Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,585)

Search Parameters:
Keywords = greenhouse factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2519 KB  
Review
Impact of High Temperatures, Considerations and Possible Solutions for Sustainable Lettuce Production
by Kelvin D. Aloryi, Hannah Mather, Germán V. Sandoya and Kevin Begcy
Agronomy 2026, 16(3), 327; https://doi.org/10.3390/agronomy16030327 - 28 Jan 2026
Abstract
High temperature is a major environmental stress factor that affects lettuce (Lactuca sativa L.) growth, development, and productivity. As global temperatures continue to rise, understanding the impact of heat stress on lettuce production is crucial for maintaining crop yields and quality. In [...] Read more.
High temperature is a major environmental stress factor that affects lettuce (Lactuca sativa L.) growth, development, and productivity. As global temperatures continue to rise, understanding the impact of heat stress on lettuce production is crucial for maintaining crop yields and quality. In fields and in controlled environment agriculture, these elevated temperatures lead to poor seed germination due to thermoinhibition, earlier bolting due to faster crop development, and reduced marketable yields and an increased likelihood of heat-related disorders such as tipburn. Achieving heat tolerance in controlled environment agriculture is paramount as this industry struggles with higher production costs from the excessive use of cooling systems to acclimate greenhouses to temperatures ideal for lettuce production whereas field-grown lettuce must withstand highly variable and extreme thermal conditions, making heat stress a major constraint in both systems. This review comprehensively summarizes the current literature on the impact of heat stress on lettuce and highlights the influence of heat stress at the physiological, biochemical, and molecular level. In addition, we highlight management practices on lettuce production and sustainability as well as the breeding potential for heat tolerance. We synthesized these findings into a proposed conceptual framework for selecting and identifying genomic targets to advance the improvement of heat resilience in lettuce. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

25 pages, 3833 KB  
Article
Full-Load Thermal–Hydraulic Optimization of Spent Nuclear Fuel Storage Vaults
by Seyed Majid Bigonah Ghalehsari, Yu Zhao, Heng Zhou and Tianyi Zhao
Energies 2026, 19(3), 681; https://doi.org/10.3390/en19030681 - 28 Jan 2026
Abstract
The increasing use of nuclear energy, a reliable baseload power with minimal greenhouse gas emissions, makes managing the heat of dry storage for spent nuclear fuel (SNF) a key engineering issue. Our research indicates that strong heat layers form in standard setups, with [...] Read more.
The increasing use of nuclear energy, a reliable baseload power with minimal greenhouse gas emissions, makes managing the heat of dry storage for spent nuclear fuel (SNF) a key engineering issue. Our research indicates that strong heat layers form in standard setups, with over 40% of the vault exceeding 85 °C when airflow stops. A staggered cask setup with outlets on both sides and a 0° inlet yielded the best results, exhibiting the lowest standardized temperature (θave = 0.23) and maintaining wall temperatures below 65 °C. Input speed (4.0–6.0 m/s) is the most significant factor, dropping output temperature from 80 °C to 38 °C. While convection is the primary method of heat transfer (over 90%), radiation becomes significant in low-flow areas, although its effect diminishes as surface temperatures increase. Pressure loss stays low (about 3.2 Pa), which is suitable for mechanics. To improve the system’s practicality and sustainability, it is advised to use both active and passive cooling and to reuse low-grade heat. This work provides reliable guidance for HVAC design under full-load conditions, enhancing the safety, energy efficiency, and cost-effectiveness of SNF storage. Full article
Show Figures

Figure 1

30 pages, 4724 KB  
Article
How Grid Decarbonization Reshapes Distribution Transformer Life-Cycle Impacts: A Forecasting-Based Life Cycle Assessment Framework for Hydro-Dominated Grids
by Sayed Preonto, Aninda Swarnaker, Ashraf Ali Khan, Hafiz Furqan Ahmed and Usman Ali Khan
Energies 2026, 19(3), 651; https://doi.org/10.3390/en19030651 - 27 Jan 2026
Abstract
Rising global electricity demand and the expansion of distribution networks require a critical assessment of component-level greenhouse gas contributions. Distribution transformers, although indispensable, have significant life-cycle carbon impacts due to the use of materials, manufacturing, and in-service losses. This study conducts a life-cycle [...] Read more.
Rising global electricity demand and the expansion of distribution networks require a critical assessment of component-level greenhouse gas contributions. Distribution transformers, although indispensable, have significant life-cycle carbon impacts due to the use of materials, manufacturing, and in-service losses. This study conducts a life-cycle assessment of a single-phase, 75 kVA oil-immersed distribution transformer manufactured in Newfoundland, one of the provinces with the cleanest, hydro-dominated grids in Canada, and evaluates it over a 40-year lifespan. Using a cradle-to-use boundary, the analysis quantifies embodied emissions from raw material extraction, manufacturing, and transportation, alongside operational emissions derived from empirically measured no-load and load losses. All the data are collected directly during the manufacturing process, ensuring high analytical fidelity. The energy efficiency of the transformer is analyzed in MATLAB version R2023b using measured no-load and load losses to generate efficiency, load characteristics under various operating conditions. Under varying load factor scenarios and based on Newfoundland’s 2025 grid intensity of 18 g CO2e/kWh, the lifetime operational emissions are estimated to range from 0.19 t CO2e under no-load operation to 4.4 t CO2e under full-load conditions. A linear regression-based decarbonization model using Microsoft Excel projects grid intensity to reach net-zero around 2037, two years beyond the provincial target, indicating that post-2037 transformer losses will remain energetically relevant but carbon-neutral. Sensitivity analysis reveals that temporary overloading can substantially elevate lifetime emissions, emphasizing the value of smart-grid-enabled load management and optimal transformer sizing. Comparative assessment with fossil fuel-intensive provinces across Canada demonstrates the dominant influence of grid generation mix on life-cycle emissions. Additionally, refurbishment scenarios indicate up to 50% reduction in cradle-to-gate emissions through material reuse and oil reclamation. The findings establish a scalable framework for integrating grid decarbonization trajectories, life-cycle carbon modelling, and circular-economy strategies into sustainable distribution network planning and transformer asset management. Full article
(This article belongs to the Special Issue Development and Efficient Utilization of Renewable and Clean Energy)
Show Figures

Figure 1

25 pages, 2254 KB  
Perspective
Perspectives on Cleaner-Pulverized Coal Combustion: The Evolving Role of Combustion Modifiers and Biomass Co-Firing
by Sylwia Włodarczak, Andżelika Krupińska, Zdzisław Bielecki, Marcin Odziomek, Tomasz Hardy, Mateusz Tymoszuk, Marek Pronobis, Paweł Lewiński, Jakub Sobieraj, Dariusz Choiński, Magdalena Matuszak and Marek Ochowiak
Energies 2026, 19(3), 633; https://doi.org/10.3390/en19030633 - 26 Jan 2026
Viewed by 41
Abstract
The article presents an extensive review of modern technological solutions for pulverized coal combustion, with emphasis on combustion modifiers and biomass co-firing. It highlights the role of coal in the national energy system and the need for its sustainable use in the context [...] Read more.
The article presents an extensive review of modern technological solutions for pulverized coal combustion, with emphasis on combustion modifiers and biomass co-firing. It highlights the role of coal in the national energy system and the need for its sustainable use in the context of energy transition. The pulverized coal combustion process is described, along with factors influencing its efficiency, and a classification of modifiers that improve combustion parameters. Both natural and synthetic modifiers are analyzed, including their mechanisms of action, application examples, and catalytic effects. Special attention is given to the synergy between transition metal compounds (Fe, Cu, Mn, Ce) and alkaline earth oxides (Ca, Mg), which enhances energy efficiency, flame stability, and reduces emissions of CO, SO2, and NOx. The article also examines biomass-coal co-firing as a technology supporting energy sector decarbonization. Co-firing reduces greenhouse gas emissions and increases the reactivity of fuel blends. The influence of biomass type, its share in the mixture, and processing methods on combustion parameters is discussed. Finally, the paper identifies directions for further technological development, including nanocomposite combustion modifiers and intelligent catalysts integrating sorption and redox functions. These innovations offer promising potential for improving energy efficiency and reducing the environmental impact of coal-fired power generation. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

22 pages, 6210 KB  
Article
An Integrated GIS–AHP–Sensitivity Analysis Framework for Electric Vehicle Charging Station Site Suitability in Qatar
by Sarra Ouerghi, Ranya Elsheikh, Hajar Amini and Sheikha Aldosari
ISPRS Int. J. Geo-Inf. 2026, 15(2), 54; https://doi.org/10.3390/ijgi15020054 - 25 Jan 2026
Viewed by 138
Abstract
This study presents a robust framework for optimizing the site selection of Electric Vehicle Charging Stations (EVCS) in Qatar by integrating a Geographic Information System (GIS) with a Multi-Criteria Decision-Making (MCDM) model. The core innovation lies in the enhancement of the conventional Analytic [...] Read more.
This study presents a robust framework for optimizing the site selection of Electric Vehicle Charging Stations (EVCS) in Qatar by integrating a Geographic Information System (GIS) with a Multi-Criteria Decision-Making (MCDM) model. The core innovation lies in the enhancement of the conventional Analytic Hierarchy Process (AHP) with a Removal Sensitivity Analysis (RSA). This unique integration moves beyond traditional, subjective expert-based weighting by introducing a transparent, data-driven methodology to quantify the influence of each criterion and generate objective weights. The Analytic Hierarchy Process (AHP) was used to evaluate fourteen criteria related to accessibility, economic and environmental factors that influence EVCS site suitability. To enhance robustness and minimize subjectivity, a Removal Sensitivity Analysis (RSA) was applied to quantify the influence of each criterion and generate objective, data-driven weights. The results reveal that accessibility factors, particularly proximity to road networks and parking areas exert the highest influence, while environmental variables such as slope, CO concentration, and green areas have moderate but spatially significant impacts. The integration of AHP and RSA produced a more balanced and environmentally credible suitability map, reducing overestimation of urban sites and promoting sustainable spatial planning. Environmentally, the proposed framework supports Qatar’s transition toward low-carbon mobility by encouraging the expansion of clean electric transport infrastructure, reducing greenhouse gas emissions, and improving urban air quality. The findings contribute to achieving the objectives of Qatar National Vision 2030 and align with global efforts to mitigate climate change through sustainable transportation development. Full article
Show Figures

Figure 1

25 pages, 2834 KB  
Article
Under Pressure: Shading, High Herbivory, and Low Levels of Fertilization Drive the Vegetative Response of a Highly Invasive Species
by Henrique Venâncio, Guilherme Ramos Demetrio, Estevão Alves-Silva, Tatiana Cornelissen, Pablo Cuevas-Reyes and Jean Carlos Santos
Plants 2026, 15(3), 349; https://doi.org/10.3390/plants15030349 - 23 Jan 2026
Viewed by 99
Abstract
Invasive plant species persist under environmental conditions due to phenotypic plasticity, which allows them to cope with conditions such as herbivory, competition, and resource availability. However, plant responses to individual and combined stressors are variable. In addition, fluctuating asymmetry (FA) has been proposed [...] Read more.
Invasive plant species persist under environmental conditions due to phenotypic plasticity, which allows them to cope with conditions such as herbivory, competition, and resource availability. However, plant responses to individual and combined stressors are variable. In addition, fluctuating asymmetry (FA) has been proposed as an indicator of plant stress, although its reliability remains debated, and few studies have evaluated its responses under interacting stressors. We evaluated, in two greenhouse experiments, the isolated and combined effects of herbivory and shading; and belowground intraspecific competition and fertilization on performance, trait plasticity, and leaf FA in seedlings of the invasive plant Tithonia diversifolia. Shading reduced shoot biomass, but promoted plastic adjustments in architectural, photosynthetic, and leaf structural traits that enhance light capture, and also increased FA. Herbivory interaction with shade induced high leaf mass per area of plants. In contrast, high herbivory and intraspecific competition consistently reduced plant performance across multiple traits. Fertilization enhanced overall performance and mitigated the negative effects of herbivory and competition. Overall, our results emphasize the need to consider interacting environmental factors when assessing invasive plant performance and plasticity. Furthermore, FA showed inconsistent responses across treatments, suggesting its limited reliability as a biomarker of isolated and combined environmental stress. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
38 pages, 4105 KB  
Article
Research on a Dynamic Correction Model for Electricity Carbon Emission Factors Based on Lifecycle Analysis and Power Exchange Networks
by Zhiming Gao, Cheng Chen, Miao Wang, Xuan Zhou, Wanchun Sun and Junwei Yan
Sustainability 2026, 18(3), 1150; https://doi.org/10.3390/su18031150 - 23 Jan 2026
Viewed by 65
Abstract
Accurate electricity carbon emission factors are crucial for assessing overall social carbon emissions and achieving China’s “dual carbon” goals. This paper proposes a dynamic correction model that integrates lifecycle extension, power exchange networks, and multi-time-scale decomposition to address the limitations of static carbon [...] Read more.
Accurate electricity carbon emission factors are crucial for assessing overall social carbon emissions and achieving China’s “dual carbon” goals. This paper proposes a dynamic correction model that integrates lifecycle extension, power exchange networks, and multi-time-scale decomposition to address the limitations of static carbon emission factors. The model considers factors such as power generation structure, cross-regional transmission, clean energy proportion, line losses, and non-CO2 greenhouse gas emissions, and achieves dynamic correction at quarterly and monthly scales, enhancing timeliness and regional adaptability. Results show that transmission losses, energy structure, and inter-provincial electricity exchange significantly impact carbon emission factors. For instance, in 2022, line losses in Xinjiang and Gansu raised the electricity carbon emission factor by over 0.06 kgCO2/kWh. Monthly factors exhibit significant seasonal fluctuations, with some regions showing variations of up to 105% of the annual average. Areas rich in hydropower, such as Yunnan, Sichuan, and Qinghai, experience pronounced fluctuations, highly sensitive to changes in water volume, offering more accurate reflections of carbon emission changes during electricity consumption. This study presents a refined dynamic correction method for electricity carbon emission accounting, providing theoretical support for carbon emission policy development and performance evaluation. Full article
33 pages, 4099 KB  
Article
Methodological Pathways for Measuring Tourism Carbon Footprint: A Framework-Oriented Systematic Review
by Aitziber Pousa-Unanue, Aurkene Alzua-Sorzabal and Francisco Femenia-Serra
Climate 2026, 14(2), 28; https://doi.org/10.3390/cli14020028 - 23 Jan 2026
Viewed by 312
Abstract
Tourism is increasingly acknowledged as a major driver of global greenhouse gas emissions. However, efforts to accurately assess its carbon footprint remain hindered by methodological inconsistencies and a reliance on fragmented case studies. This study undertakes a systematic review of 166 peer-reviewed research [...] Read more.
Tourism is increasingly acknowledged as a major driver of global greenhouse gas emissions. However, efforts to accurately assess its carbon footprint remain hindered by methodological inconsistencies and a reliance on fragmented case studies. This study undertakes a systematic review of 166 peer-reviewed research papers to critically evaluate prevailing approaches for quantifying tourism-related carbon emissions. Leveraging a structured framework encompassing four analytical dimensions and fourteen parameters, the analysis reveals that energy consumption and emission factors constitute the core elements of prevailing models. Nevertheless, only half of the papers account for indirect emissions, and the majority of studies are confined to national or subnational scales, offering limited insight into destination-specific impacts. This methodological heterogeneity undermines the comparability of results and constrains their utility in formulating coherent, evidence-based climate policies. By synthesising these diverse approaches, this review identifies critical methodological gaps, advocates for the harmonisation of best practices, and delineates a roadmap for more robust and context-sensitive carbon accounting within the tourism industry. The insights gained are practical for researchers and policymakers seeking to align tourism development with climate mitigation objectives, thereby fostering greater transparency and efficacy in carbon governance within the sector. Ultimately, such initiatives aim to fortify the sector’s contribution to global decarbonisation efforts. Full article
(This article belongs to the Special Issue Sustainable Development Pathways and Climate Actions)
Show Figures

Figure 1

14 pages, 556 KB  
Article
Uneven Decoupling in Global Agriculture: Productivity Growth, Emission Intensity and Persistent Inequality
by Keisuke Kokubun
Sustainability 2026, 18(2), 1133; https://doi.org/10.3390/su18021133 - 22 Jan 2026
Viewed by 66
Abstract
Improving agricultural productivity while reducing greenhouse gas emissions is a central challenge for sustainable development. Although recent studies suggest that emission intensity has declined in many countries, far less is known about how evenly such “decoupling” has occurred across the world. This study [...] Read more.
Improving agricultural productivity while reducing greenhouse gas emissions is a central challenge for sustainable development. Although recent studies suggest that emission intensity has declined in many countries, far less is known about how evenly such “decoupling” has occurred across the world. This study examines global patterns of agricultural productivity growth and greenhouse gas emission intensity from an inequality perspective. Using harmonized cross-country data from the World Bank and Our World in Data covering up to 175 countries over the period 1990–2020, we analyze country-level decoupling patterns and quantify inequality in agricultural emission intensity using the Theil index. Total inequality is further decomposed into between- and within-income-group components to assess the sources of global disparities. The results yield three main findings. First, although many countries have achieved productivity growth alongside declining emission intensity, decoupling outcomes are highly heterogeneous, even among countries at similar income levels. Second, global inequality in agricultural emission intensity remains persistently high and exhibits substantial fluctuations over time, with no clear evidence of long-run convergence. Third, decomposition results show that approximately 99% of total inequality is driven by disparities within income groups rather than differences between them. These findings challenge income-based narratives of sustainable agricultural transitions and highlight the central role of country-specific factors, institutional capacity, and technological diffusion in shaping environmental performance in agriculture. Full article
Show Figures

Figure 1

14 pages, 381 KB  
Article
Sustainability in Swine Fattening Farming Systems in Italy: Looking Beyond Greenhouse Gas Emissions with the Ecological Footprint
by Angelo Martella, Elisa Biagetti, Michele Grigolini and Silvio Franco
Sustainability 2026, 18(2), 1029; https://doi.org/10.3390/su18021029 - 19 Jan 2026
Viewed by 119
Abstract
The study addresses the assessment of environmental sustainability in agriculture, noting that the existing scientific literature has predominantly focused on negative environmental impacts, particularly greenhouse gas emissions from the livestock sector. It argues that a comprehensive evaluation of farming systems should go beyond [...] Read more.
The study addresses the assessment of environmental sustainability in agriculture, noting that the existing scientific literature has predominantly focused on negative environmental impacts, particularly greenhouse gas emissions from the livestock sector. It argues that a comprehensive evaluation of farming systems should go beyond impact-based metrics and instead compare the demand and supply of natural capital, using appropriate methodologies such as the ecological footprint (EF). Accordingly, the objective of the study is to analyze the environmental sustainability of fattening pig farming systems in Italy by applying the EF to compare a virtuous case-study farm (located in Umbria, 72.4 ha of utilized agricultural area, and 1960 pigs per year) with a representative sample of ninety-four specialized pig-fattening farms drawn from the Italian FADN 2023 database. The results show the following marked differences between the two systems: the case study exhibits a positive ecological balance (EB = +50.1 gha; IEP = +0.69 gha/ha), while the FADN sample displays, on average, a negative ecological balance (EB = −167.6 gha) and a strongly negative sustainability index (IEP = −3.84 gha/ha). These findings indicate that, in a sector characterized by generalized environmental unsustainability, the preservation of natural capital can be achieved not only through low-impact technical solutions, but also by addressing structural factors (e.g., livestock density per unit area and the presence of non-productive land uses). Overall, the study demonstrates that sustainability assessment requires explicitly comparing natural capital demand and supply, rather than merely quantifying emissions. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 1483 KB  
Article
Hydrogen Fuel in Aviation: Quantifying Risks for a Sustainable Future
by Ozan Öztürk and Melih Yıldız
Fuels 2026, 7(1), 5; https://doi.org/10.3390/fuels7010005 - 19 Jan 2026
Viewed by 169
Abstract
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation [...] Read more.
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation decarbonization. However, its large-scale implementation remains hindered by cryogenic storage requirements, safety risks, infrastructure adaptation, and economic constraints. This study aims to identify and evaluate the primary technical and operational risks associated with hydrogen utilization in aviation through a comprehensive Monte Carlo Simulation-based risk assessment. The analysis specifically focuses on four key domains—hydrogen leakage, cryogenic storage, explosion hazards, and infrastructure challenges—while excluding economic and lifecycle aspects to maintain a technical scope only. A 10,000-iteration simulation was conducted to quantify the probability and impact of each risk factor. Results indicate that hydrogen leakage and explosion hazards represent the most critical risks, with mean risk scores exceeding 20 on a 25-point scale, whereas investment costs and technical expertise were ranked as comparatively low-level risks. Based on these findings, strategic mitigation measures—including real-time leak detection systems, composite cryotank technologies, and standardized safety protocols—are proposed to enhance system reliability and support the safe integration of hydrogen-powered aviation. This study contributes to a data-driven understanding of hydrogen-related risks and provides a technological roadmap for advancing carbon-neutral air transport. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

16 pages, 1998 KB  
Article
Identification and Characterization of Botryosphaeria dothidea Associated with Sweet Cherry (Prunus avium L.) Branch Dieback Disease in Greenhouses of Liaoning, China
by Qidong Dai, Qijing Zhang, Yao Chen, Feng Cai, Mingli He and Jiayin Ai
Biology 2026, 15(2), 183; https://doi.org/10.3390/biology15020183 - 19 Jan 2026
Viewed by 201
Abstract
Between 2022 and 2024, a severe branch dieback disease was observed affecting over 6% of sweet cherry trees of the ‘Tieton’ cultivar in commercial greenhouses in southern Liaoning Province, China. Symptoms primarily occurred at the top of young branches. At the early stage [...] Read more.
Between 2022 and 2024, a severe branch dieback disease was observed affecting over 6% of sweet cherry trees of the ‘Tieton’ cultivar in commercial greenhouses in southern Liaoning Province, China. Symptoms primarily occurred at the top of young branches. At the early stage of disease onset, the lesions appeared as dark brown, irregularly shaped areas with a moist surface; as the disease progressed, these lesions turned dry and rotten, leading to tree decline symptoms in sweet cherry trees. Disease diagnosis was carried out in sweet cherry greenhouses across Liaoning Province, where 24 diseased samples were collected and 14 fungal isolates were obtained therefrom. Based on morphological traits, cultural characteristics, and multi-locus phylogenetic analyses of the internal transcribed spacer (ITS) region, beta-tubulin (TUB2) gene, and translation elongation factor 1-α (TEF1) gene, these isolates were identified as Botryosphaeria dothidea. Two representative isolates, namely zdcy-1 and zdcy-2, were selected for pathogenicity assays. Both mycelial plug and spore suspension inoculation methods confirmed the pathogenicity of the pathogen. The biological characteristic assays revealed that the optimal temperature range for the pathogen’s mycelial growth on PDA medium was 25–28 °C, and the optimal pH range was 6.0–8.0. This study improves the understanding of branch dieback disease in sweet cherry orchards in China, enriches the knowledge regarding the geographical distribution, host range, and infection sites of the pathogen, and provides novel insights for the management of sweet cherry diseases. Full article
Show Figures

Figure 1

20 pages, 657 KB  
Review
A Critical Analysis of Agricultural Greenhouse Gas Emission Drivers and Mitigation Approaches
by Yezheng Zhu, Yixuan Zhang, Jiangbo Li, Yiting Liu, Chenghao Li, Dandong Cheng and Caiqing Qin
Atmosphere 2026, 17(1), 97; https://doi.org/10.3390/atmos17010097 - 17 Jan 2026
Viewed by 146
Abstract
Agricultural activities are major contributors to global greenhouse gas (GHG) emissions, with methane (CH4) and nitrous oxide (N2O) emissions accounting for 40% and 60% of total agricultural emissions, respectively. Therefore, developing effective emission reduction pathways in agriculture is crucial [...] Read more.
Agricultural activities are major contributors to global greenhouse gas (GHG) emissions, with methane (CH4) and nitrous oxide (N2O) emissions accounting for 40% and 60% of total agricultural emissions, respectively. Therefore, developing effective emission reduction pathways in agriculture is crucial for achieving carbon budget balance. This article synthesizes the impact of farmland management practices on GHG emissions, evaluates prevalent accounting methods and their applicable scenarios, and proposes mitigation strategies based on systematic analysis. The present review (2000–2025) indicates that fertilizer management dominates research focus (accounting for over 50%), followed by water management (approximately 18%) and tillage practices (approximately 14%). Critically, the effects of these practices extend beyond GHG emissions, necessitating concurrent consideration of crop yields, soil health, and ecosystem resilience. Therefore, it is necessary to conduct joint research by integrating multiple approaches such as water-saving irrigation, conservation tillage and intercropping of leguminous crops, so as to enhance productivity and soil quality while reducing emissions. The GHG accounting framework and three primary accounting methods (In situ measurement, Satellite remote sensing, and Model simulation) each exhibit distinct advantages and limitations, requiring scenario-specific selection. Further refinement of these methodologies is imperative to optimize agricultural practices and achieve meaningful GHG reductions. Full article
(This article belongs to the Special Issue Gas Emissions from Soil)
Show Figures

Graphical abstract

20 pages, 4165 KB  
Article
Water–Fertilizer Interactions: Optimizing Water-Saving and Stable Yield for Greenhouse Hami Melon in Xinjiang
by Zhenliang Song, Yahui Yan, Ming Hong, Han Guo, Guangning Wang, Pengfei Xu and Liang Ma
Sustainability 2026, 18(2), 952; https://doi.org/10.3390/su18020952 - 16 Jan 2026
Viewed by 243
Abstract
Addressing the challenges of low resource-use efficiency and supply–demand mismatch in Hami melon production, this study investigated the interactive effects of irrigation and fertilization to identify an optimal regime that balances yield, water conservation, and resource-use efficiency (i.e., water use efficiency and fertilizer [...] Read more.
Addressing the challenges of low resource-use efficiency and supply–demand mismatch in Hami melon production, this study investigated the interactive effects of irrigation and fertilization to identify an optimal regime that balances yield, water conservation, and resource-use efficiency (i.e., water use efficiency and fertilizer partial factor productivity). A greenhouse experiment was conducted in Hami, Xinjiang, employing a two-factor design with five irrigation levels (W1–W5: 60–100% of full irrigation) and three fertilization levels (F1–F3: 80–100% of standard rate), replicated three times. Growth parameters, yield, water use efficiency (WUE), and partial factor productivity of fertilizer (PFP) were evaluated and comprehensively analyzed using the entropy-weighted TOPSIS method, regression analysis, and the NSGA-II multi-objective genetic algorithm. Results demonstrated that irrigation volume was the dominant factor influencing growth and yield. The W4F3 treatment (90% irrigation with 100% fertilization) achieved the optimal outcome, yielding 75.74 t ha−1—a 9.71% increase over the control—while simultaneously enhancing WUE and PFP. Both the entropy-weighted TOPSIS evaluation (C = 0.998) and regression analysis (optimal irrigation level at w = 0.79, ~90% of full irrigation) identified W4F3 as superior. NSGA-II optimization further validated this, generating Pareto-optimal solutions highly consistent with the experimental optimum. The model-predicted optimal regime for greenhouse Hami melon in Xinjiang is an irrigation amount of 3276 m3 ha−1 and a fertilizer application rate of 814.8 kg ha−1. This regime facilitates a 10% reduction in irrigation water and a 5% reduction in fertilizer input without compromising yield, alongside significantly improved resource-use efficiencies. Full article
Show Figures

Figure 1

19 pages, 3754 KB  
Article
Raised Seedbed Cultivation with Annual Rice–Spring Crop Utilization Enhances Crop Yields and Reshapes Methane Functional Microbiome Assembly and Interaction Networks
by Xuewei Yin, Xinyu Chen, Lelin You, Xiaochun Zhang, Ling Wei, Zifang Wang, Wencai Dai and Ming Gao
Agronomy 2026, 16(2), 223; https://doi.org/10.3390/agronomy16020223 - 16 Jan 2026
Viewed by 368
Abstract
Tillage and crop rotation alter soil environments, thereby influencing both crop yields and methane-cycling microbiomes, yet their combined effects on microbial diversity, assembly, and interaction networks remain unclear. Using a two-factor field experiment, we assessed the impacts of raised seedbed vs. flat cultivation [...] Read more.
Tillage and crop rotation alter soil environments, thereby influencing both crop yields and methane-cycling microbiomes, yet their combined effects on microbial diversity, assembly, and interaction networks remain unclear. Using a two-factor field experiment, we assessed the impacts of raised seedbed vs. flat cultivation and rice–oilseed rape vs. rice–faba bean rotations on crop productivity and the ecology of methanogen (mcrA) and methanotroph (pmoA) communities. Raised seedbed cultivation significantly increased yields: rice yields were 7.6–9.6% higher in 2020 and 4.7–5.8% higher in 2021 than under flat cultivation (p < 0.05). Faba bean and oilseed rape yields were also improved. Flat rice–bean plots developed more reduced conditions and higher organic matter, with a higher NCM goodness-of-fit for methanogens (R2 = 0.466), indicating patterns more consistent with neutral (stochastic) assembly, whereas the lower fit for methanotrophs (R2 = 0.269) suggests weaker neutrality and stronger environmental filtering, accompanied by reduced richness and network complexity. In contrast, raised seedbed rice–oilseed rape plots improved redox potential and nutrient availability, sustaining both mcrA and pmoA diversity and fostering synergistic interactions, thereby enhancing community stability and indicating a potential for methane-cycle regulation. Overall, raised seedbed cultivation combined with legume rotation offers yield benefits and ecological advantages, providing a sustainable pathway for paddy management with potentially lower greenhouse gas risks. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

Back to TopTop