The UGT73 Family of Glycosyltransferases in Plants: Gene Structure, Catalytic Mechanisms, and Biological Functions
Abstract
1. Introduction
2. Basic Characteristics and Evolutionary Features of Plant UGTs
3. Characteristics and Functions of Group D UGTs in Plants
4. Genomic Organization of Plant UGT73 Family Glycosyltransferases
5. Substrate Specificity and Catalytic Mechanisms of UGT73 Family Glycosyltransferases
5.1. Complex Substrate Spectrum of UGT73 Family Glycosyltransferases
5.2. Multi-Site Catalysis in UGT73 Family Glycosyltransferases
5.3. Distinct Catalytic Mechanisms of UGT73 Family Glycosyltransferases
6. Diverse Biological Functions of UGT73 Family Glycosyltransferases in Plants
6.1. Influence of UGT73 Family Glycosyltransferases on Plant Growth and Development
6.2. Regulatory Roles of UGT73 Family Glycosyltransferases in Phytohormone Homeostasis
6.3. Regulatory Impact of UGT73 Family Glycosyltransferases on Plant Stress Resistance
7. Application Prospects of Plant UGT73 Family Glycosyltransferases
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, H.; Wang, Q.; Xie, H.; Li, W. The function of secondary metabolites in resisting stresses in horticultural plants. Fruit Res. 2024, 4, e021. [Google Scholar] [CrossRef]
- Rahimi, S.; Kim, J.; Mijakovic, I.; Jung, K.H.; Choi, G.; Kim, S.C.; Kim, Y.J. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol. Adv. 2019, 37, 107394. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Liu, X.; Xu, K.; Zhang, B. Genome-wide characterization, evolution and expression profiling of UDP-glycosyltransferase family in pomelo (Citrus grandis) fruit. BMC Plant Biol. 2020, 20, 459. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, W.; Shan, X.; Liu, J.; Zhao, L.; Zhao, Q. Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. Mol. Plant 2022, 15, 1517–1532. [Google Scholar] [CrossRef]
- Sirirungruang, S.; Blay, V.; Rodriguez, E.P.; Scott, Y.F.; Vuu, K.M.; Barnum, C.R.; Opgenorth, P.H.; Kong, F.; Li, Y.; Fiehn, O.; et al. A substrate-multiplexed platform for profiling enzymatic potential of plant family 1 glycosyltransferases. Nat. Commun. 2025, 16, 6366. [Google Scholar] [CrossRef]
- Yu, A.D.; Liu, L.; Long, R.C.; Kang, J.M.; Chen, L.; Yang, Q.C.; Li, M.N. Functions and application prospects of plant UDP-glycosyltransferases (UGT). Plant Physiol. J. 2022, 58, 631–642. (In Chinese) [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Zhang, X.; Guan, J.; Wang, B.; Wu, X.; Song, M.; Wei, A.; Liu, Z.; Huo, D. Genome-wide investigation of UDP-Glycosyltransferase family in Tartary buckwheat (Fagopyrum tataricum). BMC Plant Biol. 2024, 24, 249. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Guo, D.; Gao, T.; Liu, T.; Jin, J.; Zhao, M.; Yu, K.; Tong, W.; Ge, H.; et al. Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants. Plant Cell 2024, 37, koae268. [Google Scholar] [CrossRef] [PubMed]
- Knoch, E.; Sugawara, S.; Mori, T.; Nakabayashi, R.; Saito, K.; Yonekura-Sakakibara, K. UGT79B31 is responsible for the final modification step of pollen-specific flavonoid biosynthesis in Petunia hybrida. Planta 2018, 247, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Zhu, Z.; Wang, Y.; Hu, S.; Xi, W.; Xiao, W.; Qu, X.; Zhong, L.; Fu, Q.; Wang, C. UGT85A84 Catalyzes the Glycosylation of Aromatic Monoterpenes in Osmanthus fragrans Lour. Flowers. Front. Plant Sci. 2019, 10, 1376. [Google Scholar] [CrossRef]
- Jing, T.; Du, W.; Qian, X.; Wang, K.; Luo, L.; Zhang, X.; Deng, Y.; Li, B.; Gao, T.; Zhang, M.; et al. UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding. Plant Cell Environ. 2024, 47, 682–697. [Google Scholar] [CrossRef]
- Gachon, C.M.; Langlois-Meurinne, M.; Saindrenan, P. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 2005, 10, 542–549. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Lin, J.S.; Li, Y.J.; Hou, B.K. Research progress on glycosylation modification of plant hormones. Acta Bot. Sin. 2014, 49, 515–523. (In Chinese) [Google Scholar]
- Jiang, D.; Lin, S.; Xie, L.; Chen, M.; Shi, Y.; Chen, K.; Li, X.; Wu, B.; Zhang, B. UDP-glycosyltransferase PpUGT74F2 is involved in fruit immunity via modulating salicylic acid metabolism. Hortic. Res. 2025, 12, uhaf049. [Google Scholar] [CrossRef]
- Ao, B.; Han, Y.; Wang, S.; Wu, F.; Zhang, J. Genome-Wide Analysis and Profile of UDP-Glycosyltransferases Family in Alfalfa (Medicago sativa L.) under Drought Stress. Int. J. Mol. Sci. 2022, 23, 7243. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Li, M.; Wu, L.; Rao, W.; Peng, X.; Jiang, H. The ZmHSF08-ZmUGT92A1 module regulates heat tolerance by altering reactive oxygen species levels in maize. Crop J. 2024, 12, 1437–1446. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Lu, M.; Wu, Y.; Jing, T.; Zhao, M.; Zhao, Y.; Feng, Y.; Wang, J.; Gao, T.; et al. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Plant Physiol. 2022, 188, 1507–1520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dan, Z.; Li, S. GROWTH REGULATING FACTOR 7-mediated arbutin metabolism enhances rice salt tolerance. Plant Cell 2024, 36, 2834–2850. [Google Scholar] [CrossRef]
- Poppenberger, B.; Fujioka, S.; Soeno, K.; George, G.L.; Vaistij, F.E.; Hiranuma, S.; Seto, H.; Takatsuto, S.; Adam, G.; Yoshida, S.; et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. USA 2005, 102, 15253–15258. [Google Scholar] [CrossRef] [PubMed]
- Husar, S.; Berthiller, F.; Fujioka, S.; Rozhon, W.; Khan, M.; Kalaivanan, F.; Elias, L.; Higgins, G.S.; Li, Y.; Schuhmacher, R.; et al. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol. 2011, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, Y.; Qu, X.; Wu, F.; Li, X.; Ren, M.; Tong, Y.; Wu, X.; Yang, A.; Chen, Y.; et al. Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in abiotic stress and flavonol biosynthesis in Nicotiana tabacum. BMC Plant Biol. 2023, 23, 204. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wei, S. Research on the Tea Plant Glycosyltransferase Gene CsUGT73D1. J. Hainan Norm. Univ. 2019, 32, 268–280. (In Chinese) [Google Scholar]
- Nomura, Y.; Seki, H.; Suzuki, T.; Ohyama, K.; Mizutani, M.; Kaku, T.; Tamura, K.; Ono, E.; Horikawa, M.; Sudo, H.; et al. Functional specialization of UDP-glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin. Plant J. 2019, 99, 1127–1143. [Google Scholar] [CrossRef]
- Kang, K.B.; Jayakodi, M.; Lee, Y.S.; Nguyen, V.B.; Park, H.S.; Koo, H.J.; Choi, I.Y.; Kim, D.H.; Chung, Y.J.; Ryu, B.; et al. Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng. Sci. Rep. 2018, 8, 11744. [Google Scholar] [CrossRef]
- Augustin, J.M.; Drok, S.; Shinoda, T.; Sanmiya, K.; Nielsen, J.K.; Khakimov, B.; Olsen, C.E.; Hansen, E.H.; Kuzina, V.; Ekstrom, C.T.; et al. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol. 2012, 160, 1881–1895. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, A.; Mu, L.; Teng, X.; Ma, Y.; Li, R.; Lei, K.; Ji, L.; Wang, X.; Li, P. First Clarification of the Involvement of Glycosyltransferase MdUGT73CG22 in the Detoxification Metabolism of Nicosulfuron in Apple. Plants 2024, 13, 1171. [Google Scholar] [CrossRef]
- Bock, K.W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. Biochem. Pharmacol. 2016, 99, 11–17. [Google Scholar] [CrossRef]
- Mackenzie, P.I.; Owens, I.S.; Burchell, B.; Bock, K.W.; Bairoch, A.; Belanger, A.; Fournel-Gigleux, S.; Green, M.; Hum, D.W.; Iyanagi, T.; et al. The UDP glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997, 7, 255–269. [Google Scholar] [CrossRef]
- Wu, C.; Dai, J.; Chen, Z.; Tie, W.; Yan, Y.; Yang, H.; Zeng, J.; Hu, W. Comprehensive analysis and expression profiles of cassava UDP-glycosyltransferases (UGT) family reveal their involvement in development and stress responses in cassava. Genomics 2021, 113, 3415–3429. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Han, F.; Zhang, J.; Gao, M.; Zhao, Y.; Chen, Y.; Wang, Y. Characterization of UGT71, a major glycosyltransferase family for triterpenoids, flavonoids and phytohormones-biosynthetic in plants. For. Res. 2024, 4, e035. [Google Scholar] [CrossRef]
- Song, Z.; Niu, L.; Yang, Q.; Dong, B.; Wang, L.; Dong, M.; Fan, X.; Jian, Y.; Meng, D.; Fu, Y. Genome-wide identification and characterization of UGT family in pigeonpea (Cajanus cajan) and expression analysis in abiotic stress. Trees-Struct. Funct. 2019, 33, 987–1002. [Google Scholar] [CrossRef]
- Wang, F.; Su, Y.; Chen, N.; Shen, S. Genome-Wide Analysis of the UGT Gene Family and Identification of Flavonoids in Broussonetia papyrifera. Molecules 2021, 26, 3449. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, H.; Tong, X.; Liu, Z.; Zhang, X.; Li, D.; Jiang, X.; Yu, X. Identification and analysis of CYP450 and UGT supergene family members from the transcriptome of Aralia elata (Miq.) seem reveal candidate genes for triterpenoid saponin biosynthesis. BMC Plant Biol. 2020, 20, 214. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Admas, T.; Cheng, B.; Meng, Y.; Pan, R.; Zhang, W. UGT gene family identification and functional analysis of HvUGT1 under drought stress in wild barley. Physiol. Mol. Biol. Plants 2024, 30, 1225–1238. [Google Scholar] [CrossRef]
- Guan, H.; Zhang, Y.; Li, J.; Zhu, Z.; Chang, J.; Bakari, A.; Chen, S.; Zheng, K.; Cao, S. Analysis of the UDP-Glucosyltransferase (UGT) Gene Family and Its Functional Involvement in Drought and Salt Stress Tolerance in Phoebe bournei. Plants 2024, 13, 722. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, Y.; Ke, D.; Teng, Y.; Chen, Y.; Langjia, R. Molecular Identification and Characterization of UDP-glycosyltransferase (UGT) Multigene Family in Pomegranate. Horticulturae 2023, 9, 540. [Google Scholar] [CrossRef]
- Ma, Y.; Song, J.; Sheng, S.; Wang, D.; Wang, T.; Wang, N.; Chen, A.; Wang, L.; Peng, Y.; Ma, Y.; et al. Genome-wide characterization of Solanum tuberosum UGT gene family and functional analysis of StUGT178 in salt tolerance. BMC Genom. 2024, 25, 1206. [Google Scholar] [CrossRef]
- Ouyang, L.; Liu, Y.; Yao, R.; He, D.; Yan, L.; Chen, Y.; Huai, D.; Wang, Z.; Yu, B.; Kang, Y.; et al. Genome-wide analysis of UDP-glycosyltransferase gene family and identification of a flavonoid 7-O-UGT (AhUGT75A) enhancing abiotic stress in peanut (Arachis hypogaea L.). BMC Plant Biol. 2023, 23, 626. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qiu, X.; Sun, Z.; Luan, M.; Chen, J. Genome-wide analysis of UDP-glycosyltransferase family in Citrus sinensis and characterization of a UGT gene encoding flavonoid 1-2 rhamnosyltransferase. Int. J. Biol. Macromol. 2024, 280, 135752. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, M.; Li, H.; Wang, L.; Liu, R.; Liu, Z. Genome-wide characterization of the UDP-glycosyltransferase gene family reveals their potential roles in leaf senescence in cotton. Int. J. Biol. Macromol. 2022, 222, 2648–2660. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Wang, Y.; Dong, R.; Yu, H.; Hou, B. Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). Planta 2014, 239, 1265–1279. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, Q.; Liu, R.; Gong, J.; Gong, W.; Liu, A.; Ge, Q.; Li, J.; Shang, H.; Li, P.; et al. Genome-wide characterization of the UDP-glycosyltransferase gene family in upland cotton. 3 Biotech 2019, 9, 453. [Google Scholar] [CrossRef]
- Shi, D.; Yang, J.; Li, G.; Zhou, Y.; Yao, P.; Shi, Y.; Tian, J.; Zhang, X.; Liu, Q. Genome-Wide Identification of UGT Genes and Analysis of Their Expression Profiles During Fruit Development in Walnut (Juglans regia L.). Horticulturae 2024, 10, 1130. [Google Scholar] [CrossRef]
- Ren, C.; Cao, Y.; Xing, M.; Guo, Y.; Li, J.; Xue, L.; Sun, C.; Xu, C.; Chen, K.; Li, X. Genome-wide analysis of UDP-glycosyltransferase gene family and identification of members involved in flavonoid glucosylation in Chinese bayberry (Morella rubra). Front. Plant Sci. 2022, 13, 998985. [Google Scholar] [CrossRef] [PubMed]
- Kamal, K.A.; Shah, F.A.; Zhao, Y.; Chen, Z.; Fu, S.; Zhu, Z.; Ren, J.; Liu, H. Genome-wide identification of the UGT genes family in Acer rubrum and role of ArUGT52 in anthocyanin biosynthesis under cold stress. BMC Plant Biol. 2025, 25, 288. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Su, W.; Ou, Z.; Qu, Y. Identification of the UGT Family and Functional Validation of MwUGT2 in Meconopsis wilsonii. Plants 2025, 14, 944. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.; Lu, M.; Chen, J.; Shi, T. Gene expression and evolution of Family-1 UDP-glycosyltransferases—Insights from an aquatic flowering plant (Sacred lotus). Aquat. Bot. 2020, 166, 103270. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Zhang, L.; Shu, J.; Court, M.H.; Sun, Z.; Jiang, L.; Zheng, C.; Shu, H.; Ji, L.; et al. Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation. Plant Sci. 2022, 321, 111314. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Yu, B.; Liu, R.; Shu, B.; Liang, Y.; Zhao, Y.; Qiu, Z.; Yan, S.; Cao, B. Systematic analysis of the UDP-glucosyltransferase family: Discovery of a member involved in rutin biosynthesis in Solanum melongena. Front. Plant Sci. 2023, 14, 1310080. [Google Scholar] [CrossRef]
- Mamoon, R.H.; Amjad, N.M.; Bao, L.; Hussain, S.Z.; Lee, J.M.; Ahmad, M.Q.; Chung, G.; Yang, S.H. Genome-wide analysis of Family-1 UDP-glycosyltransferases in soybean confirms their abundance and varied expression during seed development. J. Plant Physiol. 2016, 206, 87–97. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, L.M.; Cheng, W.W.; Song, X.; Long, Y.H.; Xing, Z.B. Genome-wide identification and expression analysis of glycosyltransferase gene family 1 in Quercus robur L. J. Appl. Genet. 2021, 62, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.M.; Nawaz, M.A.; Shah, Z.H.; Ludwig-Muller, J.; Chung, G.; Ahmad, M.Q.; Yang, S.H.; Lee, S.I. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci. Rep. 2018, 8, 1875. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Tang, Z.; Yang, T.; Hao, F.; Deng, X. Genome-Wide Analysis of UGT Genes in Petunia and Identification of PhUGT51 Involved in the Regulation of Salt Resistance. Plants 2022, 11, 2434. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhuo, X.; Yan, X.; Zhang, Q. Comparative Genomic and Transcriptomic Analyses of Family-1 UDP Glycosyltransferase in Prunus Mume. Int. J. Mol. Sci. 2018, 19, 3382. [Google Scholar] [CrossRef]
- Liao, J.H.; Chen, S.; Liu, D.; Zhang, J.J.; Liu, Y.F. Identification and expression of genome of uridine diphosphate glycosyltransferase (UGT) gene family from Chrysanthemum indicum. Zhongguo Zhong Yao Za Zhi 2024, 49, 702–716. [Google Scholar] [CrossRef]
- Duan, Z.; Yan, Q.; Wu, F.; Wang, Y.; Wang, S.; Zong, X.; Zhou, P.; Zhang, J. Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus albus. Int. J. Mol. Sci. 2021, 22, 10826. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Muhammad, A.; Li, G.; Zhang, J.; Cheng, J.; Qiu, J.; Jiang, T.; Jin, Q.; Cai, Y.; Lin, Y. Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri): Molecular identification, phylogenomic characterization and expression profiling during stone cell formation. Mol. Biol. Rep. 2019, 46, 2153–2175. [Google Scholar] [CrossRef]
- Yu, A.; Jiang, X.; Sun, Y.; Hu, Q.; Zhu, X.; Kang, J.; Chen, L.; Liu, L.; Hao, L.; Yang, Q.; et al. Genome-wide identification, characterization, and expression analysis of UDP-glycosyltransferase genes associated with secondary metabolism in alfalfa (Medicago sativa L.). Front. Plant Sci. 2022, 13, 1001206. [Google Scholar] [CrossRef]
- Wu, B.; Gao, L.; Gao, J.; Xu, Y.; Liu, H.; Cao, X.; Zhang, B.; Chen, K. Genome-Wide Identification, Expression Patterns, and Functional Analysis of UDP Glycosyltransferase Family in Peach (Prunus persica L. Batsch). Front. Plant Sci. 2017, 8, 389. [Google Scholar] [CrossRef]
- Khorolragchaa, A.; Kim, Y.J.; Rahimi, S.; Sukweenadhi, J.; Jang, M.G.; Yang, D.C. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene 2014, 536, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Fan, J.; Gao, Y.; Zheng, C.; Xu, Y.; Jia, L.; An, X.; Chen, Z. Identification and analysis of UGT genes associated with triterpenoid saponin in soapberry (Sapindus mukorossi Gaertn.). BMC Plant Biol. 2024, 24, 588. [Google Scholar] [CrossRef]
- Chen, J.D.; Jiang, W.; Song, M.Q.; Zhou, Y.J.; Li, Y.P.; Duan, X.J.; Tao, Z.M. Identification and expression analysis of UDP-glycosyltransferase (UGT) gene family in Dendrobium officinale. China J. Chin. Mater. Medica 2023, 48, 1840–1850. (In Chinese) [Google Scholar] [CrossRef]
- Yonekura-Sakakibara, K.; Fukushima, A.; Nakabayashi, R.; Hanada, K.; Matsuda, F.; Sugawara, S.; Inoue, E.; Kuromori, T.; Ito, T.; Shinozaki, K.; et al. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J. 2012, 69, 154–167. [Google Scholar] [CrossRef]
- Lim, E.K.; Bowles, D.J. A class of plant glycosyltransferases involved in cellular homeostasis. Embo J. 2004, 23, 2915–2922. [Google Scholar] [CrossRef]
- Lin, J.S.; Huang, X.X.; Li, Q.; Cao, Y.; Bao, Y.; Meng, X.F.; Li, Y.J.; Fu, C.; Hou, B.K. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J. 2016, 88, 26–42. [Google Scholar] [CrossRef]
- Rehman, H.M.; Khan, U.M.; Nawaz, S.; Saleem, F.; Ahmed, N.; Rana, I.A.; Atif, R.M.; Shaheen, N.; Seo, H. Genome Wide Analysis of Family-1 UDP Glycosyltransferases in Populus trichocarpa Specifies Abiotic Stress Responsive Glycosylation Mechanisms. Genes 2022, 13, 1640. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, P.; Tsukamoto, C.; Ishimoto, M. Reconstruction of the Evolutionary Histories of UGT Gene Superfamily in Legumes Clarifies the Functional Divergence of Duplicates in Specialized Metabolism. Int. J. Mol. Sci. 2020, 21, 1855. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Wu, Z.; Liu, Y.; Wang, Y.; Wang, H.; Liu, M.; Wang, Y.; Wang, H.; Fu, C. UDP-glycosyltransferase UGT96C10 functions as a novel detoxification factor for conjugating the activated dinitrotoluene sulfonate in switchgrass. Plant Biotechnol. J. 2024, 22, 2530–2540. [Google Scholar] [CrossRef]
- Kumar, R.; Sangwan, R.S.; Mishra, S.; Sabir, F.; Sangwan, N.S. In silico motif diversity analysis of the glycon preferentiality of plant secondary metabolic glycosyltransferases. Plant Omics 2012, 5, 200–210. [Google Scholar]
- Yao, Y. Cloning and Functional Study of Glycosyltransferase UGT79 Family Genes from Epimedium Pubescens. PhD Thesis, Peking Union Medical College, Beijing, China, 2023. (In Chinese). [Google Scholar]
- Zhang, F.; Guo, H.; Huang, J.; Yang, C.; Li, Y.; Wang, X.; Qu, L.; Liu, X.; Luo, J. A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. Sci. China Life Sci. 2020, 63, 1037–1052. [Google Scholar] [CrossRef]
- Irmisch, S.; Jancsik, S.; Man, S.Y.M.; Madilao, L.L.; Bohlmann, J. Complete Biosynthesis of the Anti-Diabetic Plant Metabolite Montbretin A. Plant Physiol. 2020, 184, 97–109. [Google Scholar] [CrossRef]
- Li, Y.; Baldauf, S.; Lim, E.K.; Bowles, D.J. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem. 2001, 276, 4338–4343. [Google Scholar] [CrossRef]
- Chen, H.Y.; Li, X. Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. Plant J. 2017, 89, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Jiang, L.Y.; Wang, Y.; Zhang, Y.T.; Wang, X.R.; Tang, H.R. Isolation, identification of blackberry glycosyltransferase gene UGT78H2 and molecular docking with flavonoids. Bull. Bot. Res. 2015, 35, 270–278. (In Chinese) [Google Scholar]
- Yao, Y.; Gu, J.J.; Sun, C.; Shen, G.A.; Guo, B.L. Research progress on plant flavonoid UDP-glycosyltransferases. Biotechnol. Bull. 2022, 38, 47–57. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, C.X.; Yan, Y.F.; Zhao, L.X.; Tang, X.; Chen, Y.G.; Song, W.J.; Long, L.P.; Chen, J.; Tan, C.L.; Zhang, Q.Z.; et al. Characterization of a 4′-O-rhamnosyltransferase and de novo biosynthesis of bioactive steroidal triglycosides from Paris polyphylla. Plant Commun. 2025, 6, 101257. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; You, W.; Di, Z.; Wang, M.; Zhou, H.; Yuan, S.; Wong, N.K.; Xiao, Y. Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chem. Commun. 2018, 54, 7179–7182. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.X.; Wang, Y.; Lin, J.S.; Chen, L.; Li, Y.J.; Liu, Q.; Wang, G.F.; Xu, F.; Liu, L.; Hou, B.K. The novel pathogen-responsive glycosyltransferase UGT73C7 mediates the redirection of phenylpropanoid metabolism and promotes SNC1-dependent Arabidopsis immunity. Plant J. 2021, 107, 149–165. [Google Scholar] [CrossRef]
- Yonekura-Sakakibara, K.; Hanada, K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011, 66, 182–193. [Google Scholar] [CrossRef]
- Hou, B.; Lim, E.K.; Higgins, G.S.; Bowles, D.J. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 2004, 279, 47822–47832. [Google Scholar] [CrossRef] [PubMed]
- Ohgami, S.; Ono, E.; Toyonaga, H.; Watanabe, N.; Ohnishi, T. Identification and characterization of Camellia sinensis glucosyltransferase, UGT73A17: A possible role in flavonol glucosylation. Plant Biotechnol-Nar. 2014, 31, 573–578. [Google Scholar] [CrossRef]
- Behr, M.; Neutelings, G.; El, J.M.; Baucher, M. You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. Front. Plant Sci. 2020, 11, 571399. [Google Scholar] [CrossRef]
- Yin, Q.; Shen, G.; Di, S.; Fan, C.; Chang, Z.; Pang, Y. Genome-Wide Identification and Functional Characterization of UDP-Glucosyltransferase Genes Involved in Flavonoid Biosynthesis in Glycine max. Plant Cell Physiol. 2017, 58, 1558–1572. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, J.; Yue, J.; Huang, Z.; Zhang, L.; Yao, W.; Guan, R.; Wu, J.; Liang, J.; Duan, L.; et al. Functional Characterization of a Novel Glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the Substrate promiscuity. Mol. Biotechnol. 2021, 63, 1030–1039. [Google Scholar] [CrossRef]
- Seki, H.; Tamura, K.; Muranaka, T. P450s and UGTs: Key Players in the Structural Diversity of Triterpenoid Saponins. Plant Cell Physiol. 2015, 56, 1463–1471. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, H.; Choi, Y.E. Transcriptomic analysis of Siberian Ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis. BMC Genom. 2015, 16, 180. [Google Scholar] [CrossRef]
- Yu, X.; Yu, J.; Liu, S.; Liu, M.; Wang, K.; Zhao, M.; Wang, Y.; Chen, P.; Lei, J.; Wang, Y.; et al. Transcriptome-Wide Identification and Integrated Analysis of a UGT Gene Involved in Ginsenoside Ro Biosynthesis in Panax ginseng. Plants 2024, 13, 604. [Google Scholar] [CrossRef]
- Khakimov, B.; Kuzina, V.; Erthmann, P.O.; Fukushima, E.O.; Augustin, J.M.; Olsen, C.E.; Scholtalbers, J.; Volpin, H.; Andersen, S.B.; Hauser, T.P.; et al. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J. 2015, 84, 478–490. [Google Scholar] [CrossRef]
- Jones, P.; Messner, B.; Nakajima, J.; Schaffner, A.R.; Saito, K. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 43910–43918. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Yuan, L.; Luo, Y.; Jing, X.; Zhang, Z.; Wang, J.; Zhu, G. A freezing responsive UDP-glycosyltransferase improves potato freezing tolerance via modifying flavonoid metabolism. Hortic. Plant J. 2025, 11, 1595–1606. [Google Scholar] [CrossRef]
- Song, C.; Zhao, S.; Hong, X.; Liu, J.; Schulenburg, K.; Schwab, W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria × ananassa). Plant J. 2016, 85, 730–742. [Google Scholar] [CrossRef]
- Li, H.; Ma, W.; Lyv, Y.; Gao, S.; Zhou, J. Glycosylation Modification Enhances (2S)-Naringenin Production in Saccharomyces cerevisiae. ACS Synth. Biol. 2022, 11, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, W.; Xia, T.; Gao, L.; Shen, G.; Pang, Y. Characterization of a heat responsive UDP: Flavonoid glucosyltransferase gene in tea plant (Camellia sinensis). PLoS ONE 2018, 13, e0207212. [Google Scholar] [CrossRef]
- Wang, S.; Sun, S.; Du, Z.; Gao, F.; Li, Y.; Han, W.; Wu, R.; Yu, X. Characterization of CsUGT73AC15 as a Multifunctional Glycosyltransferase Impacting Flavonol Triglycoside Biosynthesis in Tea Plants. J. Agric. Food Chem. 2024, 72, 13328–13340. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Li, J.; Feng, X.; Li, C. Identification of a permissive glycosyltransferase UGT73AC11 for flavonoids glycosylation. Biochem. Eng. J. 2024, 209, 109372. [Google Scholar] [CrossRef]
- Yin, Q.; Han, X.; Chen, J.; Han, Z.; Shen, L.; Sun, W.; Chen, S. Identification of Specific Glycosyltransferases Involved in Flavonol Glucoside Biosynthesis in Ginseng Using Integrative Metabolite Profiles, DIA Proteomics, and Phylogenetic Analysis. J. Agric. Food Chem. 2021, 69, 1714–1726. [Google Scholar] [CrossRef]
- Xu, B.; Huang, J.P.; Peng, G.; Cao, W.; Liu, Z.; Chen, Y.; Yao, J.; Wang, Y.J.; Li, J.; Zhang, G.; et al. Total biosynthesis of the medicinal triterpenoid saponin astragalosides. Nat. Plants 2024, 10, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xue, X.; Liu, Z.; Ma, Y.; Zeng, K.; Han, L.; Qi, J.; Ro, D.K.; Bak, S.; Huang, S.; et al. Developmentally Regulated Glucosylation of Bitter Triterpenoid in Cucumber by the UDP-Glucosyltransferase UGT73AM3. Mol. Plant 2017, 10, 1000–1003. [Google Scholar] [CrossRef]
- Louveau, T.; Orme, A.; Pfalzgraf, H.; Stephenson, M.J.; Melton, R.; Saalbach, G.; Hemmings, A.M.; Leveau, A.; Rejzek, M.; Vickerstaff, R.J.; et al. Analysis of Two New Arabinosyltransferases Belonging to the Carbohydrate-Active Enzyme (CAZY) Glycosyl Transferase Family1 Provides Insights into Disease Resistance and Sugar Donor Specificity. Plant Cell 2018, 30, 3038–3057. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Feng, X.; Lv, B.; Li, C. Biosynthesis of Glycyrrhetinic Acid-3-O-monoglucose Using Glycosyltransferase UGT73C11 from Barbarea vulgaris. Ind. Eng. Chem. Res. 2017, 56, 14949–14958. [Google Scholar] [CrossRef]
- Kim, O.T.; Jin, M.L.; Lee, D.Y.; Jetter, R. Characterization of the Asiatic Acid Glucosyltransferase, UGT73AH1, Involved in Asiaticoside Biosynthesis in Centella asiatica (L.) Urban. Int. J. Mol. Sci. 2017, 18, 2630. [Google Scholar] [CrossRef]
- He, J.; Chen, K.; Hu, Z.M.; Li, K.; Song, W.; Yu, L.Y.; Leung, C.H.; Ma, D.L.; Qiao, X.; Ye, M. UGT73F17, a new glycosyltransferase from Glycyrrhiza uralensis, catalyzes the regiospecific glycosylation of pentacyclic triterpenoids. Chem. Commun. 2018, 54, 8594–8597. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, S.; Liu, X.; Liu, X.; Guo, F.; Sun, W.; Feng, X.; Li, C. Mining of UDP-glucosyltrfansferases in licorice for controllable glycosylation of pentacyclic triterpenoids. Biotechnol. Bioeng. 2020, 117, 3651–3663. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, T.; Zhang, X.; Yang, J.; Zeng, Y.; Men, Y.; Sun, Y. Multienzyme Synthesis of Glycyrrhetic Acid 3-O-mono-β-d-glucuronide by Coupling UGT73F15 to UDP-Glucuronic Acid Regeneration Module. Catalysts 2023, 13, 104. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Ri, H.C.; An, Z.; Wang, X.; Zhou, J.N.; Zheng, D.; Wu, H.; Wang, P.; Yang, J.; et al. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat. Commun. 2022, 13, 2224. [Google Scholar] [CrossRef]
- Naoumkina, M.A.; Modolo, L.V.; Huhman, D.V.; Urbanczyk-Wochniak, E.; Tang, Y.; Sumner, L.W.; Dixon, R.A. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell 2010, 22, 850–866. [Google Scholar] [CrossRef]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glossl, J.; Luschnig, C.; Adam, G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar] [CrossRef]
- Gandia-Herrero, F.; Lorenz, A.; Larson, T.; Graham, I.A.; Bowles, D.J.; Rylott, E.L.; Bruce, N.C. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: Discovery of bifunctional O- and C-glucosyltransferases. Plant J. 2008, 56, 963–974. [Google Scholar] [CrossRef]
- Langlois-Meurinne, M.; Gachon, C.M.; Saindrenan, P. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol. 2005, 139, 1890–1901. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Langlois-Meurinne, M.; Didierlaurent, L.; Chaouch, S.; Bellvert, F.; Massoud, K.; Garmier, M.; Thareau, V.; Comte, G.; Noctor, G.; et al. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant Cell Environ. 2014, 37, 1114–1129. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Bei, F.; Jin, T.; Jia, S.; Bu, R.; Wang, J.; Wang, H.; Liu, W. Investigating the Metabolic Mesosulfuron-Methyl Resistance in Aegilops tauschii Coss. By Transcriptome Sequencing Combined with the Reference Genome. J. Agric. Food Chem. 2022, 70, 11429–11440. [Google Scholar] [CrossRef]
- Brazier-Hicks, M.; Gershater, M.; Dixon, D.; Edwards, R. Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family. Plant Biotechnol. J. 2018, 16, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Franco-Ortega, S.; Goldberg-Cavalleri, A.; Walker, A.; Brazier-Hicks, M.; Onkokesung, N.; Edwards, R. Non-target Site Herbicide Resistance Is Conferred by Two Distinct Mechanisms in Black-Grass (Alopecurus myosuroides). Front. Plant Sci. 2021, 12, 636652. [Google Scholar] [CrossRef]
- Landa, P.; Prerostova, S.; Langhansova, L.; Marsik, P.; Vanek, T. Transcriptomic response of Arabidopsis thaliana L. Heynh. roots to ibuprofen. Int. J. Phytoremediat. 2017, 19, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Ma, L.Q.; Zhang, J.X.; Shi, G.L.; Hu, Y.H.; Wang, Y.N. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry 2011, 72, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yan, Q.; Ji, Y.; Bai, X.; Li, D.; Mu, R.; Guo, K.; Yang, M.; Tao, Y.; Gershenzon, J.; et al. Unraveling the serial glycosylation in the biosynthesis of steroidal saponins in the medicinal plant Paris polyphylla and their antifungal action. Acta Pharm. Sin. B 2023, 13, 4638–4654. [Google Scholar] [CrossRef]
- Sun, G.; Strebl, M.; Merz, M.; Blamberg, R.; Huang, F.C.; Mcgraphery, K.; Hoffmann, T.; Schwab, W. Glucosylation of the phytoalexin N-feruloyl tyramine modulates the levels of pathogen-responsive metabolites in Nicotiana benthamiana. Plant J. 2019, 100, 20–37. [Google Scholar] [CrossRef]
- Di, S.K.; Yin, Q.G.; Xia, Y.Y.; Pang, Y.Z. Functional study of soybean flavonoid glycosyltransferase gene UGT73C19. Sci. Agric. Sin. 2019, 52, 3507–3519. (In Chinese) [Google Scholar]
- Erthmann, P.O.; Agerbirk, N.; Bak, S. A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins. Plant Mol. Biol. 2018, 97, 37–55. [Google Scholar] [CrossRef]
- de Costa, F.; Barber, C.; Kim, Y.B.; Reed, D.W.; Zhang, H.; Fett-Neto, A.G.; Covello, P.S. Molecular cloning of an ester-forming triterpenoid: UDP-glucose 28-O-glucosyltransferase involved in saponin biosynthesis from the medicinal plant Centella asiatica. Plant Sci. 2017, 262, 9–17. [Google Scholar] [CrossRef]
- Lim, E.K.; Doucet, C.J.; Li, Y.; Elias, L.; Worrall, D.; Spencer, S.P.; Ross, J.; Bowles, D.J. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 2002, 277, 586–592. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, L.; Feng, X.; Liu, X.; Guo, F.; Lv, B.; Li, C. Galactosylation of Monosaccharide Derivatives of Glycyrrhetinic Acid by UDP-Glycosyltransferase GmSGT2 from Glycine max. J. Agric. Food Chem. 2020, 68, 8580–8588. [Google Scholar] [CrossRef]
- Wang, M.; Ji, Q.; Lai, B.; Liu, Y.; Mei, K. Structure-function and engineering of plant UDP-glycosyltransferase. Comput. Struct. Biotechnol. J. 2023, 21, 5358–5371. [Google Scholar] [CrossRef]
- Song, W.; Zhang, C.; Wu, J.; Qi, J.; Hua, X.; Kang, L.; Yuan, Q.; Yuan, J.; Xue, Z. Characterization of Three Paris polyphylla Glycosyltransferases from Different UGT Families for Steroid Functionalization. ACS Synth. Biol. 2022, 11, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Forrester, T.; Ovchinnikova, O.G.; Li, Z.; Kitova, E.N.; Nothof, J.T.; Koizumi, A.; Klassen, J.S.; Lowary, T.L.; Whitfield, C.; Kimber, M.S. The retaining beta-Kdo glycosyltransferase WbbB uses a double-displacement mechanism with an intermediate adduct rearrangement step. Nat. Commun. 2022, 13, 6277. [Google Scholar] [CrossRef]
- Aykut, A.O.; Atilgan, A.R.; Atilgan, C. Designing molecular dynamics simulations to shift populations of the conformational states of calmodulin. PLoS Comput. Biol. 2013, 9, e1003366. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Tieman, D.M.; Knapp, S.J.; Zerbe, P.; Famula, R.; Barbey, C.R.; Folta, K.M.; Amadeu, R.R.; Lee, M.; Oh, Y.; et al. A multi-omics framework reveals strawberry flavor genes and their regulatory elements. New Phytol. 2022, 236, 1089–1107. [Google Scholar] [CrossRef]
- Gilbert, M.K.; Bland, J.M.; Shockey, J.M.; Cao, H.; Hinchliffe, D.J.; Fang, D.D.; Naoumkina, M. A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.). PLoS ONE 2013, 8, e75268. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yan, H.; Zhu, X.; Yang, Y.; Jia, J.; Sun, M.; Najeeb, A.; Luo, J.; Wang, X.; He, M.; et al. Single-cell transcriptomes reveal spatiotemporal heat stress response in pearl millet leaves. New Phytol. 2025, 247, 637–650. [Google Scholar] [CrossRef]
- Lu, M.; Guo, J.; Dong, D.; Zhang, M.; Li, Q.; Cao, Y.; Dong, Y.; Chen, C.; Jin, X. UDP-glycosyltransferase gene SlUGT73C1 from Solanum lycopersicum regulates salt and drought tolerance in Arabidopsis thaliana L. Funct. Integr. Genom. 2023, 23, 320. [Google Scholar] [CrossRef]
- Ouyang, L. Functional Study of Flavonoid Glycosyltransferase AhUGT75A in Regulating Stress Resistance of Peanut. Master’s Thesis, Hubei University, Wuhan, China, 2024. (In Chinese). [Google Scholar]
- Qian, P.P. Functional Analysis of Soybean Glycosyltransferases UGT73F2 and UGT73F4 Involved in Plant Tolerance to Abiotic Stress. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Haoran Ren, Y.L.M.O. Integrated metabolomic and transcriptomic profiling reveals the key role of UDP-glycosyltransferase 73D1 (UGT73D1) in rose under UV-B irradiation. Hortic. Plant J. 2025. [Google Scholar] [CrossRef]
- Cheng, W.; Fang, X.; Guan, Z.; Yao, Y.; Xu, Z.; Bi, Y.; Ren, K.; Li, J.; Chen, F.; Chen, X.; et al. Functional characterization and structural basis of a reversible glycosyltransferase involves in plant chemical defence. Plant Biotechnol. J. 2023, 21, 2611–2624. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, S.; Gao, Z.; Li, Y.; Jia, H. Engineering an Ancestral Glycosyltransferase for Biosynthesis of 2-Phenylethyl-beta-d-Glucopyranoside and Salidroside. J. Agric. Food Chem. 2024, 72, 19966–19976. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Huang, M.; Li, W.; Zeng, D.; Li, J.; Wang, Y. Multiple herbicide resistance in a Cyperus difformis population in rice field from China. Pestic. Biochem. Phys. 2023, 195, 105576. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Chen, J.; Lin, F.; Fan, H.; Zhang, T.; Zhang, S.; Cheng, S.; Xin, P.; Chu, J.; Chai, T.; et al. Functional Characterization of PcUGT73BF6 from Polygonum Cuspidatum and the Facilitation of Emodin Catalysis via Site-Directed Mutagenesis. J. Agric. Food Chem. 2025, 73, 13540–13554. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, J.; Huang, C.; Wang, Z.; Chen, Y.; Jiang, S.; Li, J.; Xie, N. Development of New Multi-Glycosylation Routes to Facilitate the Biosynthesis of Sweetener Mogrosides from Bitter Immature Siraitia Grosvenorii Using Engineered Escherichia coli. J. Agr. Food Chem. 2024, 72, 18078–18088. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wang, H.; Pai, M.; Li, T.; Zhang, H.; Ye, B.; Tang, L.; Fu, R.; Zhang, Y. UDP-glucosyltransferases from UGT73 family catalyze 3-O-glucosylation of isosteroidal and steroidal alkaloids in Fritillaria unibracteata var. wabuensis. Plant J. 2025, 121, e70042. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, Z.; Xie, Z.; Zhou, S.; Zeng, T.; Jiang, S.; Zheng, Y.; Yuan, Y.; Wu, R. An Effective Computational Strategy for UGTs Catalytic Function Prediction. ACS Synth. Biol. 2025, 14, 2064–2080. [Google Scholar] [CrossRef] [PubMed]
UGT Isoform | Plant Species | Substrate(s) | Action | Physiological Effects | Ref. |
---|---|---|---|---|---|
UGT73C6 | Arabidopsis thaliana | Flavonol | Overexpression | The involvement of the synthesis of the quercetin-rhamnoside-glucoside | [91] |
ScUGT73B4 | Solanum tuberosum | flavonoids | Overexpression | cold tolerance | [92] |
UGT73B23, UGT73B24 | Fragaria × ananassa | 3-hydroxycoumarin | In vitro catalytic activities | Contributing to APG glucosides accumulated during the ripening of strawberry fruit | [93] |
UGT733C6, UGT73B2 | Arabidopsis thaliana | Naringenin | In vitro catalytic activities | Promoted (2S)-naringenin production | [94] |
UGT73A17 | Camellia sinensis | Quercetin | In vitro catalytic activities | Involved in heat response and quality of tea plant | [95] |
CsUGT73AC15 | Camellia sinensis | Rutin, Kaempferol 3-O-Rutinoside | Transiently suppress | Enhancing flavor profiles of tea plants | [96] |
AhUGT75A (UGT73CG33) | Arachis hypogaea | Naringenin | Overexpression | Higher tolerance to salt and drought stresses | [39] |
UGT73AC11 | Glycyrrhiza uralensis | Liquiritigenin | In vitro catalytic activities | Broad-spectrum flavonoid biocatalyst | [97] |
UGT73A18 | Panax ginseng | Kaempferol | In vitro catalytic activities | Involved in the formation of flavonol glycosides in leaves and stems | [98] |
UGT Isoform | Plant Species | Substrate(s) | Action | Physiological Effects | Ref. |
---|---|---|---|---|---|
UGT73C10/11 | Barbarea vulgaris | Oleanolic acid, Hederagenin, Betulinic acid | In vitro catalytic activities | Enhance plant insect pest resistance | [26] |
AmGT11/72 | Astragalus membranaceus | Cycloastragenol | In vitro catalytic activities | Contributing to the 3-O-glycosylation of cycloastragenol, giving rise to astraverrucin I or 5 astramembrannin II | [99] |
UGT73C1 | Arabidopsis thaliana | Steviol | In vitro catalytic activities | Contributing to the glycosylation of steviol | [83] |
UGT73AM3 | Cucumis sativus | Cucurbitacin C | In vitro catalytic activities | Contributing to the glycosylation of Cucurbitacin C, giving rise to CuC 3-O-β-glucopyranoside | [100] |
GmUGT73F2 | Glycine max | Product of GmSSAT1 | In vitro catalytic activities | Most notably in the pods and pod shells where soyasaponins accumulate | [101] |
UGT73C11 | Barbarea vulgaris | Glycyrrhetinic acid | In vitro catalytic activities | Improved significantly the water solubility and antibacterial activity of the parent GA | [102] |
UGT73AH1 | Centella asiatica | Asiatic acid | In vitro catalytic activities | Catalyzes the glycosylation of a ursane-type triterpene produces asiatic acid monohexoside | [103] |
UGT73F17, UGT73F24, UGT73C33, UGT73F15 | Glycyrrhiza uralensis | Glycyrrhizic acid | In vitro catalytic activities | Efficient biocatalyst to specifically | [104,105,106] |
AeUGT73CB3 | Aralia elata | Calenduloside E | In vitro catalytic activities | Efficient biocatalyst to specifically | [107] |
UGT73F3 | Medicago truncatula | Hederagenin | Knockout | Stunted in growth compared | [108] |
UGT Isoform | Plant Species | Substrate(s) | Action | Physiological Effects | Ref. |
---|---|---|---|---|---|
UGT73C5 | Arabidopsis thaliana | Deoxynivalenol | Overexpression | Deoxynivalenol tolerance | [109] |
UGT73B4 | Arabidopsis thaliana | Trinitrotoluene | Overexpression | TNT tolerance and enhanced root growth | [110] |
UGT73B3/5 | Arabidopsis thaliana | Unknown | Knockout | Pseudomonas syringae infection susceptibility and ROS accumulation | [111,112] |
UGT73C | Aegilops tauschii | Unknown | Upregulation upon mesosulforun-methyl treatment | Herbicide tolerance | [113] |
UGT73C7 | Arabidopsis thaliana | p-coumaric acid, ferulic acid | Overexpression | significantly increased resistance to Pseudomonas syringae | [80] |
UGT73B1, UGT73B2, UGT73B4, UGT73B5, UGT73C1, UGT73C7, UGT73D1 | Arabidopsis thaliana | Unknown | Upregulation upon fenclorim treatment | Herbicide tolerance | [114] |
UGT73B, | Alopecurus myosuroides | Unknown | Up/Downregulation upon fenaxaprop-P-ethyl treatment | No effect | [115] |
UGT73B2, UGT73B3, UGT73B4 | Arabidopsis thaliana | Unknown | Overexpression upon ibuprofen treatment | Ibuprofen tolerance and enhanced metabolism | [116] |
UGT73B6 | Rhodiola sachalinensis | p-coumaric acid | Overexpression | Contribute to salidoroside 3 synthesis | [117] |
UGT73CE1 | Paris polyphylla | Diosgenin 3-O-glucoside | In vitro catalytic activities | Antifungal activity against | [118] |
UGT73A24, UGT73A25 | Nicotiana benthamiana | N-feruloyl tyramine | Transiently suppress | Enhance plant disease resistance | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Li, Y.; Kang, Y.; Gu, J.; Gong, X.; Du, M.; Yang, N.; Tu, L.; Shi, P.; Yu, Z.; et al. The UGT73 Family of Glycosyltransferases in Plants: Gene Structure, Catalytic Mechanisms, and Biological Functions. Agronomy 2025, 15, 2248. https://doi.org/10.3390/agronomy15102248
Wei Y, Li Y, Kang Y, Gu J, Gong X, Du M, Yang N, Tu L, Shi P, Yu Z, et al. The UGT73 Family of Glycosyltransferases in Plants: Gene Structure, Catalytic Mechanisms, and Biological Functions. Agronomy. 2025; 15(10):2248. https://doi.org/10.3390/agronomy15102248
Chicago/Turabian StyleWei, Yujia, Yan Li, Yuhan Kang, Jiqian Gu, Xiaonan Gong, Min Du, Na Yang, Lan Tu, Peng Shi, Zihan Yu, and et al. 2025. "The UGT73 Family of Glycosyltransferases in Plants: Gene Structure, Catalytic Mechanisms, and Biological Functions" Agronomy 15, no. 10: 2248. https://doi.org/10.3390/agronomy15102248
APA StyleWei, Y., Li, Y., Kang, Y., Gu, J., Gong, X., Du, M., Yang, N., Tu, L., Shi, P., Yu, Z., Wang, Z., Cong, L., & Zhang, K. (2025). The UGT73 Family of Glycosyltransferases in Plants: Gene Structure, Catalytic Mechanisms, and Biological Functions. Agronomy, 15(10), 2248. https://doi.org/10.3390/agronomy15102248