Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (766)

Search Parameters:
Keywords = green space characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6558 KiB  
Article
Utilizing Forest Trees for Mitigation of Low-Frequency Ground Vibration Induced by Railway Operation
by Zeyu Zhang, Xiaohui Zhang, Zhiyao Tian and Chao He
Appl. Sci. 2025, 15(15), 8618; https://doi.org/10.3390/app15158618 - 4 Aug 2025
Viewed by 65
Abstract
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer [...] Read more.
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer method is employed to derive an explicit Green’s function corresponding to a har-monic point load acting on a layered half-space, which is subsequently applied to couple the foundation with the track system. The forest trees are modeled as surface oscillators coupled on the ground surface to evaluate the characteristics of multiple scattered wavefields. The vibration attenuation capacity of forest trees in mitigating railway-induced ground vibrations is systematically investigated using the proposed method. In the direction perpendicular to the track on the ground surface, a graded array of forest trees with varying heights is capable of forming a broad mitigation frequency band below 80 Hz. Due to the interaction of wave fields excited by harmonic point loads at multiple locations, the attenuation performance of the tree system varies significantly across different positions on the surface. The influence of variability in tree height, radius, and density on system performance is subsequently examined using a Monte Carlo simulation. Despite the inherent randomness in tree characteristics, the forest still demonstrates notable attenuation effectiveness at frequencies below 80 Hz. Among the considered parameters, variations in tree height exert the most pronounced effect on the uncertainty of attenuation performance, followed sequentially by variations in density and radius. Full article
Show Figures

Figure 1

20 pages, 8930 KiB  
Article
Beyond Homogeneous Perception: Classifying Urban Visitors’ Forest-Based Recreation Behavior for Policy Adaptation
by Young-Jo Yun, Ga Eun Choi, Ji-Ye Lee and Yun Eui Choi
Land 2025, 14(8), 1584; https://doi.org/10.3390/land14081584 - 3 Aug 2025
Viewed by 242
Abstract
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest [...] Read more.
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest visitors and analyze their behavioral, demographic, and policy-related characteristics in Incheon Metropolitan City (Republic of Korea). Using latent class analysis, four distinct visitor types were identified: multipurpose recreationists, balanced relaxation seekers, casual forest users, and passive forest visitors. Multipurpose recreationists preferred active physical use and sports facilities, while balanced relaxation seekers emphasized emotional well-being and cultural experiences. Casual users engaged lightly with forest settings, and passive forest visitors exhibited minimal recreational interest. Satisfaction with forest elements such as vegetation, facilities, and management conditions varied across visitor types and age groups, especially among older adults. These findings highlight the need for perception-based green infrastructure planning. Policy recommendations include expanding accessible neighborhood green spaces for aging populations, promoting community-oriented events, and offering participatory forest programs for youth engagement. By integrating user segmentation into urban forest planning and governance, this study contributes to more inclusive, adaptive, and sustainable management of urban green infrastructure. Full article
Show Figures

Graphical abstract

24 pages, 4858 KiB  
Article
Exploring the Spatial Coupling Characteristics and Influence Mechanisms of Built Environment and Green Space Pattern: The Case of Shanghai
by Rongxiang Chen, Zhiyuan Chen, Mingjing Xie, Rongrong Shi, Kaida Chen and Shunhe Chen
Sustainability 2025, 17(15), 6828; https://doi.org/10.3390/su17156828 - 27 Jul 2025
Viewed by 575
Abstract
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep [...] Read more.
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep neural network combined with an attention mechanism model measures the comprehensive level of the built environment and green space pattern of urbanization and quantitatively analyzes the coordinated relationship between the two using the coupled degree of coordination model. Subsequently, the K-Means clustering model was used for spatial clustering to determine the governance and construction directions for different spatial areas and was, finally, combined with the LightGBM model plus SHAP to analyze the importance and threshold effect of the indicators on the degree of coupled coordination. The results of the study show that (1) the core area of the city shows a high state of coordination, indicating that Shanghai has a better green space construction in the central city, but the periphery shows different imbalances; (2) three different kinds of areas are identified, and different governance measures as well as the direction of urbanization are proposed according to the characteristics of the different areas; and (3) this study finds that the structural indicators of the built environment, such as Average Compactness, Weighted Average Height, and Land Use Diversity, have a significant influence on the coupling coordination degree and have different response thresholds. The results of the study provide theoretical support for regional governance and suggestions for the direction of urban expansion for sustainable urbanization. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

25 pages, 2756 KiB  
Article
The People-Oriented Urban Planning Strategies in Digital Era—Inspiration from How Urban Amenities Shape the Distribution of Micro-Celebrities
by Han He and Huasheng Zhu
Land 2025, 14(8), 1519; https://doi.org/10.3390/land14081519 - 23 Jul 2025
Viewed by 377
Abstract
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by [...] Read more.
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by local people-oriented land use. However, the current planning ideology remains at meeting corporate and people’s basic needs rather than specific needs of talents, especially the increasingly emerging digital creatives. To promote the talent agglomeration and sustainable development through land planning, this paper uses micro-celebrities on Bilibili, an influential creative content creation platform among young people in China, as an example to study the geographical distribution of digital creative talents and its relationship with urban amenities by constructing an index system of urban amenities, comprising natural, leisure, infrastructure, and social and institutional amenities. The concept of borrowed amenities is introduced to examine the effects of amenities of surrounding cities. This study demonstrates that micro-celebrities show a stronger preference for amenities compared with other skilled talents. Meanwhile, social and institutional amenities are most crucial. Furthermore, urban leisure represented by green spaces and consumption spaces is also attractive. At the regional scale, with prefecture-level cities as units, the local talents agglomeration is also influenced by the borrowed amenities in the context of regional integration. It indicates that the local land use should consider the characteristics of the surrounding cities. This study provides strategic inspiration that a happy and sustainable city should first be people-oriented and provide sufficient space for consumption, entertainment, and interaction. Full article
Show Figures

Figure 1

23 pages, 9488 KiB  
Article
Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai
by Yuhui Wang, Shuo Sheng, Junda Huang and Yuncai Wang
Land 2025, 14(7), 1498; https://doi.org/10.3390/land14071498 - 19 Jul 2025
Viewed by 366
Abstract
The diffusion effect of river cooling is critical for mitigating the urban heat island effect in riverside areas and for establishing an urban cooling network. River cooling effect diffusion is influenced by the two-dimensional (2D) and three-dimensional (3D) urban morphology of surrounding areas. [...] Read more.
The diffusion effect of river cooling is critical for mitigating the urban heat island effect in riverside areas and for establishing an urban cooling network. River cooling effect diffusion is influenced by the two-dimensional (2D) and three-dimensional (3D) urban morphology of surrounding areas. However, the characteristics of 2D/3D urban morphology that facilitate efficient river cooling effect diffusion remain unclear. This study establishes a technical framework to analyze river cooling effect diffusion resistance (RCDR) across different urban morphologies, using the Huangpu River waterside area in Shanghai as a case study. Seven urban morphology indicators, derived from both 2D and 3D dimensions, were developed to characterize the river cooling effect diffusion resistance. The relative contributions and marginal effects were analyzed using the Boosted Regression Tree (BRT) model. The study found that (1) river cooling effect diffusion was heterogeneous, with four typical patterns; (2) the Landscape Shape Index (LSI) and Blue-green Space Ratio (BGR) significantly impacted cooling effect diffusion; and (3) optimal cooling effect diffusion occurred when the blue-green space occupancy ratio exceeded 20% and building density ranged from 0.1 to 0.3. This study’s technical framework offers a new perspective on river cooling effect diffusion and heat island mitigation in riverside spaces, with significant practical value and potential for broader application. Full article
Show Figures

Figure 1

20 pages, 5466 KiB  
Article
Decoding Retail Commerce Patterns with Multisource Urban Knowledge
by Tianchu Xia, Yixue Chen, Fanru Gao, Yuk Ting Hester Chow, Jianjing Zhang and K. L. Keung
Math. Comput. Appl. 2025, 30(4), 75; https://doi.org/10.3390/mca30040075 - 17 Jul 2025
Viewed by 269
Abstract
Urban commercial districts, with their unique characteristics, serve as a reflection of broader urban development patterns. However, only a handful of studies have harnessed point-of-interest (POI) data to model the intricate relationship between retail commercial space types and other factors. This paper endeavors [...] Read more.
Urban commercial districts, with their unique characteristics, serve as a reflection of broader urban development patterns. However, only a handful of studies have harnessed point-of-interest (POI) data to model the intricate relationship between retail commercial space types and other factors. This paper endeavors to bridge this gap, focusing on the influence of urban development factors on retail commerce districts through the lens of POI data. Our exploration underscores how commercial zones impact the density of residential neighborhoods and the coherence of pedestrian pathways. To facilitate our investigation, we propose an ensemble clustering technique for identifying and outlining urban commercial areas, including Kernel Density Analysis (KDE), Density-based Spatial Clustering of Applications with Noise (DBSCAN), Geographically Weighted Regression (GWR). Our research uses the city of Manchester as a case study, unearthing the relationship between commercial retail catchment areas and a range of factors (retail commercial space types, land use function, walking coverage). These include land use function, walking coverage, and green park within the specified areas. As we explore the multiple impacts of different urban development factors on retail commerce models, we hope this study acts as a springboard for further exploration of the untapped potential of POI data in urban business development and planning. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

18 pages, 8928 KiB  
Article
Demand-Responsive Evaluation and Optimization of Fitness Facilities in Urban Park Green Spaces
by Xiaohui Lv, Kangxing Li, Jiyu Cheng and Ziru Ren
Buildings 2025, 15(14), 2500; https://doi.org/10.3390/buildings15142500 - 16 Jul 2025
Viewed by 266
Abstract
(1) Background: The provision of monofunctional or inadequately distributed services in urban park green spaces often constrains residents’ opportunities and diversity for outdoor activities, particularly limiting access and participation for specific age groups or activity preferences. However, functional nodes with temporal and spatial [...] Read more.
(1) Background: The provision of monofunctional or inadequately distributed services in urban park green spaces often constrains residents’ opportunities and diversity for outdoor activities, particularly limiting access and participation for specific age groups or activity preferences. However, functional nodes with temporal and spatial flexibility demonstrate high-quality characteristics of resilient and shared services through integrated development. Accurately identifying user demand provides a solid basis for optimizing the functional configuration of urban parks. (2) Methods: This study took the old city area of Zhengzhou, Henan Province, China, as a case study. By collecting and integrating various types of data, such as geographic spatial data, field investigation data, and behavioral observations, we developed a population demand quantification method and a modular analysis approach for park service functions. This framework enabled correlation analysis between diverse user needs and park services. The study further classified and combined park functions into modular units, quantifying their elastic and shared service capabilities—namely, the adaptive flexibility and shared utilization capacity of park services. Additionally, we established a demand-responsive evaluation system for identifying and diagnosing problem areas in park services based on multi-source data. (3) Results: The demand response index and diagnostic results indicate that the supply of fitness facilities—particularly equipment-based installations—is insufficient within the old urban district of Zhengzhou. Among the three user groups—children, young and middle-aged adults, and the elderly—the elderly population exhibited the lowest demand response index, revealing a significant gap in meeting their specific needs. (4) Conclusions: Based on the research findings, a three-tier optimization strategy is proposed: A. improve green space connectivity to expand the service coverage of parks; B. implement multifunctional overlay and coordinated integration in spatial design based on site characteristics and demand diagnostics; and C. increase the total supply of facilities to enhance spatial efficiency in parks. By integrating the demand assessment data and diagnostic results, this approach enabled a data-driven reorganization of service types and targeted allocation of resources within existing park infrastructure, offering a practical tool and reference for the planning of urban outdoor activity spaces. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

27 pages, 5714 KiB  
Article
Machine Learning Prediction of Mechanical Properties for Marine Coral Sand–Clay Mixtures Based on Triaxial Shear Testing
by Bowen Yang, Kaiwei Xu, Zejin Wang, Haodong Sun, Peng Cui and Zhiming Chao
Buildings 2025, 15(14), 2481; https://doi.org/10.3390/buildings15142481 - 15 Jul 2025
Viewed by 410
Abstract
Marine coral sand–clay mixtures (MCCM) are promising green fill materials in civil engineering projects, where their strength characteristics play a vital role in ensuring structural safety and stability. To investigate these properties, a series of triaxial shear tests were performed under diverse conditions, [...] Read more.
Marine coral sand–clay mixtures (MCCM) are promising green fill materials in civil engineering projects, where their strength characteristics play a vital role in ensuring structural safety and stability. To investigate these properties, a series of triaxial shear tests were performed under diverse conditions, including variations in asperity spacing, asperity height, the number of reinforcement layers, confining pressure, and axial strain. This experimental campaign yielded a robust strength dataset for MCCM. Utilizing this dataset, several predictive models were developed, including a standard Support Vector Machine (SVM), an SVM optimized via Genetic Algorithm (GA-SVM), an SVM enhanced by Particle Swarm Optimization (PSO-SVM), and a hybrid model incorporating Logical Development Algorithm preprocessing a SVM model (LDA-SVM). Among these models, the LDA-SVM model exhibited the best performance, achieving a test RMSE of 1.67245 and a correlation coefficient (R) of 0.996, demonstrating superior prediction accuracy and strong generalization ability. Sensitivity analyses revealed that asperity spacing, asperity height, and confining pressure are the most influential factors affecting MCCM strength. Moreover, an explicit empirical equation was derived from the LDA-SVM model, allowing practitioners to estimate strength without relying on complex machine learning tools. The results of this study offer practical guidance for the optimized design and safety evaluation of MCCM in civil engineering applications. Full article
Show Figures

Figure 1

22 pages, 5036 KiB  
Article
The Coupling and Spatial-Temporal Evolution of High-Quality Development and Ecological Security in the Middle Route of South-to-North Water Diversion Project
by Ken Sun, Enhui Shi, Zhenzhen Yang, Jiacheng Liu, Yuanbiao Wang, Jingmin Han and Weisheng Xie
Sustainability 2025, 17(14), 6331; https://doi.org/10.3390/su17146331 - 10 Jul 2025
Viewed by 317
Abstract
The South-to-North Water Diversion Project constitutes a fundamental initiative designed to enhance water resource distribution and foster regional coordinated development. To investigate the coupling coordination and its spatiotemporal evolution between high-quality development and ecological security (HQD-ES) within the project’s water source areas, this [...] Read more.
The South-to-North Water Diversion Project constitutes a fundamental initiative designed to enhance water resource distribution and foster regional coordinated development. To investigate the coupling coordination and its spatiotemporal evolution between high-quality development and ecological security (HQD-ES) within the project’s water source areas, this research established a dedicated evaluation index system. Employing coupling coordination, spatial autocorrelation, and Geographically Weighted Regression (GWR) models, the study analyzed the coupled coordination state and its spatiotemporal characteristics across these water source areas for the period 2010–2023. The findings demonstrated that (1) the high-quality development trend remained generally positive, rising from 0.253 to 0.377; ecological safety level showed sustained improvement, increasing from 0.365 to 0.731. (2) The coupling degree (CD) was in a high coupling stage on the whole; the coupling coordination degree (CCD) increased significantly, from imminent imbalance to good coordination state, and the space pattern showed “prominent in the middle and stable in the north and south”. (3) There was no obvious spatial correlation existing between the CCD of HQD-ES in Nanyang City. Tongba, Fangcheng, and Xinye displayed spatial correlation characteristics of low-high aggregation and high-low aggregation. GWR results showed that industrial structure, urbanization, and greening level promoted CCD, while economic level, population density, and environmental regulation inhibited it. Full article
Show Figures

Figure 1

22 pages, 280 KiB  
Article
Exploring the Development of Community Parks in Urban–Rural Fringe Areas in China: Expert and Policy Perspectives on Sustainable Design and Strategy Planning
by Ke Wang, Ian Mell and Jeremy Carter
Land 2025, 14(7), 1415; https://doi.org/10.3390/land14071415 - 5 Jul 2025
Viewed by 343
Abstract
Rapid urban expansion has led to an increasing number of people relocating to Urban–Rural Fringe Areas (URFAs) in China, with related development placing pressure on ecosystems in these locations. Community parks (CPs) are a key category of urban public park (UPPs) in Chinese [...] Read more.
Rapid urban expansion has led to an increasing number of people relocating to Urban–Rural Fringe Areas (URFAs) in China, with related development placing pressure on ecosystems in these locations. Community parks (CPs) are a key category of urban public park (UPPs) in Chinese planning and play a vital role in improving residents’ quality of life and enhancing regional environment, whilst also promoting sustainable urban development. Consequently, CPs are considered by many to be integral components of “communities” in Chinese cities. Drawing on documentary analysis and field research, this paper explores the socio-economic and ecological values associated with CP investments in URFAs in China. It assesses governmental policies and expert perspectives concerning CPs’ development in URFAs and analyses the factors influencing their planning and delivery. The research highlights how policy and stakeholders’ viewpoints impact the development of sustainable green space in URFAs. To enhance the construction of multi-functional CPs in URFAs, we propose a series of characteristics that need to be considered in future developments, including stakeholder engagement, resident needs, and park design. These insights offer an evidence-based reference for decision-makers, aiming to better meet the requirements of residents and support the development of urban sustainability. Full article
24 pages, 2293 KiB  
Article
Research on the Healing Effect of the Waterscapes in Chinese Classical Gardens in Audiovisual Interaction
by Zhigao Zhai, Luning Cao, Qinhan Li, Zheng Gong, Li Guo and Deshun Zhang
Buildings 2025, 15(13), 2310; https://doi.org/10.3390/buildings15132310 - 1 Jul 2025
Viewed by 336
Abstract
As an important part of world cultural heritage, waterscapes in Chinese classical gardens are renowned for their unique design, rich cultural connotations, and distinctive esthetic value. However, objective studies of their impact on mental health are lacking. This paper focuses on Xishu Garden, [...] Read more.
As an important part of world cultural heritage, waterscapes in Chinese classical gardens are renowned for their unique design, rich cultural connotations, and distinctive esthetic value. However, objective studies of their impact on mental health are lacking. This paper focuses on Xishu Garden, a Chinese classical garden, and examines four types of waterscapes (for a total of twelve) using eye-tracking technology and the Perceived Restorativeness Scale (PRS). The aim of this study is to explore the restorative effects of different types of waterscapes with visual and audiovisual conditions, with particular attention paid to their mechanisms of action. The research results indicate that (1) waterscapes with an audiovisual interaction have a greater restorative value; (2) dynamic waterscapes have greater visual appeal than still landscapes do, but the latter have stronger environmentally restorative effects; and (3) the visual behavioral characteristics of waterscapes change during audiovisual interactions. This study contributes theoretical support for the maintenance and enhancement of Chinese classical gardens and the planning and design of modern urban green spaces, and it enriches our understanding of the role of waterscapes in restorative environments. Full article
(This article belongs to the Special Issue Acoustics and Well-Being: Towards Healthy Environments)
Show Figures

Figure 1

21 pages, 575 KiB  
Article
Mechanisms of Resident Satisfaction Enhancement Through Waterfront Sports Buildings: A Synergistic Perspective of Blue Space and Built Environment—Empirical Evidence from Nine Chinese Cases
by Zhihao Zhang, Wenyue Liu, Jia Zhang, Linkang Du and Jianhua Pan
Buildings 2025, 15(13), 2233; https://doi.org/10.3390/buildings15132233 - 25 Jun 2025
Viewed by 542
Abstract
While the existing research has extensively explored the impact of urban green spaces on residents’ well-being, studies specifically focusing on waterfront sports buildings remain scarce. This study examines how the combined effects of built environment characteristics in waterfront sports facilities enhance user satisfaction [...] Read more.
While the existing research has extensively explored the impact of urban green spaces on residents’ well-being, studies specifically focusing on waterfront sports buildings remain scarce. This study examines how the combined effects of built environment characteristics in waterfront sports facilities enhance user satisfaction through psychological mechanisms. Based on survey data from 721 users across nine major waterfront sports complexes in China, we find that (1) four social function dimensions (social interaction, accessibility, safety, and multifunctionality) show significant positive correlations with satisfaction; (2) place attachment mediates these relationships. These findings validate the importance of integrating water-oriented design principles with community needs, offering both theoretical contributions to human–water interaction studies and practical implications for urban blue space (defined as visible water features including rivers, lakes, and coastal areas) development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 3744 KiB  
Article
Urban Green Spaces and Climate Changes: Assessing Ecosystem Services for the Municipality of Sassari (Italy)
by Andrea De Montis, Antonio Ledda, Vittorio Serra, Alessandro Manunta and Giovanna Calia
Land 2025, 14(6), 1308; https://doi.org/10.3390/land14061308 - 19 Jun 2025
Viewed by 704
Abstract
Urban green spaces (UGS) supply a wide range of ecosystem services (ESs), which are key to mitigation and adaptation to climate changes. In this study, we focus on two ESs, i.e., greenhouse gas sequestration by terrestrial ecosystems and mitigating the heat island effect [...] Read more.
Urban green spaces (UGS) supply a wide range of ecosystem services (ESs), which are key to mitigation and adaptation to climate changes. In this study, we focus on two ESs, i.e., greenhouse gas sequestration by terrestrial ecosystems and mitigating the heat island effect through vegetation, as defined by the Common International Classification of Ecosystem Services. The purpose is to support municipalities with characteristics similar to those of the municipality investigated in this study with a rough assessment of ESs through freely available data. The ES delivery capacity assessment relies on the adoption of two indicators: (i) increased carbon storage in forests and (ii) the Heat Island Mitigation Index (HIMI). We applied the method to the UGS of the municipality of Sassari (Italy) and found that the potential amount of carbon storage is 42,052.7 t, while the value of HIMI provided by the green spaces in the homogeneous territorial areas is 67.73%. The methodological approach adopted in this study is potentially applicable in Italian as well as Mediterranean small to medium municipalities to integrate the quantitative assessment of ESs in local planning tools. The novelty of this study lies in the applied practical approach, which is implementable by public bodies lacking data and resources, to assessing prima facie the need for operational climate adaptation and mitigation strategies. Full article
Show Figures

Figure 1

28 pages, 6036 KiB  
Article
Supply–Demand Assessment of Cultural Ecosystem Services in Urban Parks of Plateau River Valley City: A Case Study of Lhasa
by Shouhang Zhao, Yuqi Li, Ziqian Nie and Yunyuan Li
Land 2025, 14(6), 1301; https://doi.org/10.3390/land14061301 - 18 Jun 2025
Viewed by 535
Abstract
Cultural ecosystem services (CES) in urban parks, as a vital component of urban ecosystem services (ES), are increasingly recognized as an important tool for advancing urban sustainability and implementing nature-based solutions (NbS). The supply–demand relationship of CES in urban parks is strongly shaped [...] Read more.
Cultural ecosystem services (CES) in urban parks, as a vital component of urban ecosystem services (ES), are increasingly recognized as an important tool for advancing urban sustainability and implementing nature-based solutions (NbS). The supply–demand relationship of CES in urban parks is strongly shaped by sociocultural and spatial geographic factors, playing a crucial role in optimizing urban landscape structures and enhancing residents’ well-being. However, current research generally lacks adaptive evaluation frameworks and quantitative methods, particularly for cities with significant spatial and cultural diversity. To address this gap, this study examines the central district of Lhasa as a case study to develop a CES supply–demand evaluation framework suitable for plateau river valley cities. The study adopts the spatial integration analysis method to establish an indicator system centered on “recreational potential–recreational opportunities” and “social needs–material needs,” mapping the spatial distribution and matching characteristics of supply and demand at the community scale. The results reveal that: (1) in terms of supply–demand balance, 25.67% of communities experience undersupply, predominantly in the old city cluster, while 16.22% experience oversupply, mainly in key development zones, indicating a notable supply–demand imbalance; (2) in terms of supply–demand coupling coordination, 55.11% and 38.14% of communities are in declining and transitional stages, respectively. These communities are primarily distributed in near-mountainous and peripheral urban areas. Based on these findings, four urban landscape optimization strategies are proposed: culturally driven urban park development, demand-oriented park planning, expanding countryside parks along mountain ridges, and revitalizing existing parks. These results provide theoretical support and decision-making guidance for optimizing urban park green space systems in plateau river valley cities. Full article
Show Figures

Figure 1

16 pages, 3247 KiB  
Article
New Territorial Unit of the Urban Structure of Cities—The Urbocell
by Liucijus Dringelis and Evaldas Ramanauskas
Urban Sci. 2025, 9(6), 227; https://doi.org/10.3390/urbansci9060227 - 16 Jun 2025
Viewed by 860
Abstract
One of the most significant factors shaping the formation of new urban structures is climate change—including global warming and the associated emerging issues—heatwaves, storms, hurricanes, floods, droughts, fires and others. In recent times, new threats have emerged, including war risks, radiation, pandemics and [...] Read more.
One of the most significant factors shaping the formation of new urban structures is climate change—including global warming and the associated emerging issues—heatwaves, storms, hurricanes, floods, droughts, fires and others. In recent times, new threats have emerged, including war risks, radiation, pandemics and other potential factors, whose devastating consequences are no less severe than those of climate change. Concerning these and other potential threats, this work aims to develop a new, sustainable urban structure element—a territorial unit or complex to be used in creating a new city planning framework. The formation of this sustainable urban unit or complex is based on three fundamental sustainability principles—social, ecological and economic—the harmonious interaction of which can enable the creation of a safe, healthy and convenient urban environment for living, working and leisure. Such a structural urban complex would consist of a group of neighbourhoods with various building densities, enclosed by public transport streets that integrate the complex into the city’s overall spatial structure. To support the complex’s functioning, a structural element—a green core—is planned at its centre, serving as a space for residents’ recreation, protection from various threats and social interaction. Given that this technical, structural and urban territorial unit, in terms of its autonomous functionality, structure, composition, significance and other characteristics, is identical to a natural cell, it is proposed (based on the principles of bionics) to name this structural urban territorial unit an ‘urban cell’ or ‘urbocell’ for semantic clarity. Full article
Show Figures

Figure 1

Back to TopTop