Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (871)

Search Parameters:
Keywords = growth regulatory network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4391 KB  
Article
Brassinosteroid Synthesis and Perception Differently Regulate Phytohormone Networks in Arabidopsis thaliana
by Yaroslava Bukhonska, Michael Derevyanchuk, Roberta Filepova, Jan Martinec, Petre Dobrev, Eric Ruelland and Volodymyr Kravets
Int. J. Mol. Sci. 2025, 26(19), 9644; https://doi.org/10.3390/ijms26199644 - 2 Oct 2025
Abstract
Brassinosteroids (BRs) are essential regulators of plant development and stress responses, but the distinct contributions of BR biosynthesis and signaling to hormonal crosstalk remain poorly defined. Here, we investigated the effects of the BR biosynthesis inhibitor brassinazole (BRZ) and the BR-insensitive mutant bri1-6 [...] Read more.
Brassinosteroids (BRs) are essential regulators of plant development and stress responses, but the distinct contributions of BR biosynthesis and signaling to hormonal crosstalk remain poorly defined. Here, we investigated the effects of the BR biosynthesis inhibitor brassinazole (BRZ) and the BR-insensitive mutant bri1-6 on endogenous phytohormone profiles in Arabidopsis thaliana. Using multivariate analysis and targeted hormone quantification, we show that BRZ treatment and BRI1 disruption alter hormone balance through partially overlapping but mechanistically distinct pathways. Principal component analysis (PCA) and hierarchical clustering revealed that BRZ and the bri1-6 mutation do not phenocopy each other and that BRZ still alters hormone profiles even in the bri1-6 mutant, suggesting potential BRI1-independent effects. Both BRZ treatment and the bri1-6 mutation tend to influence cytokinins and auxin conjugates divergently. On the contrary, their effects on stress-related hormones converge: BRZ decreases salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in the WT leaves; similarly, bri1-6 mutants show reduced SA, JA, and ABA. These results indicate that BR biosynthesis and BRI1-mediated perception may contribute independently to hormonal reprogramming, with BRZ eliciting additional effects, possibly via metabolic feedback, compensatory signaling, or off-target action. Hormone correlation analyses revealed conserved co-regulation clusters that reflect underlying regulatory modules. Altogether, our findings provide evidence for a partial uncoupling of BR levels and BR signaling and illustrate how BR pathways intersect with broader hormone networks to coordinate growth and stress responses. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
Show Figures

Figure 1

17 pages, 1269 KB  
Review
Ethylene-Triggered Rice Root System Architecture Adaptation Response to Soil Compaction
by Yuxiang Li, Bingkun Ge, Chunxia Yan, Zhi Qi, Rongfeng Huang and Hua Qin
Agriculture 2025, 15(19), 2071; https://doi.org/10.3390/agriculture15192071 - 2 Oct 2025
Abstract
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene [...] Read more.
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene serves as a primary signal and functions as a hub in orchestrating root response to soil compaction. Mechanical impedance promotes ethylene biosynthesis and compacted soil impedes ethylene diffusion, resulting in ethylene accumulation in root tissues and triggering a complex hormonal crosstalk network to orchestrate root system architectural modification to facilitate plant adaptation to compacted soil. This review summarizes the recent advances on rice root adaptation response to compacted soil and emphasizes the regulatory network triggered by ethylene, which will improve our understanding of the role of ethylene in root growth and development and provide a pathway for breeders to optimize crop performance under specific agronomic conditions. Full article
22 pages, 402 KB  
Review
Influence of Culture Conditions on Bioactive Compounds in Cordyceps militaris: A Comprehensive Review
by Hye-Jin Park
Foods 2025, 14(19), 3408; https://doi.org/10.3390/foods14193408 - 1 Oct 2025
Abstract
Cordyceps militaris (C. militaris) is a medicinal fungus renowned for its diverse therapeutic properties, largely attributed to bioactive compounds such as cordycepin, polysaccharides, adenosine, D-mannitol, carotenoids, and ergosterol. However, the production and composition of these metabolites are highly influenced by cultivation [...] Read more.
Cordyceps militaris (C. militaris) is a medicinal fungus renowned for its diverse therapeutic properties, largely attributed to bioactive compounds such as cordycepin, polysaccharides, adenosine, D-mannitol, carotenoids, and ergosterol. However, the production and composition of these metabolites are highly influenced by cultivation conditions, highlighting the need for systematic optimization strategies. This review synthesizes current findings on how nutritional factors—including carbon and nitrogen sources, their ratios, and trace elements—and environmental parameters such as oxygen availability, pH, temperature, and light regulate C. militaris metabolite biosynthesis. The impacts of solid-state fermentation (using grains, insects, and agro-industrial residues) and liquid state fermentation (submerged and surface cultures) are compared, with attention to their roles in mycelial growth, fruiting body formation, and secondary metabolite production. Special emphasis is placed on mixed grain–insect substrates and light regulation, which have emerged as promising methods to enhance cordycepin accumulation. Beyond summarizing advances, this review also identifies key knowledge gaps that must be addressed: (i) the incomplete understanding of metabolite regulatory networks, (ii) the absence of standardized cultivation protocols, and (iii) unresolved challenges in scale-up, including oxygen transfer, foam control, and downstream processing. We propose that future research should integrate multi-omics approaches with bioprocess engineering to overcome these limitations. Collectively, this review highlights both current progress and remaining challenges, providing a roadmap for advancing the sustainable, scalable, and application-driven production of bioactive compounds from C. militaris. Full article
(This article belongs to the Special Issue Mushrooms and Edible Fungi as Future Foods)
Show Figures

Figure 1

18 pages, 1277 KB  
Review
COP9 Signalosome’s Role in Plant Defense Mechanisms
by Zihua Lu, Chao Li, Kelin Deng, Cong Han, Zhihui Shan, Shuilian Chen, Hongli Yang, Yuanxiao Yang, Haifeng Chen and Qingnan Hao
Plants 2025, 14(19), 3017; https://doi.org/10.3390/plants14193017 - 29 Sep 2025
Abstract
The COP9 signalosome (CSN) is a highly conserved eukaryotic protein complex that plays a crucial role in plant growth, development, and stress responses by modulating the ubiquitination pathway. Emerging evidence underscores its significance in plant immunity, where it orchestrates diverse defense mechanisms, including [...] Read more.
The COP9 signalosome (CSN) is a highly conserved eukaryotic protein complex that plays a crucial role in plant growth, development, and stress responses by modulating the ubiquitination pathway. Emerging evidence underscores its significance in plant immunity, where it orchestrates diverse defense mechanisms, including hormone signaling, reactive oxygen species (ROS), homeostasis, and secondary metabolite (SM) biosynthesis. As a key regulator, CSN influences multiple layers of immune responses, such as pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and systemic acquired resistance (SAR). However, the intricate interplay between CSN and immune regulatory networks remains incompletely understood, and a comprehensive model of its mechanistic framework is still lacking. This review systematically consolidates current knowledge on CSN-mediated immune regulation in plant–pathogen interactions and highlights its role in disease resistance. Full article
(This article belongs to the Special Issue Molecular Pathways in Plant Immunity and Protection Against Stress)
Show Figures

Figure 1

20 pages, 5240 KB  
Article
Characterization of the Glutamine Synthetase Gene Family in Wheat (Triticum aestivum L.) and Expression Analysis in Response to Various Abiotic Stresses
by Zhiyong Zhang, Xiaojiao Zhang, Yanling Mu, Huali Wang, Lulu Wang, Furong Nai, Yihao Wei, Shuping Xiong, Xinming Ma, Huiqiang Li and Xiaochun Wang
Int. J. Mol. Sci. 2025, 26(19), 9403; https://doi.org/10.3390/ijms26199403 - 26 Sep 2025
Abstract
Glutamine synthetase plays an essential role in regulating plant growth and development. However, few studies have analyzed the roles of TaGS in wheat under abiotic stress conditions. In this study, we identified and analyzed the members of the TaGS gene family in Triticum [...] Read more.
Glutamine synthetase plays an essential role in regulating plant growth and development. However, few studies have analyzed the roles of TaGS in wheat under abiotic stress conditions. In this study, we identified and analyzed the members of the TaGS gene family in Triticum aestivum L., focusing on their gene characteristics, phylogenetic evolution, cis-elements, transcriptional and post-translational modifications, and expression profiling in response to abiotic stress. Twelve TaGS genes were divided into four subfamilies. The synteny analysis revealed that wheat and the five other species share GS homologs. Several potential transcription factors were identified as regulators of TaGS genes. TaGS contains 19 microRNA binding sites, phosphorylation sites, and ubiquitination sites. TaGS genes exhibited tissue-specific expression across various developmental stages and were differentially expressed in response to abiotic stress. For instance, TaGS1-3-4A/4B/4D were upregulated in the leaves and roots of wheat seedlings under abiotic stress conditions. Furthermore, gene ontology annotation was performed on the TaGS-interacting proteins screened by immunoprecipitation–mass spectrometry to elucidate the regulatory network associated with TaGS. This study lays a foundation for further functional research of TaGS genes in response to abiotic stress and provides potential information for enhancing stress tolerance in wheat. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 1382 KB  
Article
Integrating AI and Geospatial Technologies for Sustainable Smart City Development: A Case Study of Yerevan
by Khoren Mkhitaryan, Anna Sanamyan, Mariam Mnatsakanyan, Erika Kirakosyan and Svetlana Ratner
Urban Sci. 2025, 9(10), 389; https://doi.org/10.3390/urbansci9100389 - 26 Sep 2025
Abstract
Urban growth and environmental pressures in rapidly transforming cities require innovative governance tools that integrate advanced technologies with institutional assessment. This study develops and applies a strategic integration framework that combines spatial analysis, Convolutional Neural Networks (CNNs)-based land-use classification, SHAP-based feature attribution, and [...] Read more.
Urban growth and environmental pressures in rapidly transforming cities require innovative governance tools that integrate advanced technologies with institutional assessment. This study develops and applies a strategic integration framework that combines spatial analysis, Convolutional Neural Networks (CNNs)-based land-use classification, SHAP-based feature attribution, and stakeholder interviews to evaluate Yerevan, Armenia, as a case of a mid-income city facing accelerated urbanization. The case selection is justified by Yerevan’s rapid built-up expansion, fragmented green areas, and institutional challenges in aligning urban development with sustainability goals. The CNN model achieved 92.4% accuracy in land-use classification, and projections under a business-as-usual scenario indicate a 12.8% increase in built-up areas and a 6.5% decline in green zones by 2030. SHAP analysis identified land surface temperature and NDVI as the most influential predictors, while governance interviews highlighted gaps in regulatory support and technical capacity. The proposed framework advances the literature by integrating AI-driven geospatial analysis with qualitative governance assessment, providing actionable insights for urban policymakers. Findings underscore the potential of combining machine learning, geospatial technologies, and institutional diagnostics to guide smart city planning in transition economies. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

19 pages, 3271 KB  
Article
Mycobacterium Transcriptional Factor BlaI Regulates Cell Division and Growth and Potentiates β-Lactam Antibiotic Efficacy Against Mycobacteria
by Junqi Xu, Mingjun Zhang, Fuling Xie, Junfeng Zhen, Yuerigu Abuliken, Chaoyun Gao, Yongdong Dai, Zhiyong Jiang, Peibo Li and Jianping Xie
Microorganisms 2025, 13(10), 2245; https://doi.org/10.3390/microorganisms13102245 - 25 Sep 2025
Abstract
Cell division is critical for the survival, growth, pathogenesis, and antibiotic susceptibility of Mycobacterium tuberculosis (Mtb). However, the regulatory networks governing the transcription of genes involved in cell growth and division in Mtb remain poorly understood. This study aimed to investigate the impact [...] Read more.
Cell division is critical for the survival, growth, pathogenesis, and antibiotic susceptibility of Mycobacterium tuberculosis (Mtb). However, the regulatory networks governing the transcription of genes involved in cell growth and division in Mtb remain poorly understood. This study aimed to investigate the impact of BlaI overexpression on cell division and growth in Mtb and elucidate the underlying mechanisms. Mycobacterium smegmatis mc2155 was used as the model organism. Recombinant strains overexpressing BlaI were constructed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), ethidium bromide and Nile red uptake assays, minimum inhibitory concentration (MIC) determination, drug resistance analysis, quantitative real-time PCR (qRT-PCR) assays, and electrophoretic mobility shift assay (EMSA) were employed to assess changes in bacterial morphology, cell wall permeability, antibiotic susceptibility, gene transcription levels, and the interaction between BlaI and its target genes. Overexpression of BlaI disrupted bacterial division in M. smegmatis, leading to growth delay, cell elongation, and formation of multi-septa. It also altered the lipid permeability of the cell wall and enhanced the sensitivity of M. smegmatis to β-lactam antibiotics. BlaI overexpression affected the transcription of cell division-related genes, particularly downregulating ftsQ. Additionally, BlaI negatively regulated the transcription of Rv1303—a gene co-transcribed with ATP synthase-encoding genes—inhibiting ATP synthesis. This impaired the phosphorylation of division complex proteins, ultimately affecting cell division and cell wall synthesis. Overexpression of BlaI in Mtb interferes with bacterial division, slows growth, and alters gene expression. Our findings identify a novel role for BlaI in regulating mycobacterial cell division and β-lactam susceptibility, providing a foundation for future mechanistic studies in M. tuberculosis, with validation required to assess relevance to clinical tuberculosis—though validation in M. tuberculosis and preclinical models is required. Full article
(This article belongs to the Special Issue Mycobacterial Research)
Show Figures

Figure 1

15 pages, 1767 KB  
Article
The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells
by Yunyeong Lee and Hara Kang
Int. J. Mol. Sci. 2025, 26(19), 9368; https://doi.org/10.3390/ijms26199368 - 25 Sep 2025
Abstract
The proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are key pathological features of vascular remodeling during pulmonary hypertension. Platelet-derived growth factor (PDGF) signaling is a major contributor to these processes. Given the importance of microRNA (miRNA) regulation in the PDGF [...] Read more.
The proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are key pathological features of vascular remodeling during pulmonary hypertension. Platelet-derived growth factor (PDGF) signaling is a major contributor to these processes. Given the importance of microRNA (miRNA) regulation in the PDGF signaling pathway in PASMCs, we hypothesized that imatinib, a tyrosine kinase inhibitor, modulates the expression levels of miRNAs responsive to PDGF signaling to ameliorate the PDGF signaling-induced PASMC phenotype. In this study, we investigated the role of miR-335-5p in PDGF signaling-induced PASMC proliferation and migration, as well as the involvement of imatinib in the regulatory network of miR-335-5p. miR-335-5p was identified as a critical negative regulator of PDGF signaling. Functional assays revealed that miR-335-5p significantly inhibits PASMC proliferation and migration. Through target prediction and validation, Rho GTPase Activating Protein 18 (ARHGAP18) was identified as a novel direct target of miR-335-5p. In addition, ARHGAP18 was found to play an essential role in regulating PASMC proliferation and migration. Although miR-335-5p was downregulated upon PDGF-BB stimulation, its expression was restored by imatinib. These findings highlight the important role of the imatinib–miR-335-5p–ARHGAP18 axis as a potential therapeutic target for pathological vascular remodeling. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1964 KB  
Article
Expression Regulatory Mechanisms of the Key Structural Genes in the Carotenoid Biosynthesis Pathway Under Salt Stress of Lycium barbarum
by Zhi-Hang Hu, Li-Xiang Wang, Nan Zhang, Chen Chen, Jing Zhuang, Yue Yin and Ai-Sheng Xiong
Horticulturae 2025, 11(10), 1149; https://doi.org/10.3390/horticulturae11101149 - 24 Sep 2025
Viewed by 116
Abstract
Salt stress is a major abiotic factor limiting wolfberry (Lycium barbarum) growth. As a high-value medicinal and edible crop, wolfberry relies on its carotenoid content, a critical determinant of fruit quality and nutritional value. To elucidate the expression regulatory mechanisms of [...] Read more.
Salt stress is a major abiotic factor limiting wolfberry (Lycium barbarum) growth. As a high-value medicinal and edible crop, wolfberry relies on its carotenoid content, a critical determinant of fruit quality and nutritional value. To elucidate the expression regulatory mechanisms of key genes in the carotenoid biosynthesis pathway under salt stress, this study systematically identified 17 structural genes within the L. barbarum carotenoid pathway using genomic and transcriptomic approaches. Comprehensive analyses were conducted on gene structure, chromosomal distribution, conserved domains, and cis-acting elements. The results revealed that these genes were clustered on chromosomes Chr08 and Chr10 and exhibit strong collinearity with tomato (18 syntenic pairs). Their promoters were enriched with light-responsive (G-box) and stress-responsive (ABRE, DRE) elements. Tissue-specific expression analysis demonstrated high expression in mid-to-late fruit developmental stages (LbaPSY1, LbaPDS) and in photoprotective genes (LbaZEP, LbaVDE) in leaves. Under 300 mM NaCl stress treatment, the genes exhibited a staged response: Early stage (1–3 h): upstream MEP pathway genes (LbaDXS, LbaGGPS) were rapidly induced to supply precursors. Mid-stage (6–12 h): midstream genes (LbaPSY, LbaPDS, LbaZDS) were continuously upregulated, promoting lycopene synthesis and preferentially activating the β-branch (LbaLCYB). Late stage (12–24 h): downstream xanthophyll cycle genes (LbaBCH, LbaZEP, LbaVDE) were significantly enhanced, facilitating the accumulation of antioxidant compounds like violaxanthin and neoxanthin. This coordinated regulation formed a synergistic “precursor supply–antioxidant product” network. This study revealed the phased and coordinated regulatory network of carotenoid biosynthesis genes under salt stress in L. barbarum. It also provided potential target genes for the new cultivar selection with enhanced salt tolerance and nutritional quality. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

16 pages, 4368 KB  
Article
Study on the Molecular Mechanism of Arbuscular Mycorrhizal Symbiosis Regulating Polysaccharide Synthesis in Dendrobium officinale
by Jiadong Chen, Yiqun Zhang, Man Zhang, Ziyi Zhang, Yingying Liu, Xiaojing Duan, Zhengming Tao and Wu Jiang
Int. J. Mol. Sci. 2025, 26(19), 9298; https://doi.org/10.3390/ijms26199298 - 23 Sep 2025
Viewed by 85
Abstract
Mycorrhizal symbiosis represents a ubiquitous mutualistic relationship in nature, wherein mycorrhizal fungi enhance the host plant’s ability to absorb water and nutrients from the soil. In return, the host plant supplies the fungi with essential nutrients necessary for their metabolic activities. However, research [...] Read more.
Mycorrhizal symbiosis represents a ubiquitous mutualistic relationship in nature, wherein mycorrhizal fungi enhance the host plant’s ability to absorb water and nutrients from the soil. In return, the host plant supplies the fungi with essential nutrients necessary for their metabolic activities. However, research focusing on the regulatory mechanisms governing mycorrhizal symbiosis in Dendrobium officinale remains limited. This study systematically investigates the regulatory mechanisms of mycorrhizal symbiosis on transcriptional synthesis in D. officinale by establishing a mycorrhizal symbiotic system, complemented by phenotypic observation, physiological measurement, and transcriptome sequencing. The results indicate that mycorrhizal symbiosis promotes both growth and nutrient absorption in D. officinale, concurrently increasing polysaccharide content. Through transcriptome analysis, we identified 59 differentially expressed genes associated with polysaccharide metabolism, alongside key genes and transcription factors integral to the regulatory network. Notably, the glycosyltransferase gene DoUGT83A1 was found to negatively regulate the mycorrhizal symbiotic system when heterologously expressed in tomato. This study provides a fundamental theoretical basis for elucidating the molecular mechanisms underlying polysaccharide synthesis in D. officinale and offers new insights for optimizing cultivation practices to enhance medicinal quality. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 2359 KB  
Review
The UGT73 Family of Glycosyltransferases in Plants: Gene Structure, Catalytic Mechanisms, and Biological Functions
by Yujia Wei, Yan Li, Yuhan Kang, Jiqian Gu, Xiaonan Gong, Min Du, Na Yang, Lan Tu, Peng Shi, Zihan Yu, Zengyu Wang, Lili Cong and Kun Zhang
Agronomy 2025, 15(10), 2248; https://doi.org/10.3390/agronomy15102248 - 23 Sep 2025
Viewed by 233
Abstract
Uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) play important roles in plant growth and development. As an important branch of plant UGTs, the UGT73 family participates in secondary metabolism, hormone regulation, and stress responses. Studies have shown that this family is involved in the synthesis [...] Read more.
Uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) play important roles in plant growth and development. As an important branch of plant UGTs, the UGT73 family participates in secondary metabolism, hormone regulation, and stress responses. Studies have shown that this family is involved in the synthesis of flavonoids, terpenoids, and other substances as well as the regulation of hormone homeostasis through precise glycosylation modifications. This review has collated the relevant properties of the plant UGT73 family in recent years and aimed to (1) analyze the structural characteristics of UGT73 family glycosyltransferase genes in different plant species; (2) outline the substrate specificity, catalytic sites, and mechanisms of UGT73 family glycosyltransferases; and (3) elaborate on their notable roles in growth and development, hormone regulation, and stress resistance. In-depth investigations are required to analyze the catalytic structure of the UGT73 family, complex regulatory networks, and interspecific functional differences. Future studies should combine multi-omic and synthetic biology technologies to explore new functions of the UGT73 family, thereby providing theoretical support and practical guidance for the development of plant metabolic engineering and green biotechnology. Full article
Show Figures

Figure 1

22 pages, 1549 KB  
Review
Natural Products Targeting the Androgen Receptor Signaling Pathway: Therapeutic Potential and Mechanisms
by Sitong Wu, Esveidy Isabel Oceguera Nava, Dennis Ashong, Guanglin Chen and Qiao-Hong Chen
Curr. Issues Mol. Biol. 2025, 47(9), 780; https://doi.org/10.3390/cimb47090780 - 19 Sep 2025
Viewed by 320
Abstract
The androgen receptor (AR) signaling pathway is the primary driver of prostate cancer initiation and progression, including the development of castration-resistant prostate cancer (CRPC). Because current AR-targeted therapies inevitably encounter drug resistance, novel strategies to suppress AR signaling are urgently needed. Natural products [...] Read more.
The androgen receptor (AR) signaling pathway is the primary driver of prostate cancer initiation and progression, including the development of castration-resistant prostate cancer (CRPC). Because current AR-targeted therapies inevitably encounter drug resistance, novel strategies to suppress AR signaling are urgently needed. Natural products represent a rich and structurally diverse source of bioactive compounds capable of targeting AR at multiple regulatory levels. This review overviews the interactions between natural products and the AR signaling axis through distinct mechanisms, including inhibition of testosterone production and 5α-reductase activity, direct antagonism of AR, and induction of AR degradation. In addition, several compounds disrupt AR nuclear translocation, downregulate AR splice variants, or suppress AR signaling indirectly through epigenetic regulation, microRNA modulation, or interference with co-regulator networks. Preclinical studies provide compelling evidence that these agents can effectively interrupt AR signaling, thereby suppressing prostate cancer growth. However, challenges remain, particularly the limited pharmacokinetic characterization, lack of in vivo validation, and scarcity of clinical studies. Future research should focus on improving bioavailability, exploring synergistic combinations with existing therapies, and advancing well-designed in vivo and clinical investigations. Collectively, these efforts may establish natural products as lead compounds to modulate AR signaling for prostate cancer prevention and treatment. Full article
Show Figures

Figure 1

17 pages, 10380 KB  
Article
Multidimensional Regulatory Mechanisms of LvChia2 on Growth in the Pacific White Shrimp (Litopenaeus vannamei)
by Shangyi Li, Yifan Lei, Qingyun Liu, Qiangyong Li, Chunling Yang, Yuliu Huang, Digang Zeng, Liping Zhou, Min Peng, Xiuli Chen, Fan Wang and Yongzhen Zhao
Genes 2025, 16(9), 1110; https://doi.org/10.3390/genes16091110 - 19 Sep 2025
Viewed by 231
Abstract
Background: As a globally significant aquaculture species, elucidating the molecular mechanisms underlying the regulation of the Pacific White Shrimp (Litopenaeus vannamei) growth holds substantial scientific and industrial value. This study systematically investigates the role of the LvChia2 gene in governing [...] Read more.
Background: As a globally significant aquaculture species, elucidating the molecular mechanisms underlying the regulation of the Pacific White Shrimp (Litopenaeus vannamei) growth holds substantial scientific and industrial value. This study systematically investigates the role of the LvChia2 gene in governing growth and development through a cross-tissue metabolic network approach. Methods: RNA knockdown (RNAi)-mediated knockdown of LvChia2 significantly impaired growth performance and triggered a tissue-specific metabolic compensation mechanism. Results: This mechanism was characterized by reduced crude lipid content in muscle and adaptive modulation of lipase (LPS) activities in hepatopancreatic and intestinal tissues, suggesting inter-tissue metabolic coordination. Transcriptomic profiling identified 610 differentially expressed genes (DEGs), forming a three-dimensional regulatory network encompassing “energy metabolism, molt regulation, and nutrient utilization.” Key mechanistic insights revealed the following: (1) Enhanced mitochondrial energy transduction through the upregulation of ATP synthase subunits and NADH dehydrogenase (ND-SGDH). (2) The disruption of ecdysteroid signaling pathways via suppression of Krueppel homolog 1 (Kr-h1). (3) The coordinated regulation of nitrogen metabolism through the downregulation of glutamine synthetase and secretory phospholipase A2. These molecular adaptations, coupled with tissue-specific oxidative stress responses, reflect an integrated physiological strategy for environmental adaptation. Conclusions: Notably, this study provides the first evidence in crustaceans of chitinase-mediated growth regulation through cross-tissue metabolic interactions and identifies six core functional genes (ATP5L, ATP5G, ND-SGDH, Kr-h1, GS, sPLA2) as potential targets for molecular breeding. A novel “gut-hepatopancreas axis” energy compensation mechanism is proposed, offering insights into resource allocation during metabolic stress. These findings advance our understanding of crustacean growth regulation and establish a theoretical foundation for precision aquaculture strategies, including genome editing and multi-trait genomic selection. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2323 KB  
Article
ATHB1 Interacts with Hormone-Related Gene Regulatory Networks Involved in Biotic and Abiotic Stress Responses in Arabidopsis
by Valentina Forte, Sabrina Lucchetti, Andrea Ciolfi, Barbara Felici, Marco Possenti, Fabio D’Orso, Giorgio Morelli and Simona Baima
Cells 2025, 14(18), 1456; https://doi.org/10.3390/cells14181456 - 17 Sep 2025
Viewed by 371
Abstract
ATHB1, an Arabidopsis thaliana homeodomain-leucine zipper (HD-Zip) transcription factor, is involved in the control of leaf development and hypocotyl elongation under short-day conditions. As growth adaptation to environmental conditions is essential for plant resilience, we investigated the role of ATHB1 in the interaction [...] Read more.
ATHB1, an Arabidopsis thaliana homeodomain-leucine zipper (HD-Zip) transcription factor, is involved in the control of leaf development and hypocotyl elongation under short-day conditions. As growth adaptation to environmental conditions is essential for plant resilience, we investigated the role of ATHB1 in the interaction between transcriptional regulatory networks and hormone signaling pathways. We found that wounding, flooding and ethylene induce ATHB1 expression. In addition, we found that the ethylene signal transduction pathway is also involved in an age-dependent ATHB1 expression increase in leaves. Conversely, methyl jasmonate (MeJA) application decreases the ATHB1 transcript level. By exploiting mutant and over-expressing (OE) lines, we also found that the ATHB1 level influences plant sensitivity to the inhibitory effect of MeJA treatment on growth. To gain deeper insights into the regulatory pathways affected by ATHB1, we performed a microarray analysis comparing the transcriptome of wild-type and athb1 mutant plants following exposure to MeJA. Remarkably, although the response to the MeJA treatment was not impaired in athb1, several genes involved in jasmonate and salycilic acid signaling were already downregulated in athb1 seedlings under normal conditions compared to the wild type. Thus, our study suggests that ATHB1 may integrate different hormone signaling pathways to influence plant growth under various stress conditions. Full article
(This article belongs to the Special Issue Current Advances in Plant Gene Regulatory Networks)
Show Figures

Figure 1

15 pages, 3872 KB  
Article
PtrIAA12-PtrARF8 Complex Regulates the Expression of PtrSAUR17 to Control the Growth of Roots in Poncirus trifoliata
by Xiaoli Wang, Manman Zhang, Xiaoya Li, Saihang Zheng, Fusheng Wang, Shiping Zhu and Xiaochun Zhao
Plants 2025, 14(18), 2875; https://doi.org/10.3390/plants14182875 - 16 Sep 2025
Viewed by 262
Abstract
The root system is an important determinant affecting the growth, adaptivity and stress resistance of citrus plants. Currently, the genetic regulatory network underlying root growth and development in citrus remains largely unknown. We report that a PtrAUX/IAA-ARF complex mediates the growth and development [...] Read more.
The root system is an important determinant affecting the growth, adaptivity and stress resistance of citrus plants. Currently, the genetic regulatory network underlying root growth and development in citrus remains largely unknown. We report that a PtrAUX/IAA-ARF complex mediates the growth and development of roots in citrus through regulating the transcription of PtrSAUR. The auxin signaling pathway plays an essential role in regulating the growth and development of roots. In this study, we found that in citrus Poncirus trifoliata, PtrIAA12, encoding a canonical Aux/IAA protein, was highly expressed in the meristem and elongation zone of the root. Functional characterization showed that overexpression and silence of PtrIAA12 significantly enhanced and suppressed the elongation of primary roots, respectively. Further analysis revealed that PtrIAA12 could interact with some members of PtrARFs, of which, PtrARF8 was identified to be the transcriptional factor of PtrSAUR17. Investigation of PtrSAUR17 transgenic plants verified that PtrSAUR17 is a key gene regulating the growth of roots in citrus. In conclusion, PtrIAA12 and PtrARF8 are the key members of the AUX/IAA-ARF complex in citrus controlling the growth and development of roots through regulating the transcription of PtrSAUR17. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

Back to TopTop