Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = gut microbiome bacteriophages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1665 KiB  
Review
Possible Crosstalk and Alterations in Gut Bacteriome and Virome in HIV-1 Infection and the Associated Comorbidities Related to Metabolic Disorder
by Komal Shrivastav, Hesham Nasser, Terumasa Ikeda and Vijay Nema
Viruses 2025, 17(7), 990; https://doi.org/10.3390/v17070990 - 16 Jul 2025
Viewed by 519
Abstract
Improved antiretroviral therapy (ART) has significantly increased the life expectancy of people living with HIV (PLWH). At the same time, other complications like metabolic syndrome (MetS) are coming up as new challenges to handle. This review aims to explore the emerging evidence of [...] Read more.
Improved antiretroviral therapy (ART) has significantly increased the life expectancy of people living with HIV (PLWH). At the same time, other complications like metabolic syndrome (MetS) are coming up as new challenges to handle. This review aims to explore the emerging evidence of gut microbiome and virome alterations in human immunodeficiency virus-1 (HIV-1) infection and associated metabolic disorders, such as type-2 diabetes (T2DM) and cardiovascular disease (CVD), with a focus on their interplay, contribution to immune dysfunction, and potential as therapeutic targets. We conducted a comprehensive review of the current literature on gut bacteriome and virome changes in HIV-1-infected individuals and those with metabolic comorbidities emphasizing their complex interplay and potential as biomarkers or therapeutic targets. HIV-1 infection disrupts gut microbial homeostasis, promoting bacterial translocation, systemic inflammation, and metabolic dysregulation. Similarly, metabolic disorders are marked by reduced beneficial short-chain fatty acid-producing bacteria and an increase in pro-inflammatory taxa. Alterations in the gut virome, particularly involving bacteriophages, may exacerbate bacterial dysbiosis and immune dysfunction. Conversely, some viral populations have been associated with immune restoration post-ART. These findings point toward a dynamic and bidirectional relationship between the gut virome, bacteriome, and host immunity. Targeted interventions such as microbiome modulation and fecal virome transplantation (FVT) offer promising avenues for restoring gut homeostasis and improving long-term outcomes in PLWH. Full article
(This article belongs to the Special Issue HIV and HTLV Infections and Coinfections)
Show Figures

Graphical abstract

19 pages, 1710 KiB  
Review
Metatranscriptomics for Understanding the Microbiome in Food and Nutrition Science
by Christina F. Butowski, Yash Dixit, Marlon M. Reis and Chunlong Mu
Metabolites 2025, 15(3), 185; https://doi.org/10.3390/metabo15030185 - 10 Mar 2025
Cited by 1 | Viewed by 1696
Abstract
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active [...] Read more.
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active metabolites that affect food fermentation or gut health. Most of these processes are mediated by microbial enzymes such as carbohydrate-active enzymes and amino acid metabolism enzymes. Metatranscriptomics enables the capture of active transcripts within the microbiome, providing invaluable functional insights into metabolic activities. Given the inter-kingdom complexity of the microbiome, metatranscriptomics could further elucidate the activities of fungi, archaea, and bacteriophages in the microbial ecosystem. Despite its potential, the application of metatranscriptomics in food and nutrition sciences remains limited but is growing. This review highlights the latest advances in food science (e.g., flavour formation and food enzymology) and nutrition science (e.g., dietary fibres, proteins, minerals, and probiotics), emphasizing the integration of metatranscriptomics with other technologies to address key research questions. Ultimately, metatranscriptomics represents a powerful tool for uncovering the microbiome activity, particularly in relation to active metabolic processes. Full article
(This article belongs to the Special Issue Gut Microbiome and Host Metabolism)
Show Figures

Figure 1

17 pages, 1967 KiB  
Review
The Role of Infant and Early Childhood Gut Virome in Immunity and the Triggering of Autoimmunity—A Narrative Review
by Alexandra Mpakosi, Rozeta Sokou, Martha Theodoraki, Nicoletta Iacovidou, Vasileios Cholevas, Andreas G. Tsantes, Aikaterini I. Liakou, Maria Drogari-Apiranthitou and Christiana Kaliouli-Antonopoulou
Diagnostics 2025, 15(4), 413; https://doi.org/10.3390/diagnostics15040413 - 8 Feb 2025
Cited by 1 | Viewed by 1059
Abstract
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to [...] Read more.
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to play a key role in this interactive microenvironment. Intestinal viral communities, including bacteriophages, appear to influence health and disease, although their role has not yet been fully elucidated. In addition, bacteriophages or viruses that infect bacteria regulate bacterial growth, thus shaping the composition of the gut microbiome and affecting the immune system. Infant Gut Virome: The shaping of the gut microbiome during the first years of life has a significant role in the maturation of the infant’s immune system. In contrast, early dysbiosis has been associated with chronic, including metabolic and autoimmune, disorders later in life. Purpose: Although viruses have been shown to be potential triggers of autoimmune diseases, there is a gap in the literature regarding the infant gut virome in autoimmunity development. Despite the lack of evidence, this review attempts to summarize and clarify what is known so far about this timely and important topic in the hope that its findings will contribute to future research. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

19 pages, 1260 KiB  
Review
From Dysbiosis to Hepatic Inflammation: A Narrative Review on the Diet-Microbiota-Liver Axis in Steatotic Liver Disease
by Andrea Pasta, Elena Formisano, Francesco Calabrese, Elisa Marabotto, Manuele Furnari, Giorgia Bodini, Maria Corina Plaz Torres, Livia Pisciotta, Edoardo Giovanni Giannini and Patrizia Zentilin
Microorganisms 2025, 13(2), 241; https://doi.org/10.3390/microorganisms13020241 - 23 Jan 2025
Cited by 3 | Viewed by 2299
Abstract
The gut microbiota has emerged as a critical player in metabolic and liver health, with its influence extending to the pathogenesis and progression of steatotic liver diseases. This review delves into the gut-liver axis, a dynamic communication network linking the gut microbiome and [...] Read more.
The gut microbiota has emerged as a critical player in metabolic and liver health, with its influence extending to the pathogenesis and progression of steatotic liver diseases. This review delves into the gut-liver axis, a dynamic communication network linking the gut microbiome and liver through metabolic, immunological, and inflammatory pathways. Dysbiosis, characterized by altered microbial composition, contributes significantly to the development of hepatic steatosis, inflammation, and fibrosis via mechanisms such as gut barrier dysfunction, microbial metabolite production, and systemic inflammation. Dietary patterns, including the Mediterranean diet, are highlighted for their role in modulating the gut microbiota, improving gut-liver axis integrity, and attenuating liver injury. Additionally, emerging microbiota-based interventions, such as fecal microbiota transplantation and bacteriophage therapy, show promise as therapeutic strategies for steatotic liver disease. However, challenges such as population heterogeneity, methodological variability, and knowledge gaps hinder the translational application of current findings. Addressing these barriers through standardized approaches and integrative research will pave the way for microbiota-targeted therapies to mitigate the global burden of steatotic liver disease. Full article
Show Figures

Figure 1

20 pages, 1614 KiB  
Review
Targeted Antimicrobial Therapies: A Solution to Overcoming Antimicrobial Resistance in Humans
by Muhammad Jawad Zai, Matthew James Cheesman and Ian Edwin Cock
BioMed 2024, 4(3), 318-337; https://doi.org/10.3390/biomed4030026 - 5 Sep 2024
Cited by 1 | Viewed by 3730
Abstract
Overuse or misuse of broad-spectrum antibiotics increases the risk of the emergence of antibiotic-resistant bacteria, which increases the possibility of antimicrobial-resistant (AMR) bacterial infections, and subsequently raises healthcare costs. The excessive use of broad-spectrum antibiotics has also been linked to increased death rates, [...] Read more.
Overuse or misuse of broad-spectrum antibiotics increases the risk of the emergence of antibiotic-resistant bacteria, which increases the possibility of antimicrobial-resistant (AMR) bacterial infections, and subsequently raises healthcare costs. The excessive use of broad-spectrum antibiotics has also been linked to increased death rates, whilst the benefits that they offer against antibiotic-resistant bacterial pathogens are minimal. Patients infected with antibiotic-resistant bacterial pathogens frequently receive inadequate antimicrobial therapies due to a lack of effective options than those with non-resistant infections, resulting in poor health outcomes and longer recovery times, especially among patients who are critically ill. Broad-spectrum antibiotics also disturb the gut microbiome, which is increasingly recognized as a regulator of immune health. This study offers insights into the use of targeted antimicrobial therapies for bacterial infections, focusing on strategies that mitigate the risk of antibiotic resistance and unwanted side effects associated with the use of broad-spectrum antibiotics. We focus on identifying the genotype and phenotype of bacterial pathogens and then using either nanoparticle-based, vaccine-based, bacteriophage-based, monoclonal antibody-based, and CRISPR-based targeted therapies to directly kill those pathogens and reduce collateral damage. Furthermore, the mechanisms of action of these targeted therapies and their advantages and disadvantages are discussed. Full article
Show Figures

Figure 1

21 pages, 2178 KiB  
Review
Interplay between Multisystem Inflammatory Syndrome in Children, Interleukin 6, Microbiome, and Gut Barrier Integrity
by Ali Zari, Elrashdy M. Redwan, Mikolaj Raszek, David Cowley, Altijana Hromić-Jahjefendić, Vladimir N. Uversky, Mark Fabrowski, Carlo Brogna, Marina Piscopo and Alberto Rubio-Casillas
Immuno 2024, 4(3), 226-246; https://doi.org/10.3390/immuno4030015 - 18 Aug 2024
Cited by 5 | Viewed by 2608
Abstract
A severe consequence of SARS-CoV-2 infection that manifests as systemic inflammation and multi-organ involvement is called Multisystem Inflammatory Syndrome in Children (MIS-C). This review examines the possible relationship between gut barrier integrity, the microbiome, dysregulation of interleukin 6 (IL-6) signaling, and MIS-C. Clinical [...] Read more.
A severe consequence of SARS-CoV-2 infection that manifests as systemic inflammation and multi-organ involvement is called Multisystem Inflammatory Syndrome in Children (MIS-C). This review examines the possible relationship between gut barrier integrity, the microbiome, dysregulation of interleukin 6 (IL-6) signaling, and MIS-C. Clinical and biochemical features of MIS-C are comparable to those of other hyper-inflammatory syndromes, suggesting a dysregulated immune response. One possible explanation for the systemic inflammation seen in MIS-C patients is the SARS-CoV-2-induced dysregulation of the IL-6 signaling pathway. In addition, new data suggest a reciprocal link between gut barrier integrity and IL-6. SARS-CoV-2 exhibits bacteriophage-like behavior, highlighting the role of bacteria as a reservoir for the virus and emphasizing the importance of understanding the bacteriophagic mechanism of the virus in fecal–oral transmission. The increased translocation of viral products and bacterial toxins may result from disrupting the intestinal barrier and cause systemic inflammation. On the other hand, systemic inflammation can weaken the integrity of the intestinal barrier, which feeds back into the loop of immunological dysregulation. In the context of MIS-C, understanding the interaction between SARS-CoV-2 infection, IL-6, and gut barrier integrity may shed light on the etiology of the disease and guide treatment options. Since children with gut dysbiosis may be more susceptible to MIS-C, it is critical to reinforce their microbiome through probiotics supplementation, and plant-fiber-rich diets (prebiotics). Early antibiotic treatment and the use of zonulin antagonists should also be considered. Full article
Show Figures

Figure 1

16 pages, 315 KiB  
Review
Dietary Effects on the Gut Phageome
by Andrea Howard, Amanda Carroll-Portillo, Joe Alcock and Henry C. Lin
Int. J. Mol. Sci. 2024, 25(16), 8690; https://doi.org/10.3390/ijms25168690 - 9 Aug 2024
Cited by 2 | Viewed by 2480
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations [...] Read more.
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn’s disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer’s disease, Parkinson’s Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome—bacteriophages living amongst and within our bacterial microbiome—is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome. Full article
(This article belongs to the Special Issue Gut Microbiota in Human Diseases and Health)
20 pages, 316 KiB  
Review
Functional Foods, Gut Microbiome and Association with Obesity and Metabolic Syndrome: A Literature Review
by Despoina Koumpouli, Varvara Koumpouli and Antonios E. Koutelidakis
Appl. Sci. 2024, 14(13), 5578; https://doi.org/10.3390/app14135578 - 26 Jun 2024
Cited by 4 | Viewed by 6218
Abstract
The human gastrointestinal gut consists of about 100 trillion microorganisms, including up to 5000 different types of bacteria, as well as Archaea, Eukarya, parasites, viruses and bacteriophages that together are called the “gut microbiome”. Changes in gut microorganism composition (dysbiosis) can cause various [...] Read more.
The human gastrointestinal gut consists of about 100 trillion microorganisms, including up to 5000 different types of bacteria, as well as Archaea, Eukarya, parasites, viruses and bacteriophages that together are called the “gut microbiome”. Changes in gut microorganism composition (dysbiosis) can cause various diseases. The present study aims to investigate if diet, and more specifically, functional foods have an impact on the intestinal microbiome, and whether the intestinal microbiome has an influence on metabolic syndrome (MetS) and obesity. This systematic review was accomplished according to PRISMA guidelines, mostly using the key words functional foods, microbiome, obesity, MetS, and Mediterranean diet. The search focused on recent scientific articles from the Pubmed, Scopus, and Google Scholar databases. Most of the studies discussed showed a potential therapeutic effect of the Mediterranean diet, which is rich in beneficial nutrients, on body weight and fat deposition, through reshaping of the gut microbiome’s synthesis. This literature review showed a possible relationship between microflora metabolites, endotoxemia, obesity and MetS. The role of probiotics, prebiotics, and polyphenols in the prevention of obesity and MetS is of high importance in promoting healthy aging. The future challenge is to comprehend how different dietary patterns could regulate the gut microflora’s composition and whether these changes could be long term. Full article
(This article belongs to the Special Issue Innovative Technologies for Food Preservation and Processing)
30 pages, 1661 KiB  
Review
Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair
by Veronica Marrella, Federico Nicchiotti and Barbara Cassani
Int. J. Mol. Sci. 2024, 25(7), 4051; https://doi.org/10.3390/ijms25074051 - 5 Apr 2024
Cited by 27 | Viewed by 7553
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the [...] Read more.
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host–pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut–lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections. Full article
(This article belongs to the Special Issue The Role of Microbiota in Immunity and Inflammation)
Show Figures

Figure 1

19 pages, 5925 KiB  
Commentary
Who Is the Intermediate Host of RNA Viruses? A Study Focusing on SARS-CoV-2 and Poliovirus
by Carlo Brogna, Domenico Rocco Bisaccia, Vincenzo Costanzo, Gennaro Lettieri, Luigi Montano, Valentina Viduto, Mark Fabrowski, Simone Cristoni, Marina Prisco and Marina Piscopo
Microorganisms 2024, 12(4), 643; https://doi.org/10.3390/microorganisms12040643 - 23 Mar 2024
Cited by 7 | Viewed by 3019
Abstract
The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a [...] Read more.
The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease’s pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses. Full article
(This article belongs to the Special Issue Diversity and Pathogenesis of Common Human and Animal Viruses)
Show Figures

Figure 1

17 pages, 2299 KiB  
Article
Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models
by Oluwaseun A. Ishola, Susanne Kublik, Abilash Chakravarthy Durai Raj, Caspar Ohnmacht, Stefanie Schulz, Bärbel U. Foesel and Michael Schloter
Microorganisms 2024, 12(2), 255; https://doi.org/10.3390/microorganisms12020255 - 25 Jan 2024
Cited by 1 | Viewed by 2793
Abstract
Gnotobiotic murine models are important to understand microbiota–host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and [...] Read more.
Gnotobiotic murine models are important to understand microbiota–host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host’s environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome “dark matter” and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome. Full article
(This article belongs to the Special Issue Biotechnological Applications of Bacteriophages and Enteric Viruses)
Show Figures

Figure 1

20 pages, 3238 KiB  
Article
Modulation of Caecal Microbiota and Metabolome Profile in Salmonella-Infected Broilers by Phage Therapy
by Laura Lorenzo-Rebenaque, Cristina Casto-Rebollo, Gianfranco Diretto, Sarah Frusciante, Juan Carlos Rodríguez, María-Paz Ventero, Carmen Molina-Pardines, Santiago Vega, Clara Marin and Francisco Marco-Jiménez
Int. J. Mol. Sci. 2023, 24(20), 15201; https://doi.org/10.3390/ijms242015201 - 15 Oct 2023
Cited by 4 | Viewed by 2755
Abstract
Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment’s [...] Read more.
Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment’s response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance. Full article
(This article belongs to the Special Issue Bacteriophage: Molecular Ecology and Pharmacology)
Show Figures

Figure 1

17 pages, 757 KiB  
Review
Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)—A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT)
by Blair Merrick, Chrysi Sergaki, Lindsey Edwards, David L. Moyes, Michael Kertanegara, Désirée Prossomariti, Debbie L. Shawcross and Simon D. Goldenberg
Infect. Dis. Rep. 2023, 15(3), 238-254; https://doi.org/10.3390/idr15030025 - 9 May 2023
Cited by 14 | Viewed by 4383
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and [...] Read more.
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT). Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

29 pages, 1773 KiB  
Review
Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy
by Carlo Airola, Andrea Severino, Serena Porcari, William Fusco, Benjamin H. Mullish, Antonio Gasbarrini, Giovanni Cammarota, Francesca Romana Ponziani and Gianluca Ianiro
Antibiotics 2023, 12(5), 868; https://doi.org/10.3390/antibiotics12050868 - 8 May 2023
Cited by 31 | Viewed by 8725
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of [...] Read more.
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation. Full article
Show Figures

Figure 1

12 pages, 1125 KiB  
Review
The Novel Role of Phage Particles in Chronic Liver Diseases
by Liuying Chen, Xiaohua Hou and Huikuan Chu
Microorganisms 2023, 11(5), 1181; https://doi.org/10.3390/microorganisms11051181 - 30 Apr 2023
Cited by 6 | Viewed by 2647
Abstract
The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, [...] Read more.
The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, including alcohol-related liver disease and nonalcoholic fatty liver disease, exhibit alterations of the enteric phages. Phages shape intestinal bacterial colonization and regulate bacterial metabolism. Phages adjoining to intestinal epithelial cells prevent bacteria from invading the intestinal barrier, and mediate intestinal inflammatory response. Phages are also observed increasing intestinal permeability and migrating to peripheral blood and organs, likely contributing to inflammatory injury in chronic liver diseases. By preying on harmful bacteria, phages can improve the gut microbiome of patients with chronic liver disease and thus act as an effective treatment method. Full article
(This article belongs to the Special Issue Understanding Phage Particles 2.0)
Show Figures

Figure 1

Back to TopTop