Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = groundwater-connected ecosystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4896 KiB  
Article
Calculation of Connectivity Between Surface and Underground Three-Dimensional Water Systems in the Luan River Basin
by Jingyao Wang, Zhixiong Tang, Belay Z. Abate, Zhuoxun Wu and Li He
Sustainability 2025, 17(15), 6913; https://doi.org/10.3390/su17156913 - 30 Jul 2025
Viewed by 213
Abstract
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for [...] Read more.
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for optimizing spatial water distribution, maintaining ecohydrological equilibrium, and enhancing flood–drought regulation efficacy is important. Focusing on the regulated reaches of the Panjiakou, Daheiting, and Taolinkou reservoirs in the Luan River Basin, this study established and integrated a three-dimensional assessment framework that synthesizes hydrological processes, hydraulic structural effects, and human activities as three fundamental drivers, and employed the Analytic Hierarchy Process (AHP) to develop a quantitative connectivity evaluation system. Results indicate that water conservancy projects significantly altered basin connectivity: surface water connectivity decreased by 0.40, while groundwater connectivity experienced a minor reduction (0.25) primarily through reservoir seepage. Consequently, the integrated surface–groundwater system declined by 0.39. Critically, project scale governs surface connectivity attenuation intensity, which substantially exceeds impacts on groundwater systems. The comprehensive assessment system developed in this study provides theoretical and methodological support for diagnosing river connectivity, formulating ecological restoration strategies, and protecting basin ecosystems. Full article
Show Figures

Figure 1

28 pages, 10458 KiB  
Article
Salinity Gradients Override Hydraulic Connectivity in Shaping Bacterial Community Assembly and Network Stability at a Coastal Aquifer–Reservoir Interface
by Cuixia Zhang, Haiming Li, Mengdi Li, Qian Zhang, Sihui Su, Xiaodong Zhang and Han Xiao
Microorganisms 2025, 13(7), 1611; https://doi.org/10.3390/microorganisms13071611 - 8 Jul 2025
Viewed by 507
Abstract
The coastal zone presents complex hydrodynamic interactions among inland groundwater, reservoir water, and intruding seawater, with important implications for ecosystem functioning and water quality. However, the relative roles of hydraulic connectivity and seawater-driven salinity gradients in shaping microbial communities at the aquifer–reservoir interface [...] Read more.
The coastal zone presents complex hydrodynamic interactions among inland groundwater, reservoir water, and intruding seawater, with important implications for ecosystem functioning and water quality. However, the relative roles of hydraulic connectivity and seawater-driven salinity gradients in shaping microbial communities at the aquifer–reservoir interface remain unclear. Here, we integrated hydrochemical analyses with high-throughput 16S rRNA gene sequencing to investigate bacterial community composition, assembly processes, and co-occurrence network patterns across groundwater_in (entering the reservoir), groundwater_out (exiting the reservoir), and reservoir water in a coastal system. Our findings reveal that seawater intrusion exerts a stronger influence on groundwater_out, leading to distinct chemical profiles and salinity-driven environmental filtering, whereas hydraulic connectivity promotes greater microbial similarity between groundwater_in and reservoir water. Groundwater samples exhibited higher alpha and beta diversity compared to the reservoir, with dominant taxa such as Comamonadaceae, Flavobacteriaceae, and Rhodobacteraceae serving as indicators of seawater intrusion. Community assembly analyses showed that homogeneous selection predominated, especially under strong salinity gradients, while dispersal limitation and spatial distance also contributed in areas of reduced connectivity. Key chemical factors, including TDS, Na+, Cl, Mg2+, and K+, strongly shaped groundwater communities. Additionally, groundwater bacterial networks were more complex and robust than those in reservoir water, suggesting enhanced resilience to salinity stress. Collectively, this study demonstrates that salinity gradients can override the effects of hydraulic connectivity in structuring bacterial communities and their networks at coastal interfaces. Our findings provide novel microbial insights relevant for understanding biogeochemical processes and support the use of microbial indicators for more sensitive monitoring and management of coastal groundwater resources. Full article
(This article belongs to the Special Issue Microbial Communities in Aquatic Environments)
Show Figures

Figure 1

31 pages, 2947 KiB  
Review
Assessing the Interaction Between Geologically Sourced Hydrocarbons and Thermal–Mineral Groundwater: An Overview of Methodologies
by Vasiliki Stavropoulou, Eleni Zagana, Christos Pouliaris and Nerantzis Kazakis
Water 2025, 17(13), 1940; https://doi.org/10.3390/w17131940 - 28 Jun 2025
Viewed by 589
Abstract
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as [...] Read more.
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as dissolution, adsorption, biodegradation, and redox reactions and can also affect groundwater chemistry in terms of pH, redox potential, dissolved organic carbon, and trace element concentrations. Accurate determination and identification of hydrocarbon contaminants requires advanced analytical methods like gas chromatography, GC–MS, and fluorescence spectroscopy, complemented with isotopic analysis and microbial tracers, which provide insights into sources of contamination and biodegradation pathways. The presence of hydrocarbons in groundwater is a matter of environmental concern but can also valuable data for petroleum exploration, tracing subsurface reservoirs and seepage pathways. This paper refers to the basic need for geochemical investigations combined with advanced detection techniques for successful regulation of thermal–mineral groundwater quality. This contributes towards successful sustainable hydrocarbon resource exploration and water resource conservation, with emphasis on the relationship between groundwater quality and hydrocarbon exploration. The study points out the significance of continuous observation of thermal mineral waters to identify their connection with the specific hydrocarbons of each study area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

25 pages, 699 KiB  
Review
Leaky Dams as Nature-Based Solutions in Flood Management Part II: Mechanisms, Effectiveness, Environmental Impacts, Technical Challenges, and Emerging Trends
by Umanda Hansamali, Randika K. Makumbura, Upaka Rathnayake, Hazi Md. Azamathulla and Nitin Muttil
Hydrology 2025, 12(4), 91; https://doi.org/10.3390/hydrology12040091 - 16 Apr 2025
Cited by 2 | Viewed by 1697
Abstract
Leaky dams have become essential nature-based solutions for flood management, providing sustainable alternatives to traditional engineered flood control methods. This review delves into the mechanisms by which leaky dams operate, including the regulation of water flow through velocity reduction and distribution across floodplains, [...] Read more.
Leaky dams have become essential nature-based solutions for flood management, providing sustainable alternatives to traditional engineered flood control methods. This review delves into the mechanisms by which leaky dams operate, including the regulation of water flow through velocity reduction and distribution across floodplains, effective sediment trapping and soil quality enhancement, and the facilitation of groundwater recharge and water table stabilization. These structures not only mitigate peak flood flows and reduce erosion but also contribute to enhanced biodiversity by creating diverse aquatic habitats and maintaining ecological connectivity. The effectiveness of leaky dams is assessed through various performance metrics, demonstrating significant reductions in peak flows, improved sediment management, and increased groundwater levels, which collectively enhance ecosystem resilience and water quality. However, the implementation of leaky dams presents several technical challenges, such as design complexity, hydrological variability, maintenance requirements, and socio-economic factors like land use conflicts and economic viability. Additionally, while leaky dams offer numerous environmental benefits, potential negative impacts include habitat disruption, sediment accumulation, and alterations in water quality, which necessitate careful planning and adaptive management strategies. Emerging trends in leaky dam development focus on the integration of smart technologies, such as real-time monitoring systems and artificial intelligence, to optimize performance and resilience against climate-induced extreme weather events. Advances in modeling and monitoring technologies are facilitating the effective design and implementation of leaky dam networks, promoting their incorporation into comprehensive watershed management frameworks. This review highlights the significant potential of leaky dams as integral components of sustainable flood management systems, advocating for their broader adoption alongside conventional engineering solutions to achieve resilient and ecologically balanced water management. Full article
Show Figures

Figure 1

20 pages, 1230 KiB  
Review
Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review
by Monde Rapiya and Abel Ramoelo
Water 2025, 17(8), 1174; https://doi.org/10.3390/w17081174 - 14 Apr 2025
Cited by 1 | Viewed by 1000
Abstract
Water scarcity is a growing global issue, especially in arid and semi-arid rangelands, primarily due to climate change and population growth. Groundwater is a crucial resource for vegetation in these ecosystems, yet its role in supporting plant life is often not fully understood. [...] Read more.
Water scarcity is a growing global issue, especially in arid and semi-arid rangelands, primarily due to climate change and population growth. Groundwater is a crucial resource for vegetation in these ecosystems, yet its role in supporting plant life is often not fully understood. This review explores the interactions between groundwater and vegetation dynamics in various rangeland types. Groundwater serves as a critical water source that helps sustain plants, but changes in its availability, depth, and quality can significantly impact plant health, biodiversity, and ecosystem stability. Research indicates that groundwater depth affects vegetation types and their distribution, with specific plants thriving at certain groundwater levels. For instance, in grasslands, shallow groundwater can support diverse herbaceous species, while deeper conditions may favor drought-tolerant shrubs and trees. Similarly, in forest ecosystems, extensive root systems access both groundwater and soil moisture, playing a vital role in water regulation. Savanna environments showcase complex interactions, where trees and grasses compete for water, with groundwater potentially benefiting trees during dry seasons. Climate change poses additional challenges by altering rainfall patterns and temperatures, affecting groundwater recharge and availability. As a result, it is crucial to develop effective management strategies that integrate groundwater conservation with vegetation health. Innovative monitoring techniques, including remote sensing, can provide valuable information about groundwater levels and their impact on vegetation, enhancing water resource management. This review emphasizes the importance of understanding groundwater–vegetation interactions to guide sustainable land and water management practices. By enhancing our knowledge of these connections and utilizing advanced technologies, we can promote ecosystem resilience, secure water resources, and support biodiversity in rangeland systems. Collaborative efforts among local communities, scientists, and policymakers are essential to address the pressing issues of water scarcity and to ensure the sustainability of vital ecosystems for future generations. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

27 pages, 3345 KiB  
Review
The Role of Spatial Planning in Landscape-Based Groundwater Recharge: A Systematic Literature Review
by Amna Riaz, Steffen Nijhuis and Inge Bobbink
Water 2025, 17(6), 862; https://doi.org/10.3390/w17060862 - 17 Mar 2025
Cited by 1 | Viewed by 997
Abstract
Groundwater is a vital resource for ecosystems, with its recharge process influenced by climate change and urbanization. The transformation of natural and urban landscapes and the over-extraction of groundwater contribute to its depletion and degradation. Groundwater recharge and management are intricately linked to [...] Read more.
Groundwater is a vital resource for ecosystems, with its recharge process influenced by climate change and urbanization. The transformation of natural and urban landscapes and the over-extraction of groundwater contribute to its depletion and degradation. Groundwater recharge and management are intricately linked to land use and the landscape. Despite this close connection, spatially integrating groundwater recharge strategies in the landscape context remains underexplored. This systematic review synthesizes state-of-the-art research at the intersection of spatial planning, landscapes, and groundwater recharge. We employed a combination of bibliometric visualization and thematic analysis and reviewed 126 studies published between 1990 and April 2024 from the Scopus and Web of Science databases. Based on their objectives and outcomes, we found four prominent themes in these clusters: groundwater recharge potential studies, groundwater vulnerability studies, design-based studies, and participatory studies. When organized iteratively, these clusters can become potential building blocks of a framework for a landscape-based groundwater recharge approach. With interdisciplinary collaboration, spatial visualization and mapping, a co-creative design, and a feedback mechanism at its core, this approach can enhance stakeholder communication and translate highly specialized technical knowledge into adaptive, actionable insights. This study also highlights that including spatial design can help develop landscape-based groundwater recharge for long-term sustainable regional development. Full article
Show Figures

Figure 1

15 pages, 1154 KiB  
Review
Nitrate and Bacterial Loads in Dairy Cattle Drinking Water and Potential Treatment Options for Pollutants—A Review
by Ceilidh Douglas and Pramod Pandey
Appl. Sci. 2025, 15(6), 3017; https://doi.org/10.3390/app15063017 - 11 Mar 2025
Viewed by 924
Abstract
The impacts of dairy farm manure production on the environment and surrounding ecosystems in terms of greenhouse gas emissions and eutrophication are frequently studied and discussed, but the implications for the dairy cattle themselves that drink water predominantly sourced from surrounding groundwater commonly [...] Read more.
The impacts of dairy farm manure production on the environment and surrounding ecosystems in terms of greenhouse gas emissions and eutrophication are frequently studied and discussed, but the implications for the dairy cattle themselves that drink water predominantly sourced from surrounding groundwater commonly polluted with nitrates and bacteria from manure and surrounding crop fertilization applications are not often prioritized. This study reviews and synthesizes relevant literature connecting groundwater pollution—in terms of nitrates and bacteria—as it relates to water quality for dairy cattle consumption and the health and milk production implications and outlines pre-existing treatment and prevention options for nitrates and bacteria in conventional applications as well and the status of treatment options for dairy cattle drinking water specifically. After evaluating potential treatment options, point-of-use filtration is identified as a possible low-cost and customizable treatment option for treating dairy cattle drinking water with advantages, potential disadvantages, and filtration media options discussed. Additionally, the need for further research and testing to determine the capacity in field-scale applications is identified. Full article
Show Figures

Figure 1

17 pages, 2531 KiB  
Article
New Data on the Use of Oligochaete Communities for Assessing the Impacts of Wastewater Treatment Plant Effluents on Receiving Streams
by Régis Vivien and Benoît J. D. Ferrari
Water 2025, 17(5), 724; https://doi.org/10.3390/w17050724 - 1 Mar 2025
Viewed by 762
Abstract
Negative impacts of human activities on stream ecosystems include the reduction/modification of the connectivity between surface water and groundwater and the contamination of these resources. Vertical hydrological exchanges principally occur through the coarse surface sediments and the hyporheic zone (porous matrix) and these [...] Read more.
Negative impacts of human activities on stream ecosystems include the reduction/modification of the connectivity between surface water and groundwater and the contamination of these resources. Vertical hydrological exchanges principally occur through the coarse surface sediments and the hyporheic zone (porous matrix) and these compartments have the property to store pollutants. Such hydrological exchanges participate in the self-purification of the stream and infiltration of polluted surface water can lead to the contamination of groundwater. A complete environmental monitoring program should therefore include the assessment of the biological quality of the porous matrix and of the dynamics of vertical hydrological exchanges. The Functional trait (FTR) method based on the study of oligochaete communities in the coarse surface sediments and the hyporheic zone, allows simultaneous assessment of the effects of pollutants present in these compartments and the dynamics of vertical hydrological exchanges. Here, we applied the FTR method upstream and downstream of the effluents of three different wastewater treatment plants (WWTPs) whose discharges were significantly polluted, and for one of them (Oberglatt), before and after its upgrading. We could clearly observe negative effects of the effluents of each of these WWTPs on oligochaete communities and the Oberglatt WWTP upgrading resulted, compared to the state before the upgrading, in a significant reduction of the polluted sludge effect at the downstream site of the effluent. In addition, the method allowed us to identify several sites where the stream had a high capacity to self-purify (through exfiltration of groundwater) and other sites where groundwater was vulnerable to pollution by surface water. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

20 pages, 6893 KiB  
Article
Analyzing Multi-Year Nitrate Concentration Evolution in Alabama Aquatic Systems Using a Machine Learning Model
by Bahareh KarimiDermani, Christopher T. Green, Geoffrey R. Tick, Hossein Gholizadeh, Wei Wei and Yong Zhang
Environments 2025, 12(3), 75; https://doi.org/10.3390/environments12030075 - 1 Mar 2025
Cited by 3 | Viewed by 1134
Abstract
Rising nitrate contamination in water systems poses significant risks to public health and ecosystem stability, necessitating advanced modeling to understand nitrate dynamics more accurately. This study applies the long short-term memory (LSTM) modeling to investigate the hydrologic and environmental factors influencing nitrate concentration [...] Read more.
Rising nitrate contamination in water systems poses significant risks to public health and ecosystem stability, necessitating advanced modeling to understand nitrate dynamics more accurately. This study applies the long short-term memory (LSTM) modeling to investigate the hydrologic and environmental factors influencing nitrate concentration dynamics in rivers and aquifers across the state of Alabama in the southeast of the United States. By integrating dynamic data such as streamflow and groundwater levels with static catchment attributes, the machine learning model identifies primary drivers of nitrate fluctuations, offering detailed insights into the complex interactions affecting multi-year nitrate concentrations in natural aquatic systems. In addition, a novel LSTM-based approach utilizes synthetic surface water nitrate data to predict groundwater nitrate levels, helping to address monitoring gaps in aquifers connected to these rivers. This method reveals potential correlations between surface water and groundwater nitrate dynamics, which is particularly meaningful given the lack of water quality observations in many aquifers. Field applications further show that, while the LSTM model effectively captures seasonal trends, limitations in representing extreme nitrate events suggest areas for further refinement. These findings contribute to data-driven water quality management, enhancing understanding of nitrate behavior in interconnected water systems. Full article
Show Figures

Figure 1

22 pages, 9846 KiB  
Article
Assessing Groundwater Connection/Disconnection to Waterholes Along the Balonne River and in the Barwon–Darling River System in Queensland and New South Wales, Australia, for Waterhole Persistence
by Harald Hofmann and Jonathan Marshall
Hydrology 2025, 12(1), 15; https://doi.org/10.3390/hydrology12010015 - 14 Jan 2025
Viewed by 1692
Abstract
Waterholes in semi-arid environment are sections of rivers that fill during high river flows or floods and keep water once flow ceases. They are essential water sources for rive ecosystems. Some waterholes remain even during prolonged droughts. The resilience of ecosystems in these [...] Read more.
Waterholes in semi-arid environment are sections of rivers that fill during high river flows or floods and keep water once flow ceases. They are essential water sources for rive ecosystems. Some waterholes remain even during prolonged droughts. The resilience of ecosystems in these environments depends on the persistence of the waterholes. While most semi-arid, ephemeral river systems are disconnected from regional groundwater and losing in most parts there may be some sections that can be connected to localised groundwater or parafluvial areas. To assess the persistence of waterholes the groundwater contribution to the water balance needs to be addressed. This study assesses groundwater connectivity to waterholes in a part of the Murray-Darling Basin, one of the largest watersheds in the world, using environmental tracers radon and stable isotopes. Approximately 100 samples were collected from 27 waterholes along the Narran, Calgoa, Barwon and Darling rivers, as well as 8 groundwater bore samples. The assessment of groundwater connectivity or the lack of is necessary from water balance modelling and estimation of persistence of these waterholes. As expected, the results indicate consistently low radon concentrations in the waterholes and very small deviation in stable isotopes δ18O and δ2H. In general, most of these waterholes are losing water to groundwater, indicated by low salinity (EC values) and low radon concentrations. While radon concentrations are small in most cases and indicative of little groundwater contributions, some variability can be assigned to bank return and parafluvial flow. It indicates that these contributions may have implications for waterhole persistence in ephemeral streams. The study demonstrates that in some cases local bank return flow or parafluvial flow may contribute to waterhole persistence. Full article
Show Figures

Figure 1

16 pages, 7829 KiB  
Article
Fusion of Remotely Sensed Data with Monitoring Well Measurements for Groundwater Level Management
by César de Oliveira Ferreira Silva, Rodrigo Lilla Manzione, Epitácio Pedro da Silva Neto, Ulisses Alencar Bezerra and John Elton Cunha
AgriEngineering 2025, 7(1), 14; https://doi.org/10.3390/agriengineering7010014 - 9 Jan 2025
Viewed by 1058
Abstract
In the realm of hydrological engineering, integrating extensive geospatial raster data from remote sensing (Big Data) with sparse field measurements offers a promising approach to improve prediction accuracy in groundwater studies. In this study, we integrated multisource data by applying the LMC to [...] Read more.
In the realm of hydrological engineering, integrating extensive geospatial raster data from remote sensing (Big Data) with sparse field measurements offers a promising approach to improve prediction accuracy in groundwater studies. In this study, we integrated multisource data by applying the LMC to model the spatial relationships of variables and then utilized block support regularization with collocated block cokriging (CBCK) to enhance our predictions. A critical engineering challenge addressed in this study is support homogenization, where we adjusted punctual variances to block variances and ensure consistency in spatial predictions. Our case study focused on mapping groundwater table depth to improve water management and planning in a mixed land use area in Southeast Brazil that is occupied by sugarcane crops, silviculture (Eucalyptus), regenerating fields, and natural vegetation. We utilized the 90 m resolution TanDEM-X digital surface model and STEEP (Seasonal Tropical Ecosystem Energy Partitioning) data with a 500 m resolution to support the spatial interpolation of groundwater table depth measurements collected from 56 locations during the hydrological year 2015–16. Ordinary block kriging (OBK) and CBCK methods were employed. The CBCK method provided more reliable and accurate spatial predictions of groundwater depth levels (RMSE = 0.49 m), outperforming the OBK method (RMSE = 2.89 m). An OBK-based map concentrated deeper measurements near their wells and gave shallow depths for most of the points during estimation. The CBCK-based map shows more deeper predicted points due to its relationship with the covariates. Using covariates improved the groundwater table depth mapping by detecting the interconnection of varied land uses, supporting the water management for agronomic planning connected with ecosystem sustainability. Full article
Show Figures

Graphical abstract

23 pages, 3662 KiB  
Article
An Exploration of Groundwater Resource Ecosystem Service Sustainability: A System Dynamics Case Study in Texas, USA
by Julianna Leal, Morgan Bishop, Caleb Reed and Benjamin L. Turner
Systems 2024, 12(12), 583; https://doi.org/10.3390/systems12120583 - 20 Dec 2024
Viewed by 1155
Abstract
Groundwater, a crucial natural resource on a global scale, plays a significant role in Texas, impacting various essential ecosystem services either directly or indirectly. Despite efforts of state- and community-level regulations and conservation efforts, there is an ongoing trend of declining groundwater levels [...] Read more.
Groundwater, a crucial natural resource on a global scale, plays a significant role in Texas, impacting various essential ecosystem services either directly or indirectly. Despite efforts of state- and community-level regulations and conservation efforts, there is an ongoing trend of declining groundwater levels in the state of Texas. In this study, we utilized the systems thinking and system dynamics modeling approach to better understand this problem and investigate possible leverage points to achieve more sustainable groundwater resource levels. After conceptualizing a causal loop diagram (CLD) of the underlying feedback structure of the issue (informed by the existing literature), a small system dynamics (SD) model was developed to connect the feedback factors identified in the CLD to the stocks (groundwater level) and flows (recharge rate and groundwater pumping) that steer the behaviors of groundwater systems across time. After completing model assessment, experimental simulations were conducted to evaluate the current state relative to simulated treatments for improved irrigation efficiency, restricted pumping rates, cooperative conservation protocols among users, and combination strategy (of all treatments above) in the long-term. Results showed that groundwater stress (and the associated repercussions on related ecosystem service) could be alleviated with a combination strategy, albeit without complete groundwater level recovery. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

31 pages, 4545 KiB  
Review
Internet of Things Long-Range-Wide-Area-Network-Based Wireless Sensors Network for Underground Mine Monitoring: Planning an Efficient, Safe, and Sustainable Labor Environment
by Carlos Cacciuttolo, Edison Atencio, Seyedmilad Komarizadehasl and Jose Antonio Lozano-Galant
Sensors 2024, 24(21), 6971; https://doi.org/10.3390/s24216971 - 30 Oct 2024
Cited by 4 | Viewed by 3700
Abstract
Underground mines are considered one of the riskiest facilities for human activities due to numerous accidents and geotechnical failures recorded worldwide over the last century, which have resulted in unsafe labor conditions, poor health outcomes, injuries, and fatalities. One significant cause of these [...] Read more.
Underground mines are considered one of the riskiest facilities for human activities due to numerous accidents and geotechnical failures recorded worldwide over the last century, which have resulted in unsafe labor conditions, poor health outcomes, injuries, and fatalities. One significant cause of these accidents is the inadequate or nonexistent capacity for the real-time monitoring of safety conditions in underground mines. In this context, new emerging technologies linked to the Industry 4.0 paradigm, such as sensors, the Internet of Things (IoT), and LoRaWAN (Long Range Wide Area Network) wireless connectivity, are being implemented for planning the efficient, safe, and sustainable performance of underground mine labor environments. This paper studies the implementation of an ecosystem composed of IoT sensors and LoRa wireless connectivity in a data-acquisition system, which eliminates the need for expensive cabling and manual monitoring in mining operations. Laying cables in an underground mine necessitates cable support and protection against issues, such as machinery operations, vehicle movements, mine operator activities, and groundwater intrusion. As the underground mine expands, additional sensors typically require costly cable installations unless wireless connectivity is employed. The results of this review indicate that an IoT LoRaWAN-based wireless sensor network (WSN) provides real-time data under complex conditions, effectively transmitting data through physical barriers. This network presents an attractive low-cost solution with reliable, simple, scalable, secure, and competitive characteristics compared to cable installations and manually collected readings, which are more sporadic and prone to human error. Reliable data on the behavior of the underground mine enhances productivity by improving key performance indicators (KPIs), minimizing accident risks, and promoting sustainable environmental conditions for mine operators. Finally, the adoption of IoT sensors and LoRaWAN wireless connectivity technologies provides information of the underground mine in real-time, which supports better decisions by the mining industry managers, by ensuring compliance with safety regulations, improving the productive performance, and fostering a roadmap towards more environmentally friendly labor conditions. Full article
(This article belongs to the Special Issue Advances in Intelligent Sensors and IoT Solutions)
Show Figures

Figure 1

16 pages, 6605 KiB  
Article
Longitudinal Investigation of Groundwater and Surface Water Interaction of Two Gravel Pit Lakes in Central Texas: Chemical and Flow Implications
by William A. Brewer, Claudia R. Dawson and Joe C. Yelderman
Water 2024, 16(21), 3068; https://doi.org/10.3390/w16213068 - 26 Oct 2024
Viewed by 1190
Abstract
Two gravel pit lakes in central Texas were examined over the course of two years with upgradient and downgradient piezometer installations. Groundwater and lake water were sampled bimonthly for nutrients, water levels, and groundwater chemistry, and in addition, rain and lake gauges and [...] Read more.
Two gravel pit lakes in central Texas were examined over the course of two years with upgradient and downgradient piezometer installations. Groundwater and lake water were sampled bimonthly for nutrients, water levels, and groundwater chemistry, and in addition, rain and lake gauges and mini-piezometers were installed, depth surveys were conducted, and a simple 2D flow model was constructed. The project goal was evaluating and examining flow dynamics and chemical effects as groundwater flows to surface water and back to groundwater with the intent to understand the effects that gravel pit lake systems have on connected shallow groundwater. Both lake systems were shown to be flow-through systems that influence the water quality by decreasing the dissolved nutrients in the groundwater in their vicinity while oxygenating the water and altering the pH. However, the lakes are also prone to high levels of evaporation, meaning that minor improvements to water quality come at the cost of decreasing the quantity of water in storage within the aquifer. Similar groundwater and mine lake systems may show comparable tendencies, providing new information for water managers, regulators, and stake-holders about the potential roles that non-remediated gravel pit lakes may play in local ecosystems and aquifer dynamics. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

25 pages, 6907 KiB  
Article
Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile
by Blanca Gana, José Miguel Andreu Rodes, Paula Díaz, Agustín Balboa, Sebastián Frías, Andrea Ávila, Cecilia Rivera, Claudio A. Sáez and Céline Lavergne
Hydrology 2024, 11(10), 174; https://doi.org/10.3390/hydrology11100174 - 16 Oct 2024
Cited by 2 | Viewed by 2171
Abstract
In the central region of Chile, the Mega-Drought together with the demographic increase near the coast threatens groundwater availability and the hydrogeological functioning of coastal wetlands. To understand the hydric relationship between an aquifer and a wetland in a semi-arid coastal region of [...] Read more.
In the central region of Chile, the Mega-Drought together with the demographic increase near the coast threatens groundwater availability and the hydrogeological functioning of coastal wetlands. To understand the hydric relationship between an aquifer and a wetland in a semi-arid coastal region of Central Chile (Valparaíso, Chile), as well as its geoenvironmental effects, four data collection campaigns were conducted in the wetland–estuary hydric system and surroundings, between 2021 and 2022, including physical, hydrochemical, and isotopic analyses in groundwater (n = 16 sites) and surface water (n = 8 sites). The results generated a conceptual model that indicates a hydraulic connection between the wetland and the aquifer, where the water use in one affects the availability in the other. With an average precipitation of 400 mm per year, the main recharge for both systems is rainwater. Three specific sources of pollution were identified from anthropic discharges that affect the water quality of the wetland and the estuary (flow from sanitary landfill, agricultural and livestock industry, and septic tank discharges in populated areas), exacerbated by the infiltration of seawater laterally and superficially through sandy sediments and the estuary, increasing salinity and electrical conductivity in the coastal zone (i.e., 3694 µS/cm). The Del Sauce subbasin faces strong hydric stress triggered by the poor conservation state of the riparian–coastal wetland and groundwater in the same area. This study provides a detailed understanding of hydrological interactions and serves as a model for understanding the possible effects on similar ecosystems, highlighting the need for integrated and appropriate environmental management. Full article
Show Figures

Figure 1

Back to TopTop