Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,891)

Search Parameters:
Keywords = green reductions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2065 KB  
Article
Synergistic Effects of Big Data and Low-Carbon Pilots on Urban Carbon Emissions: New Evidence from China
by Zihan Yang, Zhaoyan Xu and Jun Shen
Sustainability 2026, 18(3), 1282; https://doi.org/10.3390/su18031282 - 27 Jan 2026
Abstract
The synergistic development of digitalization and green transition has become a key driver for promoting China’s high-quality economic development. To elucidate the impact and mechanism of digital–green policy synergy on urban carbon emissions, this paper utilizes the intersection of the “National Big Data [...] Read more.
The synergistic development of digitalization and green transition has become a key driver for promoting China’s high-quality economic development. To elucidate the impact and mechanism of digital–green policy synergy on urban carbon emissions, this paper utilizes the intersection of the “National Big Data Comprehensive Pilot Zones” (BDPZ) and “Low-Carbon City Pilot” (LCCP) programs as a quasi-natural experiment. Based on panel data from 300 prefecture-level cities in China from 2005 to 2023, a multi-period DID model is constructed for empirical research. The empirical results indicate the following: (1) The synergy between digital and green policies significantly curbs urban carbon emissions, and this conclusion remains robust after parallel trend tests and a series of robustness checks. (2) Compared with single digital or green policies, the digital–green synergy exhibits a significantly superior carbon reduction effect. (3) Mechanism analysis reveals that digital–green synergy promotes low-carbon transition primarily through three pathways: driving green technology innovation, promoting the agglomeration of scientific and technological talent, and optimizing the allocation efficiency of capital factors. (4) Heterogeneity analysis reveals stronger emission reduction effects in non-resource-based, eastern, and developed cities, highlighting how structural rigidities and the digital divide constrain the policy’s effectiveness. We suggest strengthening policy integration and adopting differentiated strategies to break path dependence and achieve “Dual Carbon” goals. Full article
(This article belongs to the Topic Multiple Roads to Achieve Net-Zero Emissions by 2050)
16 pages, 1057 KB  
Article
Combined Therapy Versus Fortified Anti-VEGF Monotherapy in Type C Polypoidal Choroidal Vasculopathy: Long-Term Outcomes and Exploratory Biomarker Insights
by Windsor Wen-Jin Chao, Howard Wen-Haur Chao and Hsiao-Ming Chao
Int. J. Mol. Sci. 2026, 27(3), 1224; https://doi.org/10.3390/ijms27031224 - 26 Jan 2026
Abstract
While standard anti- vascular endothelial growth factor (VEGF) therapy, with or without photodynamic therapy (PDT), is effective for patients with polypoidal choroidal vasculopathy (PCV), not all achieve optimal visual outcomes. This study aimed to compare fortified (double the dose and the volume of [...] Read more.
While standard anti- vascular endothelial growth factor (VEGF) therapy, with or without photodynamic therapy (PDT), is effective for patients with polypoidal choroidal vasculopathy (PCV), not all achieve optimal visual outcomes. This study aimed to compare fortified (double the dose and the volume of the standard one) anti-VEGF combined with PDT versus fortified anti-VEGF monotherapy and to investigate biomolecular profiles and disease relationships among PCV, neovascular age-related macular degeneration (nvAMD), and central serous chorioretinopathy (CSCR). The goal was to identify novel pathways to inform future therapeutic strategies, including hypoxia-inducible factors (HIF)-1α inhibitors. This retrospective cohort study included 23 eyes with indocyanine green-confirmed type C PCV. One eye treated with transpupillary thermotherapy was not included in the following two groups. Patients received either combined therapy (PDT + fortified-dose anti-VEGF; n = 12) or fortified-dose anti-VEGF monotherapy (n = 10). Primary outcomes were changes in best-corrected visual acuity (BCVA) and central retinal thickness (CRT). Secondary outcomes included injection burden and recurrence. Exploratory analyses examined aqueous biomarkers, including VEGF, placental growth factor (PlGF), β-catenin, HIF-1α, and Wnt1 across PCV, CSCR, and nvAMD to identify novel therapeutic targets. Significant (p = 0.003/p = 0.005) median CRT reduction was similar (p = 0.468) between groups (combined/monotherapy: 137.5 µm/106.5 µm). BCVA (median [Q1, Q3]) change in logarithm of the minimum angle of resolution (LogMAR) was not statistically significant (p = 0.279), with 0.25 [0.00, 0.98] in the combined group versus 0.00 [−0.03, 0.28] in the monotherapy group. Treatment burden of anti-VEGFs per person per year was lower with combined therapy (1.16 ± 0.47# PDT + 2.81 ± 0.92# anti-VEGF injections) compared with monotherapy (4.61 ± 1.49# injections). Six eyes demonstrated recurrence at a mean of 15.5 months. Incomplete regression of polyps and branching vascular networks was observed in all eyes. Exploratory biomarker analysis revealed significantly (p < 0.05) higher VEGF and PlGF levels in nvAMD compared with PCV. nvAMD also demonstrated significantly (p < 0.05) higher β-catenin and lower HIF-1α levels relative to PCV and CSCR, while no significant biomarker differences were observed between PCV and CSCR. Combined therapy or monotherapy with fortified anti-VEGFs reduced treatment burden and achieved significant anatomical improvement but did not yield superior functional outcomes, highlighting the therapeutic difficulty of type C PCV. Biomarker profiling revealed shared hypoxia-related mechanisms between PCV and CSCR, with elevated HIF-1α compared to nvAMD indicating a “preliminary” possible role for HIF-1α inhibitors. Differential expression of these biomarkers highlights additional molecular pathways that may inform future targeted interventions. Full article
(This article belongs to the Special Issue Molecular Insight into Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

12 pages, 545 KB  
Article
Pd/C–H2-Catalyzed One-Pot Aromatization–Deoxygenation of Dihydropyridinediones: A Green, Scalable Route to Alkyl Pyridines
by Susanta Mandal, Tushar Sharma Banstola, Dhan Maya Chettri, Kimron Protim Phukan and Biswajit Gopal Roy
Chemistry 2026, 8(2), 12; https://doi.org/10.3390/chemistry8020012 - 26 Jan 2026
Abstract
Alkyl-substituted pyridines are ubiquitous structural motifs found in natural products, pharmaceuticals, agrochemicals, and functional organic materials. However, their direct synthesis remains challenging because of the electron-deficient nature of the pyridine ring and the harsh conditions typically required for conventional carbonyl-to-alkane reduction. Herein, we [...] Read more.
Alkyl-substituted pyridines are ubiquitous structural motifs found in natural products, pharmaceuticals, agrochemicals, and functional organic materials. However, their direct synthesis remains challenging because of the electron-deficient nature of the pyridine ring and the harsh conditions typically required for conventional carbonyl-to-alkane reduction. Herein, we report a mild and environmentally benign Pd/C–H2 catalytic system that enables one-pot oxidative aromatization–deoxygenation of dihydropyridinedione derivatives to afford alkyl-substituted pyridines. The transformation proceeds efficiently at room temperature under atmospheric hydrogen pressure using ethanol as a green solvent, delivering the desired products in up to 91% isolated yield. The protocol exhibits broad substrate scope, high chemoselectivity, operational simplicity, and excellent catalyst recyclability. Mechanistic studies, including hydrogen-free control experiments and intermediate isolation, support a sequential Pd-mediated pathway involving oxidative aromatization, stepwise hydrogen-transfer reduction, and final deoxygenation, with water as the sole stoichiometric by-product. This method provides a sustainable and scalable alternative to classical harsh or reagent-intensive deoxygenation strategies for the synthesis of alkyl-substituted pyridines. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Graphical abstract

33 pages, 3293 KB  
Review
Bridging Material Innovation and Environmental Safety: Aerogel-Based Magnetic Nanocomposites as Emerging Platforms for Water Decontamination
by Elena-Theodora Moldoveanu, Adelina-Gabriela Niculescu, Denisa Alexandra Florea, Tony Hadibarata, Alexandru-Mihai Grumezescu and Dan-Eduard Mihaiescu
Toxics 2026, 14(2), 115; https://doi.org/10.3390/toxics14020115 - 26 Jan 2026
Abstract
Currently, water pollution is one of the major global environmental sustainability and public health issues that requires efficient and viable remediation technologies, as existing decontamination methods face limitations. In this sense, this review aims to highlight the potential of multifunctional aerogel-based magnetic nanocomposites [...] Read more.
Currently, water pollution is one of the major global environmental sustainability and public health issues that requires efficient and viable remediation technologies, as existing decontamination methods face limitations. In this sense, this review aims to highlight the potential of multifunctional aerogel-based magnetic nanocomposites as a novel strategy for water decontamination by integrating magnetic nanostructures into aerogel matrices that promote high adsorption capacity, selective catalysis, and facile magnetic recovery. In this regard, providing a comprehensive analysis of their functional design, contaminant-removal mechanisms, and multifunctional performance is crucial for developing and optimizing a system capable of addressing complex pollutants through multiple mechanisms (e.g., adsorption, photocatalysis, and reductive pathways). However, ecotoxicological evaluations focus on the potential for nanoparticles to leach, induce oxidative stress, and cause aquatic toxicity, supporting the development of strategies that comply with safety principles. Additionally, this review examines the aerogels’ capabilities for regeneration, operational stability, and scalability across repeated-use cycles, as well as their potential for real-world wastewater applications. Moreover, future directions for these aerogels include the development of smart, stimuli-responsive aerogels, machine-learning-based modeling, and the use of green synthesis approaches to enable sustainable water remediation strategies. Full article
(This article belongs to the Special Issue Degradation and Remediation of Environmental Pollutants)
Show Figures

Graphical abstract

21 pages, 3411 KB  
Article
A Performance-Based Design Framework for Coupled Optimization of Urban Morphology and Thermal Comfort in High-Density Districts: A Case Study of Shenzhen
by Junhan Zhang, Juanli Guo, Weihao Liang and Hao Chang
Buildings 2026, 16(3), 496; https://doi.org/10.3390/buildings16030496 - 26 Jan 2026
Abstract
With accelerating urbanization and climate change, outdoor thermal comfort (OTC) in high-intensity urban blocks presents a critical challenge. While existing studies have established the general correlation between morphology and microclimate, most remain descriptive and lack a systematic framework to quantitatively integrate the non-linear [...] Read more.
With accelerating urbanization and climate change, outdoor thermal comfort (OTC) in high-intensity urban blocks presents a critical challenge. While existing studies have established the general correlation between morphology and microclimate, most remain descriptive and lack a systematic framework to quantitatively integrate the non-linear coupled effects between multi-dimensional morphological variables and green infrastructure. To address this, this study proposes an automated performance-based design (PBD) framework for urban morphology optimization in Shenzhen. Unlike traditional simulation-based analysis, this framework serves as a generative tool for urban renewal planning. It integrates a multi-dimensional design element system with a genetic algorithm (GA) workflow. Analysis across four urban typologies demonstrated that the Full Enclosure layout is the most effective strategy for mitigating thermal stress, achieving a final optimized UTCI of 37.15 °C. Crucially, this study reveals a non-linear synergistic mechanism: the high street aspect ratios (H/W) of enclosed forms act as a “radiation shelter”, which amplifies the cooling efficiency of green infrastructure (contributing an additional 1.79 °C reduction). This research establishes a significant, strong negative correlation between UTCI and the combined factors of building density and green shading coverage. The results provide quantifiable guidelines for retrofitting existing high-density districts, suggesting that maximizing structural shading is prioritized over ventilation in ultra-high-density, low-wind climates. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 2991 KB  
Article
Effects of Co-Application of Diammonium Phosphate Fertilizer with Microbial Inoculant on Soil Nitrogen Levels and Alfalfa Growth Performance in Saline-Alkali Soil
by Shuai Wang, Changning Li, Xiaohu Wang, Chen Zhang, Yi Feng, Yang Lei and Jiahao Xu
Agronomy 2026, 16(3), 305; https://doi.org/10.3390/agronomy16030305 - 25 Jan 2026
Viewed by 35
Abstract
Soil salinization leads to soil nutrient loss and decreased crop yield. This research aims to determine the optimal reduction rate of diammonium phosphate (DAP) and suitable microbial inoculant for alfalfa cultivation and nitrogen-level improvement in saline-alkali land. The experiment consisted of a factorial [...] Read more.
Soil salinization leads to soil nutrient loss and decreased crop yield. This research aims to determine the optimal reduction rate of diammonium phosphate (DAP) and suitable microbial inoculant for alfalfa cultivation and nitrogen-level improvement in saline-alkali land. The experiment consisted of a factorial arrangement of three DAP fertilizer levels (X1, 60%; X2, 70%; and X3, 80%) and four microbial inoculants (Y1, rhizobial inoculant; Y2, phosphate-solubilizing microbial inoculant; Y3, composite microbial inoculant; and Y4, control) in a split-plot design. The results indicated that DAP fertilizer, microbial inoculant, and their interaction significantly affected (p < 0.05) forage yield, crude protein, available nitrogen (N), and enzyme activities. Under 80% DAP fertilizer combined with the composite microbial inoculant, forage yield, plant height, soil urease (S-UE), and ammonium nitrogen (NH4+-N) reached maximum values of 17.1 t ha−1, 65.7 cm, 292.3 μg d−1 g−1, and 3.1 mg kg−1, respectively. However, the soil total nitrogen (TN) significantly increased at the 60% DAP fertilizer application rate (p < 0.05). Overall, this study demonstrates that co-application of DAP fertilizer with compound microbial inoculant delivers a green, science-based fertilization approach for improving nitrogen levels and alfalfa cultivation in saline-alkali soils. Full article
Show Figures

Graphical abstract

27 pages, 13307 KB  
Article
Synergistic Reinforcement and Multimodal Self-Sensing Properties of Hybrid Fiber-Reinforced Glass Sand ECC at Elevated Temperatures
by Lijun Ma, Meng Sun, Mingxuan Sun, Yunlong Zhang and Mo Liu
Polymers 2026, 18(3), 322; https://doi.org/10.3390/polym18030322 - 25 Jan 2026
Viewed by 52
Abstract
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a [...] Read more.
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a hybrid system of polypropylene fibers (PPFs) and carbon fibers (CFs). The evolution of mechanical properties and the multimodal self-sensing characteristics of the ECC were systematically investigated following thermal treatment from 20 °C to 800 °C. The results indicate that the hybrid system exhibits a significant synergistic effect: through PFFs’ pore-forming mechanism, internal vapor pressure is effectively released to mitigate spalling, while CFs provide residual strength compensation. Mechanically, the compressive strength increased by 51.32% (0.9% CF + 1.0% PPF) at 400 °C compared to ambient temperature, attributed to high-temperature-activated secondary hydration. Regarding self-sensing, the composite containing 1.1% CF and 1.5% PPF displayed superior thermosensitivity during heating (resistivity reduction of 49.1%), indicating potential for early fire warnings. Notably, pressure sensitivity was enhanced after high-temperature exposure, with the 0.7% CF + 0.5% PPF group achieving a Fractional Change in Resistivity of 31.1% at 600 °C. Conversely, flexural sensitivity presented a “thermally induced attenuation effect” primarily attributed to high-temperature-induced interfacial weakening. This study confirms that the “pore-formation” mechanism, combined with the reconstruction of the conductive network, governs the material’s macroscopic properties, providing a theoretical basis for green, intelligent, and fire-safe infrastructure. Full article
Show Figures

Figure 1

31 pages, 12177 KB  
Article
Regional Finance and Environmental Outcomes: Empirical Evidence from Kazakhstan’s Regions
by Nurlan Satanbekov, Ainagul Adambekova, Nurbek Adambekov, Akbota Anessova and Zhuldyz Adambekova
Economies 2026, 14(2), 37; https://doi.org/10.3390/economies14020037 - 24 Jan 2026
Viewed by 68
Abstract
This study investigates how financial growth connects to regional environmental performance within the framework of policies aimed at reducing carbon emissions. It uses a comprehensive panel dataset covering the period from 2010 to 2024. Although Kazakhstan has set ambitious targets, significant differences in [...] Read more.
This study investigates how financial growth connects to regional environmental performance within the framework of policies aimed at reducing carbon emissions. It uses a comprehensive panel dataset covering the period from 2010 to 2024. Although Kazakhstan has set ambitious targets, significant differences in financing levels and institutional development across regions pose substantial obstacles to achieving the target emissions reductions. Employing regional panel data, we use a random-effects model to assess links among banking loans, governmental funding metrics, employment statistics, and pollution measurements. Principal component analysis is utilized to tackle potential collinearity and reveal fundamental patterns. This approach reflects the inherent differences between regions rather than evolutionary shifts. The obtained empirical data demonstrate a significant relationship between high levels of bank loans and reduced carbon emissions. Regions with better access to financial services are better positioned to invest in energy efficiency, green infrastructure, and green innovation. Conversely, increases in regional budgets are associated with rising emissions, as tax revenue growth primarily comes from industries most dependent on fossil fuels. Dependence on the national budget for subsidies exacerbates distortions in regional budgets’ relationship with the regions’ transition to low-carbon development. The findings confirm the importance of regional financial management in determining the path to reducing greenhouse gas emissions. Based on this, it is proposed to transform the mechanism of interbudgetary relations to grant regions greater financial autonomy and to localize credit resources at the regional level to accelerate the transition to a low-carbon economy in Kazakhstan. Full article
(This article belongs to the Section Economic Development)
Show Figures

Figure 1

23 pages, 926 KB  
Review
Acrylamide in Food: From Maillard Reaction to Public Health Concern
by Gréta Törős, Walaa Alibrahem, Nihad Kharrat Helu, Szintia Jevcsák, Aya Ferroudj and József Prokisch
Toxics 2026, 14(2), 110; https://doi.org/10.3390/toxics14020110 - 23 Jan 2026
Viewed by 138
Abstract
Acrylamide is a heat-induced food contaminant that can be formed through the Maillard reaction between reducing sugars and asparagine in carbohydrate-rich foods. It is recognized as having carcinogenic, neurotoxic, and reproductive risks, prompting global regulatory and research attention. This review synthesizes recent advances [...] Read more.
Acrylamide is a heat-induced food contaminant that can be formed through the Maillard reaction between reducing sugars and asparagine in carbohydrate-rich foods. It is recognized as having carcinogenic, neurotoxic, and reproductive risks, prompting global regulatory and research attention. This review synthesizes recent advances (2013–2025) in understanding acrylamide’s formation mechanisms, detection methods, mitigation strategies, and health implications. Analytical innovations such as LC–MS/MS have enabled detection at trace levels (≤10 µg/kg), supporting process optimization and compliance monitoring. Effective mitigation strategies combine cooking adjustments, ingredient reformulation, and novel technologies, including vacuum frying, ohmic heating, and predictive modeling, which can achieve up to a 70% reduction in certain food categories. Dietary polyphenols and fibers also hold promise, lowering acrylamide formation and bioavailability through carbonyl trapping and enhanced detoxification. However, significant gaps remain in bioavailability assessment, analysis of metabolic fate (glycidamide conversion), and standardized global monitoring. This review emphasizes that a sustainable reduction in dietary acrylamide requires a multidisciplinary framework integrating mechanistic modeling, green processing, regulatory oversight, and consumer education. Bridging science, industry, and policy is essential to ensure safer food systems and minimize long-term public health risks. Full article
Show Figures

Graphical abstract

14 pages, 280 KB  
Article
Green Financial Technology and Natural Resource Rents for Clean Energy: Pathways Towards Ecological Sustainability in Sub-Saharan Africa
by Godwin Ekene Godwin Nwachuwku, Kagan Dogruyol and Ponle Henry Kareem
Sustainability 2026, 18(3), 1148; https://doi.org/10.3390/su18031148 - 23 Jan 2026
Viewed by 96
Abstract
Sub-Saharan Africa has the potential to achieve sustainable development through facilitating green transition projects, leveraging the revenue generated from its abundant natural resources. However, the resource curse hypothesis suggests that developing nations often face problems with corruption that hinder economic development in these [...] Read more.
Sub-Saharan Africa has the potential to achieve sustainable development through facilitating green transition projects, leveraging the revenue generated from its abundant natural resources. However, the resource curse hypothesis suggests that developing nations often face problems with corruption that hinder economic development in these countries. The present study aims to investigate how environmental sustainability can be advanced in Sub-Saharan Africa using revenue from natural resources in the presence of green financial technology and clean energy. Therefore, data for Sub-Saharan Africa from 2000 to 2023 are employed in the analysis. The analysis of these data is undertaken with the ‘Method of Moments Quantile Regression’ technique, and the ‘Panel Correlated Standard Errors’ is used for robustness checks. The key findings presented in this research depict the importance of natural resource rents in supporting sustainable environments in Sub-Saharan Africa. Therefore, the revenue from natural resources can be used to support green transition projects in developing nations with high natural resource endowments. Moreover, renewable energy and green finance foster a reduction in ecological footprint, hence supporting environmental sustainability. Consequently, technological innovation and financial development do not promote the achievement of environmental sustainability, raising questions about the environmental policies and regulations in Sub-Saharan Africa. To this end, there is a need for policy reforms and corruption control in order to prevent the misallocation and misuse of resources designed to support green transition projects. Full article
21 pages, 9102 KB  
Article
A Lightweight Edge AI Framework for Adaptive Traffic Signal Control in Mid-Sized Philippine Cities
by Alex L. Maureal, Franch Maverick A. Lorilla and Ginno L. Andres
Sustainability 2026, 18(3), 1147; https://doi.org/10.3390/su18031147 - 23 Jan 2026
Viewed by 124
Abstract
Mid-sized Philippine cities commonly rely on fixed-time traffic signal plans that cannot respond to short-term, demand-driven surges, resulting in measurable idle time at stop lines, increased delay, and unnecessary emissions, while adaptive signal control has demonstrated performance benefits, many existing solutions depend on [...] Read more.
Mid-sized Philippine cities commonly rely on fixed-time traffic signal plans that cannot respond to short-term, demand-driven surges, resulting in measurable idle time at stop lines, increased delay, and unnecessary emissions, while adaptive signal control has demonstrated performance benefits, many existing solutions depend on centralized infrastructure and high-bandwidth connectivity, limiting their applicability for resource-constrained local government units (LGUs). This study reports a field deployment of TrafficEZ, a lightweight edge AI signal controller that reallocates green splits locally using traffic-density approximations derived from cabinet-mounted cameras. The controller follows a macroscopic, cycle-level control abstraction consistent with Transportation System Models (TSMs) and does not rely on stationary flow–density–speed (fundamental diagram) assumptions. The system estimates queued demand and discharge efficiency on-device and updates green time each cycle without altering cycle length, intergreen intervals, or pedestrian safety timings. A quasi-experimental pre–post evaluation was conducted at three signalized intersections in El Salvador City using an existing 125 s, three-phase fixed-time plan as the baseline. Observed field results show average per-vehicle delay reductions of 18–32%, with reclaimed effective green translating into approximately 50–200 additional vehicles per hour served at the busiest approaches. Box-occupancy durations shortened, indicating reduced spillback risk, while conservative idle-time estimates imply corresponding CO2 savings during peak periods. Because all decisions run locally within the signal cabinet, operation remained robust during backhaul interruptions and supported incremental, intersection-by-intersection deployment; per-cycle actions were logged to support auditability and governance reporting. These findings demonstrate that density-driven edge AI can deliver practical mobility, reliability, and sustainability gains for LGUs while supporting evidence-based governance and performance reporting. Full article
Show Figures

Figure 1

33 pages, 23667 KB  
Article
Full-Wave Optical Modeling of Leaf Internal Light Scattering for Early-Stage Fungal Disease Detection
by Da-Young Lee and Dong-Yeop Na
Agriculture 2026, 16(2), 286; https://doi.org/10.3390/agriculture16020286 - 22 Jan 2026
Viewed by 59
Abstract
Modifications in leaf architecture disrupt optical properties and internal light-scattering dynamics. Accurate modeling of leaf-scale light scattering is therefore essential not only for understanding how disease affects the availability of light for chlorophyll absorption, but also for evaluating its potential as an early [...] Read more.
Modifications in leaf architecture disrupt optical properties and internal light-scattering dynamics. Accurate modeling of leaf-scale light scattering is therefore essential not only for understanding how disease affects the availability of light for chlorophyll absorption, but also for evaluating its potential as an early optical marker for plant disease detection prior to visible symptom development. Conventional ray-tracing and radiative-transfer models rely on high-frequency approximations and thus fail to capture diffraction and coherent multiple-scattering effects when internal leaf structures are comparable to optical wavelengths. To overcome these limitations, we present a GPU-accelerated finite-difference time-domain (FDTD) framework for full-wave simulation of light propagation within plant leaves, using anatomically realistic dicot and monocot leaf cross-section geometries. Microscopic images acquired from publicly available sources were segmented into distinct tissue regions and assigned wavelength-dependent complex refractive indices to construct realistic electromagnetic models. The proposed FDTD framework successfully reproduced characteristic reflectance and transmittance spectra of healthy leaves across the visible and near-infrared (NIR) ranges. Quantitative agreement between the FDTD-computed spectral reflectance and transmittance and those predicted by the reference PROSPECT leaf optical model was evaluated using Lin’s concordance correlation coefficient. Higher concordance was observed for dicot leaves (Cb=0.90) than for monocot leaves (Cb=0.79), indicating a stronger agreement for anatomically complex dicot structures. Furthermore, simulations mimicking an early-stage fungal infection in a dicot leaf—modeled by the geometric introduction of melanized hyphae penetrating the cuticle and upper epidermis—revealed a pronounced reduction in visible green reflectance and a strong suppression of the NIR reflectance plateau. These trends are consistent with experimental observations reported in previous studies. Overall, this proof-of-concept study represents the first full-wave FDTD-based optical modeling of internal light scattering in plant leaves. The proposed framework enables direct electromagnetic analysis of pre- and post-penetration light-scattering dynamics during early fungal infection and establishes a foundation for exploiting leaf-scale light scattering as a next-generation, pre-symptomatic diagnostic indicator for plant fungal diseases. Full article
(This article belongs to the Special Issue Exploring Sustainable Strategies That Control Fungal Plant Diseases)
Show Figures

Figure 1

22 pages, 4007 KB  
Article
Medium-Temperature Heat Pumps for Sustainable Urban Heating: Evidence from a District Network in Italy
by Mosè Rossi, Danilo Salvi and Gabriele Comodi
Energies 2026, 19(2), 560; https://doi.org/10.3390/en19020560 - 22 Jan 2026
Viewed by 45
Abstract
The decarbonisation of urban heating systems represents a key challenge for the transition towards sustainable cities. This study investigates the field integration of a Medium-Temperature Heat Pump (MTHP) within the Osimo District Heating Network (DHN) in Italy, demonstrating how low-grade return flows (30–50 [...] Read more.
The decarbonisation of urban heating systems represents a key challenge for the transition towards sustainable cities. This study investigates the field integration of a Medium-Temperature Heat Pump (MTHP) within the Osimo District Heating Network (DHN) in Italy, demonstrating how low-grade return flows (30–50 °C) can be effectively upgraded to supply temperatures of 65–75 °C, in line with 4th-generation district heating requirements. Specifically, 5256 h of MTHP operation within the DHN were analysed to validate the initial design assumptions, develop surrogate performance models, and assess the system’s techno-economic and environmental performance. The results indicate stable and reliable operation, with a weighted average Coefficient of Performance (COP) of 3.96 and a weighted average thermal output of 134.5 kW. From an economic perspective, the system achieves a payback period of approximately six years and a Levelised Cost of Heat (LCOH) of 0.0245 €/kWh. Environmentally, the MTHP enables CO2 emission reductions of about 120 t compared with conventional gas-fired boilers. Beyond its technical performance, the study highlights the strong replicability of MTHP solutions for small- and medium-scale DHNs across Europe. The proposed approach offers urban utilities a scalable and cost-competitive pathway towards low-carbon heat supply, directly supporting municipal climate strategies and aligning with key EU policy frameworks, including the European Green Deal, REPowerEU, and the “Fit-for-55” package. Full article
(This article belongs to the Special Issue Advances in Waste Heat Utilization Systems)
Show Figures

Figure 1

17 pages, 3165 KB  
Article
Strengthening Remote Sensing-Based Estimation of Riverine Total Phosphorus Concentrations by Incorporating Land Surface Temperature
by Sheng Luo, Wei Gao, Yufeng Yang and Yanpeng Cai
Environments 2026, 13(1), 63; https://doi.org/10.3390/environments13010063 - 22 Jan 2026
Viewed by 54
Abstract
Direct retrieval of Total Phosphorus (TP) from remote sensing is not possible because TP is not optically active. Unlike optically active parameters, TP does not exhibit spectral signals and relies on indirect correlations with Optically Active Constituents (OACs) such as Chl-a and suspended [...] Read more.
Direct retrieval of Total Phosphorus (TP) from remote sensing is not possible because TP is not optically active. Unlike optically active parameters, TP does not exhibit spectral signals and relies on indirect correlations with Optically Active Constituents (OACs) such as Chl-a and suspended solids. Existing approaches often rely solely on spectral reflectance while neglecting the environmental variables, such as temperature, that can affect the correlations between OACs such as Chl-a and temperature. To address this, this study integrates satellite-derived Land Surface Temperature (LST) with Landsat 8/9 spectral features, utilizing LST as a spatial proxy for the aquatic thermodynamic environment. Focusing on the Dongjiang River, a subtropical river in China, a machine learning framework was constructed based on in situ measurements collected from 2020 to 2023. Feature selection using Pearson’s correlation and Random Forest importance identified the optimal combination of spectral bands and thermal inputs. The results from the model revealed the following: (1) annual mean TP concentrations in the delta were higher than in the main channel, with more pronounced seasonal fluctuations; (2) statistical verification (Wilcoxon signed-rank test, p < 0.01) confirmed that incorporating LST yielded a certain reduction in retrieval error compared to the spectral-only model; (3) the most influential predictors for TP estimation were a combination of the blue, green, and red spectral bands along with LST; (4) models incorporating LST achieved significantly higher accuracy than those based solely on spectral reflectance, with improved R2 and RMSE values across most TP concentration ranges (except for 0.04–0.06 mg/L). These findings demonstrate that integrating LST with spectral features enhances the accuracy of remote sensing-based TP retrieval in rivers, offering new opportunities for improved large-scale water quality monitoring. Full article
Show Figures

Figure 1

15 pages, 3071 KB  
Article
Green-Synthesized TiO2 Nanoparticles Improve Mechanical Performance of Glass Ionomer Cements
by Nevra Karamüftüoğlu, Süha Kuşçu, İpek Kuşçu and Nesrin Korkmaz
Polymers 2026, 18(2), 295; https://doi.org/10.3390/polym18020295 - 22 Jan 2026
Viewed by 60
Abstract
Glass ionomer cements (GICs) are widely used in restorative and luting dentistry due to their fluoride release and chemical adhesion to dental tissues; however, their limited mechanical strength necessitates reinforcement strategies. The objective of this study was to investigate the effects of hemp-derived, [...] Read more.
Glass ionomer cements (GICs) are widely used in restorative and luting dentistry due to their fluoride release and chemical adhesion to dental tissues; however, their limited mechanical strength necessitates reinforcement strategies. The objective of this study was to investigate the effects of hemp-derived, green-synthesized titanium dioxide (TiO2) nanoparticles on the surface and mechanical properties of two commercially available GICs with different clinical indications. TiO2 nanoparticles were synthesized using Cannabis sativa leaf extract via a biogenic reduction method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), confirming anatase-phase crystallinity, spherical morphology, and nanoscale particle size (28–49 nm). The nanoparticles were incorporated into Ketac™ Molar Easymix (restorative) and Ketac™ Cem Radiopaque (luting) GICs at 1%, 3%, and 5% (w/w), with nanoparticle-free formulations serving as controls (n = 10). Surface roughness, Vickers microhardness, and flexural strength were evaluated. Surface roughness increased in a concentration-dependent manner in both materials, with the highest values observed at 5% TiO2 incorporation. In Ketac™ Molar Easymix, 1% and 3% TiO2 significantly enhanced flexural strength and microhardness, whereas 5% resulted in reduced performance, consistent with SEM-observed nanoparticle agglomeration. In contrast, Ketac™ Cem Radiopaque exhibited no significant changes in flexural strength, although maximum microhardness values were recorded at 1% TiO2 concentration. These findings demonstrate that low concentrations of hemp-derived TiO2 nanoparticles can effectively reinforce restorative GICs and highlight the potential of green nanotechnology as a sustainable approach for improving dental biomaterials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Back to TopTop