Chem. Toksykol. 2015, 48, 573–577. [Google Scholar]
- Brenneisen, R. Chemistry and Analysis of Phytocannabinoids and Other Cannabis Constituents. In Marijuana and the Cannabinoids; Humana: Totowa, NJ, USA, 2007; pp. 17–49. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hempseed in food industry: Nutritional value, health benefits, and industrial applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 282–308. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Pangloli, P.; Dia, V.P. Physicochemical, functional and bioactive properties of hempseed (Cannabis sativa L.) meal, a co-product of hempseed oil and protein production, as affected by drying process. Food Chem. 2021, 350, 129188. [Google Scholar] [CrossRef] [PubMed]
- Girgih, A.T.; Alashi, A.M.; He, R.; Malomo, S.A.; Raj, P.; Netticadan, T.; Aluko, R.E. A Novel Hemp Seed Meal Protein Hydrolysate Reduces Oxidative Stress Factors in Spontaneously Hypertensive Rats. Nutrients 2014, 6, 5652–5666. [Google Scholar] [CrossRef]
- Zuk-Golaszewska, K.; Gołaszewski, J. Cannabis sativa L.—Cultivation and quality of raw material. J. Elem. 2018, 23, 971–984. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Hong, S.; Lin, Y.; Dia, V.P. Anti-inflammatory and antioxidant properties of hempseed protein enzymatic hydrolysates. Food Hydrocoll. Health 2022, 2, 100082. [Google Scholar] [CrossRef]
- Kara, Ş.; Gul, V.; Kiralan, M. Fatty acid composition of hempseed oils from different locatins in Turkey. Span. J. Agric. Res. 2010, 8, 385–390. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Skrajda-Brdak, M. Frakcja lipidowa i białkowa nasion konopi siewnych (C. sativa L.) oraz jej korzystny wpływ na zdrowie człowieka = Lipid and protein fraction of hemp seed (C. sativa L.) and its beneficial influence on human health. J. Educ. Health Sport 2016, 6, 357–366. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Rapa, M.; Ciano, S.; Ingallina, C.; Cesa, S.; Menghini, L.; Carradori, S.; Giusti, A.M.; Di Sotto, A.; et al. Commercial Hemp Seed Oils: A Multimethodological Characterization. Appl. Sci. 2020, 10, 6933. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-S.; Sun, H.-L.; Lii, C.-K.; Chen, H.-W.; Chen, P.-Y.; Liu, K.-L. Gamma-Linolenic Acid Inhibits Inflammatory Responses by Regulating NF-κB and AP-1 Activation in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Inflammation 2009, 33, 46–57. [Google Scholar] [CrossRef]
- Mendoza-Pérez, R.J.; Náthia-Neves, G.; Blanco, B.; Vela, A.J.; Caballero, P.A.; Ronda, F. Physicochemical Characterisation of Seeds, Oil and Defatted Cake of Three Hempseed Varieties Cultivated in Spain. Foods 2024, 13, 531. [Google Scholar] [CrossRef] [PubMed]
- Miщeнкo, C.B.; Лaйкo, I.M. Haкoпичeння кaнaбiдioлy в oнтoгeнeзi pocлин тexнiчниx (пpoмиcлoвиx) кoнoпeль. Plant Var. Stud. Prot. 2018, 14, 4. [Google Scholar] [CrossRef]
- Burczyk, H.; Frankowski, J. Henola—Pierwsza Polska Odmiana Konopi Oleistych. 2018. Available online: https://api.semanticscholar.org/CorpusID:216998383 (accessed on 10 March 2025).
- Englyst, H.; Cummings, J. Simplified method for the measurement of total non-starch polysaccharides by GLC of constituent sugars as alditol acetates. Analyst 1984, 109, 937–942. [Google Scholar] [CrossRef]
- [AACC] American Association of Cereal Chemists. Approved Methods of the American Association of Cereal Chemists, 8th ed.; American Association of Cereal Chemist: St. Paul, MN, USA, 2010. [Google Scholar]
- [AOAC] Association of Official Analitycal Chemist. Official Method of Analysis of The Association of Official Analytical of Chemist; Association of Official Analytical Chemist, Inc.: Arlington, VA, USA, 1990. [Google Scholar]
- Theander, O.; Westerlund, E.A. Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J. Agric. Food Chem. 1986, 34, 330–336. [Google Scholar] [CrossRef]
- Scott, R.W. Colorimetric determination of hexuronic acids in plant materials. Anal. Chem. 1979, 51, 936–941. [Google Scholar] [CrossRef]
- Englyst, H.N.; Quigley, M.E.; Hudson, G.J.; Cummings, J.H. Determination of dietary fibre as non-starch polysaccharides by gas-liquid chromatography. Analyst 1992, 117, 1707–1714. [Google Scholar] [CrossRef]
- Lahuta, L. Biosynthesis of raffinose family oligosaccharides and galactosyl pinitols in developing and maturing seeds of winter vetch (Vicia vlllosa Roth.). Acta Soc. Bot. Pol. 2006, 75, 219–227. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.-J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczyk, N. Methods of Analysis and Quantification of Phenolic Compounds. In Food Phenolics: Sources, Chemistry, Effects and Applications; Technomic Publishing Company: Lancaster, PA, USA, 1995; pp. 287–293. [Google Scholar]
- Wang, Q.; Xiong, Y. Processing, Nutrition, and Functionality of Hempseed Protein: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 936–952. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.; Zhang, P.; Ying, D.; Xiong, Y.; Fang, Z. Effect of extrusion technology on hempseed (Cannabis sativa L.) oil cake: Polyphenol profile and biological activities. J. Food Sci. 2021, 86, 3159–3175. [Google Scholar] [CrossRef] [PubMed]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Front. Plant Sci. 2016, 7, 688. [Google Scholar] [CrossRef]
- Shen, P.; Gao, Z.; Xu, M.; Rao, J.; Chen, B. Physicochemical and structural properties of proteins extracted from dehulled industrial hempseeds: Role of defatting process and precipitation pH. Food Hydrocoll. 2020, 108, 106065. [Google Scholar] [CrossRef]
- Tufarelli, V.; Losacco, C.; Tedone, L.; Passantino, L.; Tarricone, S.; Laudadio, V.; Colonna, M.A. Hemp seed (Cannabis sativa L.) cake as sustainable dietary additive in slow-growing broilers: Effects on performance, meat quality, oxidative stability and gut health. Vet. Q. 2023, 43, 1–12. [Google Scholar] [CrossRef]
- Papatzimos, G.; Kasapidou, E. Review of hemp components as functional feed and food ingredients: Impact on animal product quality traits and nutritional value. Explor. Foods Foodomics 2024, 2, 6. [Google Scholar] [CrossRef]
- Kasula, R.; Solis, F.; Shaffer, B.; Connett, F.; Barrett, C.; Cocker, R.; Willinghan, E. Characterization of the Nutritional and Safety Properties of Hemp Seed Cake as Animal Feed Ingredient. Int. J. Livest. Prod. 2021, 12, 53–63. [Google Scholar] [CrossRef]
- Dong, X.; Woo, M.W.; Quek, S.Y. The physicochemical properties, functionality, and digestibility of hempseed protein isolate as impacted by spray drying and freeze drying. Food Chem. 2024, 433, 137310. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Evaluation of Protein Concentration, Amino Acid Profile and Antinutritional Compounds in Hempseed Meal from Dioecious and Monoecious Varieties. Am. J. Plant Sci. 2015, 6, 14–22. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Malomo, S.A.; Aluko, R.E. Conversion of a low protein hemp seed meal into a functional protein concentrate through enzymatic digestion of fibre coupled with membrane ultrafiltration. Innov. Food Sci. Emerg. Technol. 2015, 31, 151–159. [Google Scholar] [CrossRef]
- Siger, A.; Nogala, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of plant protein in nutrition, wellness, and health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; He, J.; Zhang, J.; Li, X.; Zhang, H.; Hao, J.; Li, L. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem. 2012, 134, 1030–1037. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Xiong, Y.; Fang, Z. Extrusion improves the phenolic profile and biological activities of hempseed (Cannabis sativa L.) hull. Food Chem. 2021, 346, 128606. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, Y.; Khan, S.; Singh, S.; Yu, C.; Cheng, G. Recent advances in biological activities of lignin and emerging biomedical applications: A short review. Int. J. Biol. Macromol. 2022, 208, 819–832. [Google Scholar] [CrossRef]
- Yan, X.; Tang, J.; dos Santos Passos, C.; Nurisso, A.; Simões-Pires, C.A.; Ji, M.; Lou, H.; Fan, P. Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities. J. Agric. Food Chem. 2015, 63, 10611–10619. [Google Scholar] [CrossRef]
- Chen, T.; Hao, J.; He, J.; Zhang, J.; Li, Y.; Liu, R.; Li, L. Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells. Food Chem. 2013, 138, 1034–1041. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Ji, J.; Hongxiang, L.; Fan, P. Hemp (Cannabis sativa L.) Seed Phenylpropionamides Composition and Effects on Memory Dysfunction and Biomarkers of Neuroinflammation Induced by Lipopolysaccharide in Mice. ACS Omega 2018, 3, 15988–15995. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Comp. Rev. Food Sci. Food Safe 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Feyzi, S.; Varidi, M.; Zare, F.; Varidi, M.J. Effect of Drying Methods on the Structure, Thermo and Functional Properties of Fenugreek (Trigonella foenum graecum) Protein Isolate. J. Sci. Food Agric. 2018, 98, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Dedebas, T.; Ekici, L.; Sagdic, O. Chemical characteristics and storage stabilities of different cold-pressed seed oils. J. Food Process. Preserv. 2021, 45, e15107. [Google Scholar] [CrossRef]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils-Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Prescha, A.; Grajzer, M.; Dedyk, M.; Grajeta, H. The Antioxidant Activity and Oxidative Stability of Cold-Pressed Oils. J. Am. Oil Chem. Soc. 2014, 91, 1291–1301. [Google Scholar] [CrossRef]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yu, L. Fatty Acid Composition and Antioxidant Properties of Cold-Pressed Marionberry, Boysenberry, Red Raspberry, and Blueberry Seed Oils. J. Agric. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef]
- Symoniuk, E.; Wroniak, M.; Napiórkowska, K.; Brzezińska, R.; Ratusz, K. Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils and Oils Mixtures. Foods 2022, 11, 1597. [Google Scholar] [CrossRef]
- Orak, H.; Karamać, M.; Orak, A.; Amarowicz, R. Antioxidant Potential and Phenolic Compounds of Some Widely Consumed Turkish White Bean (Phaseolus vulgaris L.) Varieties. Pol. J. Food Nutr. Sci. 2016, 66, 253–260. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Quality of cold-pressed edible rapeseed oil in Germany. Food/Nahr. 2003, 47, 413–419. [Google Scholar] [CrossRef]
Trait | Value |
---|---|
Vegetation | 100 days |
Oil content | 28–32% |
Crude protein | 20–22% |
Crude fiber | 30–32% |
Yield | 0.8–2.0 t ha−1 |
TSW | 16–18 g |
HC | Length of Trial (Month) | DF (%) | TOT Carb (%) | Dig Carb (%) | EV (kcal 100 g−1) | Water (%) |
---|---|---|---|---|---|---|
HHC | 1 | 37.20 ± 1.17 A 1 | 47.30 ± 1.10 A | 6.30 ± 0.34 A | 287.00 ± 1.65 B | 10.50 ± 0.09 |
3 | 41.26 ± 0.42 A | 48.15 ± 1.25 A | 6.89 ± 0.91 A | 292.50 ± 2.83 B | 9.74 ± 0.06 | |
6 | 37.65 ± 0.24 A | 43.46 ± 0.33 A | 6.13 ± 0.86 A | 305.50 ± 3.33 B | 8.90 ± 0.14 | |
DHC | 1 | 8.03 ± 0.79 B | 9.46 ± 0.17 B | 1.88 ± 0.75 B | 525.00 ± 3.30 A | 9.66 ± 0.16 |
3 | 7.20 ± 0.59 B | 9.50 ± 0.10 B | 2.80 ± 0.43 B | 540.00 ± 6.60 A | 9.50 ± 0.31 | |
6 | 6.90 ± 0.10 B | 9.70 ± 0.02 B | 2.20 ± 0.10 B | 512.00 ± 4.71 A | 9.20 ± 0.05 |
HC | Length of Trial (Month) | SFA (%) | MUFA (%) | PUFA (%) | n-3 (%) | n-6 (%) |
---|---|---|---|---|---|---|
HHC | 1 | 10.90 ± 0.01 A 1 | 10.13 ± 0.75 B | 62.30 ± 2.13 | 15.00 ± 0.53 | 45.00 ± 1.74 |
3 | 10.73 ± 0.59 A | 13.03 ± 0.41 A | 72.26 ± 1.84 | 17.17 ± 0.26 | 52.40 ± 1.16 | |
6 | 11.21 ± 0.65 A | 10.92 ± 0.20 B | 63.26 ± 2.51 | 14.95 ± 0.68 | 47.16 ± 1.61 | |
DHC | 1 | 7.46 ± 0.78 B | 14.02 ± 0.07 A | 71.48 ± 0.14 | 14.16 ± 0.12 | 54.72 ± 0.10 |
3 | 8.80 ± 0.48 B | 11.00 ± 0.47 B | 67.01 ± 0.46 | 16.90 ± 0.14 | 50.00 ± 0.24 | |
6 | 8.70 ± 0.50 B | 13.00 ± 0.24 A | 65.05 ± 0.34 | 16.30 ± 0.02 | 49.00 ± 0.21 |
HC | Length of Trial (Month) | OC (%) | CP (%) | Ash (%) | Sugar (%) | CF (%) |
---|---|---|---|---|---|---|
HHC | 1 | 8.90 ± 0.10 B 1 | 31.40 ± 0.71 B | 5.60 ± 0.10 | 2.90 ± 0.03 B | 32.40 ± 0.26 A |
3 | 7.48 ± 0.76 B | 28.39 ± 0.36 B | 6.09 ± 0.06 | 3.07 ± 0.02 B | 31.35 ± 0.75 A | |
6 | 9.47 ± 0.28 B | 30.76 ± 0.29 B | 6.42 ± 0.23 | 3.22 ± 0.06 B | 32.75 ± 1.10 A | |
DHC | 1 | 37.50 ± 0.19 A | 41.15 ± 0.09 A | 6.75 ± 0.01 | 4.83 ± 0.04 A | 2.00 ± 0.09 B |
3 | 35.20 ± 0.49 A | 41.40 ± 0.19 A | 6.50 ± 0.05 | 4.80 ± 0.02 A | 1.90 ± 0.01 B | |
6 | 33.10 ± 0.38 A | 42.20 ± 0.07 A | 6.30 ± 0.02 | 4.70 ± 0.02 A | 1.90 ± 0.02 B |
Oil Extraction Process of HC | Content (%) D.M. | ||||
---|---|---|---|---|---|
Protein | Oil | Ash | T-NSP | UA | |
1 cold pressing (55 °C) of DHC | 43.33 ± 0.06 b 1 | 43.93 ± 0.00 c | 6.94 ± 0.02 a | 3.91 ± 0.03 a | 1.19 ± 0.01 a |
2 cold pressing (55 °C) of DHC | 42.35 ± 0.04 b | 42.37 ± 0.00 c | 6.90 ± 0.01 a | 2.70 ± 0.05 a | 0.81 ± 0.03 a |
1 hot pressing (90 °C) of DHC | 59.72 ± 0.23 c | 20.90 ± 0.02 b | 9.46 ± 0.03 b | 3.22 ± 0.04 a | 1.10 ± 0.02 a |
1 cold pressing (55 °C) of HHC | 29.95 ± 0.36 a | 15.94 ± 0.02 a | 6.75 ± 0.03 a | 27.94 ± 0.48 c | 2.62 ± 0.00 b |
Oil Extraction Process of HC | Content (%) D.M. | ||||
---|---|---|---|---|---|
KL | RFO | DF | PA | TPC 1 | |
1 cold pressing (55 °C) of DHC | 2.80 ± 0.03 a 2 | 1.49 ± 0.00 b | 9.39 ± 0.02 a | 1.08 ± 0.01 a | 1.96 ± 0.00 ab |
2 cold pressing (55 °C) of DHC | 1.99 ± 0.03 a | 1.18 ± 0.00 b | 6.67 ± 0.01 a | 1.16 ± 0.00 a | 0.98 ± 0.01 a |
1 hot pressing (90 °C) of DHC | 2.26 ± 0.01 a | 1.78 ± 0.02 b | 8.37 ± 0.07 a | 1.41 ± 0.01 b | 1.31 ± 0.02 a |
1 cold pressing (55 °C) of HHC | 20.62 ± 0.21 b | 0.63 ± 0.02 a | 51.81 ± 0.24 b | 1.59 ± 0.01 b | 2.48 ± 0.02 b |
HC | Length of Trial (Month) | AV (mg g−1 KOH) | PV (meq O2 kg−1) | ANV | Totox Index |
---|---|---|---|---|---|
HHC | 1 | 8.90 A 1 | 0.10 A | 3.43 B | 3.63 A |
3 | 21.93 B | 0.66 A | 6.00 B | 7.32 A | |
6 | 80.67 B | 4.12 A | 6.98 A | 15.21 A | |
DHC | 1 | 9.95 A | 1.20 A | 0.40 A | 2.80 A |
3 | 17.70 A | 5.75 B | 0.82 A | 12.32 B | |
6 | 58.00 A | 6.79 A | 5.54 A | 19.12 B |
Length of Trial (Month) | AV (mg g−1 KOH) | FFA (%) | PV (meq O2 kg−1 Oil) | ANV | Totox Index |
---|---|---|---|---|---|
1 | 7.52 a 1 | 0.90 a | 2.28 a | 0.50 a | 5.05 a |
3 | 16.80 b | 8.40 b | 1.80 a | 0.90 a | 4.50 a |
6 | 19.22 b | 1.60 a | 4.89 b | 0.95 a | 10.73 b |
HC | Month | MAM at 30 °C | Coli | Y&M | Enterobacteriaceae | CPS | Salmonella |
---|---|---|---|---|---|---|---|
HHC | 1 | <100 | <10 | <10 | <10 | <10 | nd 1 |
3 | 240 | <10 | <100 | <10 | <10 | Nd | |
6 | 9980 | <100 | 279 | <50 | <10 | Nd | |
DHC | 1 | <100 | <10 | <10 | <10 | <10 | Nd |
3 | <100 | <10 | <100 | <10 | <10 | Nd | |
6 | 1000 | <10 | <100 | <10 | <10 | Nd |
HC | Month | General Appearance | Consistency | Color | Smell |
---|---|---|---|---|---|
HHC | 1 | Clean, uniform, free of contamination | Dry, loose, non-caking | Grayish-brown | Mild, plant-based |
3 | No visual change | Stable | Stable | Slight fading of aroma | |
6 | No visual change | Stable | Stable | Still acceptable, low intensity | |
DHC | 1 | Clean, uniform, no visible contamination | Dry, loose, non-caking | Beige | Fresh, aromatic, herbaceous |
3 | No visual change | Stable | Stable | Maintained strong aroma | |
6 | No visual change | Stable | Stable | Aromatic intensity preserved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambroziak, K.; Wenda-Piesik, A. Comparative Characterization of Hemp Seed Cakes from Dehulled and Hulled Cannabis sativa L. var. oleifera cv. ‘Henola’: Nutritional, Functional, and Storage Stability Insights. Foods 2025, 14, 1605. https://doi.org/10.3390/foods14091605
Ambroziak K, Wenda-Piesik A. Comparative Characterization of Hemp Seed Cakes from Dehulled and Hulled Cannabis sativa L. var. oleifera cv. ‘Henola’: Nutritional, Functional, and Storage Stability Insights. Foods. 2025; 14(9):1605. https://doi.org/10.3390/foods14091605
Chicago/Turabian StyleAmbroziak, Krystian, and Anna Wenda-Piesik. 2025. "Comparative Characterization of Hemp Seed Cakes from Dehulled and Hulled Cannabis sativa L. var. oleifera cv. ‘Henola’: Nutritional, Functional, and Storage Stability Insights" Foods 14, no. 9: 1605. https://doi.org/10.3390/foods14091605
APA StyleAmbroziak, K., & Wenda-Piesik, A. (2025). Comparative Characterization of Hemp Seed Cakes from Dehulled and Hulled Cannabis sativa L. var. oleifera cv. ‘Henola’: Nutritional, Functional, and Storage Stability Insights. Foods, 14(9), 1605. https://doi.org/10.3390/foods14091605