Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = green afterglow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 4158 KiB  
Article
Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest
by Xiao He, Bo Wang, Xiaoqiang Zhao, Fengqin Ke, Wenhui Feng, Liwen Wang, Jiameng Yang, Guangyu Wen and Denghui Ji
Molecules 2025, 30(6), 1203; https://doi.org/10.3390/molecules30061203 - 7 Mar 2025
Viewed by 678
Abstract
Host/guest doping is an effective approach to achieving room-temperature phosphorescence (RTP). However, the influence of the host matrix on doping systems is still unclear, and it is difficult to select the suitable host species for a certain guest emitter. This study prepared a [...] Read more.
Host/guest doping is an effective approach to achieving room-temperature phosphorescence (RTP). However, the influence of the host matrix on doping systems is still unclear, and it is difficult to select the suitable host species for a certain guest emitter. This study prepared a series of host/guest RTP materials with dynamically adjustable time and color by doping a non-RTP guest material in various host materials that were easy to crystallize. The varying afterglow color originated from the difference in Förster energy transfer between the host and guest. Specifically, the change from yellow to green afterglow was realized by varying the host’s molecular structure. This study further revealed the importance of proper host energy levels, the ability to generate long-aging triplet excitons, and the Förster energy transfer from host to guest. Additionally, multiple information encryption anti-counterfeiting materials were developed by leveraging the different afterglow colors and durations, reflecting the unique performance advantages of the prepared long-afterglow materials in various RTP applications. Full article
Show Figures

Figure 1

19 pages, 7466 KiB  
Article
Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+
by Lingling Guo, Hongqin Lin, Zhenming Qi, Jiang Pan, Haiyan Mao, Chunmei Huang, Guoqiang Li and Chunxia Wang
Molecules 2024, 29(22), 5306; https://doi.org/10.3390/molecules29225306 - 10 Nov 2024
Cited by 1 | Viewed by 1481
Abstract
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, [...] Read more.
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, which further chelated barium ions (Ba2+) to achieve flame retardancy. The morphological and structural characterizations of the fabricated cotton fabrics (COT-SC-Ba) demonstrated that the cleavage of C2-C3 free hydroxy groups within the cellulose macromolecule was chemically modified for grafting a considerable number of sulfonic acid groups, and Ba2+ ions were effectively immobilized on the macromolecule of the cotton fabric through a chelation effect. Results from cone calorimeter tests (CCTs) revealed that COT-SC-Ba became nonflammable, displayed a delayed ignition time, and decreased the values of the heat release rate (HRR), total smoke release (TSR), effective heat of combustion (EHC), and CO/CO2 ratio. TG/DTG analysis demonstrated that COT-SC-Ba possessed greater thermal stability, fewer flammable volatiles, and more of a char layer during burning than that of the original cotton fabric. Its residual mass was increased from 0.02% to 26.9% in air and from 8.05% to 26.76% in N2, respectively. The COT-SC-Ba not only possessed a limiting oxygen index (LOI) of up to 34.4% but could also undergo vertical burning tests evidenced by results such as the non-afterflame, non-afterglow, and a mere 75 mm char length. Those results demonstrated that the combination of SO3 and Ba2+ promoted the formation of a char layer. Moreover, cotton fabric regained its superior flame retardancy after being washed and re-chelated with Ba2+. Additional characteristics of the cotton fabric, such as the rupture strength, white degree, and hygroscopicity, were maintained at an acceptable level. In conclusion, this research can offer a fresh perspective on the design and development of straightforward, efficient, eco-friendly, and recoverable fire-retardant fabrics. Full article
Show Figures

Figure 1

16 pages, 4685 KiB  
Article
Study on the Luminescence Performance and Anti-Counterfeiting Application of Eu2+, Nd3+ Co-Doped SrAl2O4 Phosphor
by Zhanpeng Wang, Quanxiao Liu, Jigang Wang, Yuansheng Qi, Zhenjun Li, Junming Li, Zhanwei Zhang, Xinfeng Wang, Cuijuan Li and Rong Wang
Nanomaterials 2024, 14(15), 1265; https://doi.org/10.3390/nano14151265 - 28 Jul 2024
Cited by 3 | Viewed by 2499
Abstract
This manuscript describes the synthesis of green long afterglow nanophosphors SrAl2O4:Eu2+, Nd3+ using the combustion process. The study encompassed the photoluminescence behavior, elemental composition, chemical valence, morphology, and phase purity of SrAl2O4:Eu [...] Read more.
This manuscript describes the synthesis of green long afterglow nanophosphors SrAl2O4:Eu2+, Nd3+ using the combustion process. The study encompassed the photoluminescence behavior, elemental composition, chemical valence, morphology, and phase purity of SrAl2O4:Eu2+, Nd3+ nanoparticles. The results demonstrate that after introducing Eu2+ into the matrix lattice, it exhibits an emission band centered at 508 nm when excited by 365 nm ultraviolet light, which is induced by the 4f65d1→4f7 transition of Eu2+ ions. The optimal doping concentrations of Eu2+ and Nd3+ were determined to be 2% and 1%, respectively. Based on X-ray diffraction (XRD) analysis, we have found that the physical phase was not altered by the doping of Eu2+ and Nd3+. Then, we analyzed and compared the quantum yield, fluorescence lifetime, and afterglow decay time of the samples; the co-doped ion Nd3+ itself does not emit light, but it can serve as an electron trap center to collect a portion of the electrons produced by the excitation of Eu2+, which gradually returns to the ground state after the excitation stops, generating an afterglow luminescence of about 15 s. The quantum yields of SrAl2O4:Eu2+ and SrAl2O4:Eu2+, Nd3+ phosphors were 41.59% and 10.10% and the fluorescence lifetimes were 404 ns and 76 ns, respectively. In addition, the Eg value of 4.98 eV was determined based on the diffuse reflectance spectra of the material, which closely matches the calculated bandgap value of SrAl2O4. The material can be combined with polyacrylic acid to create optical anti-counterfeiting ink, and the butterfly and ladybug patterns were effectively printed through screen printing; this demonstrates the potential use of phosphor in the realm of anti-counterfeiting printing. Full article
Show Figures

Graphical abstract

12 pages, 5797 KiB  
Article
Coating Red Phosphor on Green Luminescent Material for Multi-Mode Luminescence and Advanced Anti-Counterfeit Applications
by Jiale Liu, Bo Chen and Qi Zhu
Coatings 2024, 14(4), 509; https://doi.org/10.3390/coatings14040509 - 19 Apr 2024
Cited by 2 | Viewed by 1866
Abstract
Traditional fluorescent anti-counterfeiting materials usually exhibit fixed-wavelength excitation patterns and monochromatic luminescence, which are extremely easy to be counterfeited and have low security. Therefore, there is an urgent need to develop multi-mode fluorescent materials with enhanced security to address this issue. Here, SrAl [...] Read more.
Traditional fluorescent anti-counterfeiting materials usually exhibit fixed-wavelength excitation patterns and monochromatic luminescence, which are extremely easy to be counterfeited and have low security. Therefore, there is an urgent need to develop multi-mode fluorescent materials with enhanced security to address this issue. Here, SrAl2O4:1%Eu,2%Dy@Y2O3:Eu3+ core-shell structured phosphors were prepared via a sol-gel method. Coating SrAl2O4:Eu,Dy with Y2O3:Eu3+ red phosphor did not significantly change the crystal structure of SrAl2O4. Under UV excitation at 254 nm, SrAl2O4:1%Eu,2%Dy@Y2O3:Eu3+ exhibited red emission at 613 nm (5D07F2 transition of Eu3+), and a strong green afterglow was observed after removing the UV irradiation. However, blue-green emission at 496 nm was observed under UV excitation at 365 nm, followed by green afterglow upon removal of the light source. Varying the content of the Y2O3:Eu3+ shell yielded different emissions and afterglows. The prepared samples are sensitive to the excitation wavelength and duration and have multimodal luminescence properties, which can be used for anti-counterfeiting patterns. The outcomes in this work indicate that the phosphor is a promising fluorescent material for anti-counterfeiting. Full article
(This article belongs to the Special Issue Optical Coatings: From Materials to Applications)
Show Figures

Figure 1

13 pages, 6874 KiB  
Article
Design, Synthesis, and Characterization of a Novel Blue-Green Long Afterglow BaYAl3O7:Eu2+, Nd3+ Phosphor and Its Anti-Counterfeiting Application
by Jiao Wu, Quanxiao Liu, Peng Gao, Jigang Wang, Yuansheng Qi, Zhenjun Li, Junming Li and Tao Jiang
Nanomaterials 2023, 13(17), 2457; https://doi.org/10.3390/nano13172457 - 30 Aug 2023
Cited by 4 | Viewed by 2080
Abstract
Herein, a series of novel long afterglow nanophosphors BaYAl3O7:Eu2+, Nd3+ was synthesized by the combustion method. The investigation encompassed the characterization of X-ray diffraction, morphology, chemical valence, elemental composition, and photoluminescence behavior of BaYAl [...] Read more.
Herein, a series of novel long afterglow nanophosphors BaYAl3O7:Eu2+, Nd3+ was synthesized by the combustion method. The investigation encompassed the characterization of X-ray diffraction, morphology, chemical valence, elemental composition, and photoluminescence behavior of BaYAl3O7:Eu2+ and BaYAl3O7:Eu2+, Nd3+ nanoparticles. Under 365 nm excitation, BaYAl3O7:Eu2+ and BaYAl3O7:Eu2+, Nd3+ show emission bands centered at 497 nm and 492 nm, which are attributed to the 4f65d→4f7 transition of Eu2+ ions. The optimal samples of BaYAl3O7:0.03Eu2+ and BaYAl3O7:0.03Eu2+, 0.02Nd3+ have average fluorescence lifetimes of 850 ns and 1149 ns, respectively. The co-doping of Nd3+ ions as the trap centers produced long afterglow luminescence properties, and the afterglow time could reach up to 8 min. Furthermore, the fluorescent powder can be mixed with polyacrylic acid to prepare anti-counterfeiting inks; a clover pattern and snowflake pattern have been successfully printed using screen printing technology, proving its potential application in the field of anti-counterfeiting. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Figure 1

18 pages, 9469 KiB  
Article
Enhanced Fluorescence Characteristics of SrAl2O4: Eu2+, Dy3+ Phosphor by Co-Doping Gd3+ and Anti-Counterfeiting Application
by Peng Gao, Quanxiao Liu, Jiao Wu, Jun Jing, Wenguan Zhang, Junying Zhang, Tao Jiang, Jigang Wang, Yuansheng Qi and Zhenjun Li
Nanomaterials 2023, 13(14), 2034; https://doi.org/10.3390/nano13142034 - 9 Jul 2023
Cited by 8 | Viewed by 3302
Abstract
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via [...] Read more.
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via the combustion method. Temperature and concentration control experiments were conducted on these materials to determine the optimal reaction temperature and ion doping concentration for each sample. The crystal structure and luminescent properties were analyzed via X-ray diffraction (XRD), photoluminescence (PL), and afterglow attenuation curves. The outcomes demonstrate that the kind of crystal structure and the location of the emission peak were unaffected by the addition of ions. The addition of Eu2+ to the matrix’s lattice caused a broad green emission with a central wavelength of 508 nm, which was attributed to the characteristic 4f65d1 to 4f7 electronic dipole, which allowed the transition of Eu2+ ions. While acting as sensitizers, Dy3+ and Gd3+ could produce holes to create a trap energy level, which served as an electron trap center to catch some of the electrons produced by the excitation of Eu2+ but did not itself emit light. After excitation ceased, this allowed them to gently transition to the ground state to produce long-afterglow luminescence. It was observed that with the addition of sensitizer ions, the luminous intensity of the sample increased, and the afterglow duration lengthened. The elemental structure and valence states of the doped ions were determined with an X-ray photoelectron spectrometer (XPS). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the samples. The results show that the sample was synthesized successfully, and the type and content of ions in the fluorescent powder could be determined. The fluorescence lifetime, quantum yield, bandgap value, afterglow decay time, and coordinate position in the coherent infrared energy (CIE) diagram of the three best sample groups were then analyzed and compared. Combining the prepared phosphor with ink provides a new idea and method for the field of anti-counterfeiting through screen printing. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Figure 1

12 pages, 7748 KiB  
Article
Sunlight-Activated Long Persistent Luminescent Coating for Smart Highways
by Mao Zheng, Xin Li, Yu Bai, Shijun Tang, Peiyang Li and Qi Zhu
Coatings 2023, 13(6), 1050; https://doi.org/10.3390/coatings13061050 - 6 Jun 2023
Cited by 11 | Viewed by 2466
Abstract
With the whole society’s demand for intelligence, the smart highway has become the inevitable trend of road development. Luminescent road marking made of long persistent luminescent coating is a new type of functional marking that is designed with long afterglow luminescent material as [...] Read more.
With the whole society’s demand for intelligence, the smart highway has become the inevitable trend of road development. Luminescent road marking made of long persistent luminescent coating is a new type of functional marking that is designed with long afterglow luminescent material as the raw material and has many features such as safety, beauty and energy saving. Here, SrA12O4:Eu2+,Dy3+ green long afterglow phosphors were prepared using a high-temperature solid state method. The green phosphors obtained at 1350 °C have two traps with a shallow trap depth of 0.66 eV and a deep trap depth of 0.8 eV. The green afterglow can be seen in the dark for more than 8 h after sunlight excitation for 2 h. The green long persistent luminescent coatings were synthesized using the blending method. The uniformity of each component can be improved by adding 1.25% SiO2 into the luminescent coatings. The addition of 3.5% CaCO3 will improve the compactness of the coatings and reduce water absorption. After soaking in water for 120 h, the afterglow intensity of the coating decreases to 76% of the original, showing good water resistance. After daylight excitation in different weather conditions (cloudy, sunny, rainy), the afterglow can reach more than 5 h; therefore, it can be applied to a smart highway. Full article
(This article belongs to the Special Issue Ceramic Films and Coatings: Properties and Applications)
Show Figures

Figure 1

17 pages, 19026 KiB  
Article
Preparation of SrAl2O4: Eu2+, Dy3+ Powder by Combustion Method and Application in Anticounterfeiting
by Peng Gao, Jigang Wang, Jiao Wu, Qingqing Xu, Lixue Yang, Quanxiao Liu, Yuansheng Qi and Zhenjun Li
Coatings 2023, 13(4), 808; https://doi.org/10.3390/coatings13040808 - 21 Apr 2023
Cited by 14 | Viewed by 5690
Abstract
Green emitting long afterglow phosphor SrAl2O4: Eu2+, Dy3+ was synthesized via the combustion method. The physical phase analysis was carried out by X-ray diffraction, the results show that the introduction of Eu2+ into the lattice [...] Read more.
Green emitting long afterglow phosphor SrAl2O4: Eu2+, Dy3+ was synthesized via the combustion method. The physical phase analysis was carried out by X-ray diffraction, the results show that the introduction of Eu2+ into the lattice of the matrix resulted in a broad green emission centered at 508 nm, which is ascribed to the characteristic 4f65d1 to 4f7 electronic dipole allowed transition of Eu2+ ions. The doping of Eu2+ and Dy3+ did not change the physical phase of the crystals. Dy3+, as a coactivator, does not emit light itself, but can generate holes to form a trap energy level, which acts as an electron trap center to capture some of the electrons generated by the excitation of Eu2+. After excitation has ceased, let them gradually to transfer to the ground state for long afterglow luminescence. Then, we investigate the optical characterizations of different samples excited by X-ray. We found that SrAl2O4: Eu2+, 0.5% Dy3+ has this higher luminous intensity and afterglow. Its fluorescence lifetime is about 720 ns, and its quantum yield can reach 15.18%. Through search engine marketing (SEM) and energy dispersive X-ray spectroscopy (EDX), it has been proved that the sample has been successfully synthesized and its component content has been confirmed. The Eg value calculated from the diffuse reflectance spectrum is 4.61eV. The prepared SrAl2O4: Eu2+, Dy3+ luminescent powder is combined with Polydimethylsiloxane substrate for anticounterfeiting application, which provides a novel idea and method for the development of the anticounterfeiting field. Full article
(This article belongs to the Special Issue Optoelectronic Thin Films)
Show Figures

Figure 1

12 pages, 3429 KiB  
Article
Immobilization of Strontium Aluminate into Recycled Polycarbonate Plastics towards an Afterglow and Photochromic Smart Window
by Mohamed E. El-Hefnawy, Ali I. Ismail, Sultan Alhayyani, Soha T. Al-Goul, Mohamed M. Zayed and Manal Abou Taleb
Polymers 2023, 15(1), 119; https://doi.org/10.3390/polym15010119 - 28 Dec 2022
Cited by 22 | Viewed by 3045
Abstract
A transparent smart window made of recycled polycarbonate plastic (PCP) waste was prepared and immobilized with strontium aluminate phosphor nanoparticles (SAPN). It has afterglow emission, super-hydrophobicity, durability, photostability, good mechanical properties, ultraviolet protection, and high optical transmittance. To create an afterglow emission polycarbonate [...] Read more.
A transparent smart window made of recycled polycarbonate plastic (PCP) waste was prepared and immobilized with strontium aluminate phosphor nanoparticles (SAPN). It has afterglow emission, super-hydrophobicity, durability, photostability, good mechanical properties, ultraviolet protection, and high optical transmittance. To create an afterglow emission polycarbonate smart window (SAPN@PCP), recycled polycarbonate waste was integrated with various concentrations of SAPN (15–52 nm). SAP micro-scale powder was made using the solid-state high temperature method. The SAP nanoparticles were produced using the top-down method. To create a colorless plastic bulk, recycled polycarbonate waste was inserted into a hot bath. This colorless plastic was thoroughly combined with SAPN and cast to create an afterglow luminous smart window. To investigate its photoluminescence properties, spectrum profiles of excitation and emission were measured. According to the luminescence parameters, the phosphorescent colorless polycarbonate plates displayed a change in color to strong green under UV illumination and greenish-yellow in a dark box. The afterglow polycarbonate smart window displayed two emission peaks at 496 and 526 nm, and an absorption wavelength of 373 nm. Upon increasing the SAPN ratio, the hydrophobic activity, hardness, photostability, and UV protection were improved. Luminescent polycarbonate substrates with lower SAPN ratio demonstrated rapid and reversible fluorescence under UV light, while the higher SAPN content in the luminous polycarbonate substrates showed afterglow. Full article
Show Figures

Figure 1

7 pages, 2796 KiB  
Article
Single-Mode-Tuned Tricolor Emissions of Upconversion/Afterglow Hybrids for Anticounterfeiting Applications
by Yanqing Hu, Songqi Li, Shijie Yu, Shuoran Chen, Yuyang Yan, Yan Liu, Yuanpeng Chen, Caosong Chen, Qiyue Shao and Yingshuai Liu
Nanomaterials 2022, 12(18), 3123; https://doi.org/10.3390/nano12183123 - 9 Sep 2022
Cited by 7 | Viewed by 1831
Abstract
This work presents a highly secure anticounterfeiting strategy based on upconversion/afterglow hybrids with tricolor emissions tuned by a single 975 nm laser. The hybrids are composed of NaYF4:Yb/Tm and NaYF4:Yb/Er microrods and CaS:Eu2+ afterglow phosphors. Under 975 nm [...] Read more.
This work presents a highly secure anticounterfeiting strategy based on upconversion/afterglow hybrids with tricolor emissions tuned by a single 975 nm laser. The hybrids are composed of NaYF4:Yb/Tm and NaYF4:Yb/Er microrods and CaS:Eu2+ afterglow phosphors. Under 975 nm excitation, the hybrids exhibit multicolor emissions from green to white by adjusting laser power and then emit red afterglow light when the 975 nm laser is off. Under synergistic excitation of the blue-green light emitted by Tm/Er microrods, the red afterglow emission not only has a strong initial intensity but also lasts for 3 s. Obvious trichromatic changes from green to white to red can be observed by the naked eye. A pattern printed by the hybrid ink exhibits tricolor emissions by laser adjustment and switch. This proves that upconversion/afterglow hybrids are an excellent candidate for anticounterfeiting applications with high-level security but a simple recognition method. Full article
(This article belongs to the Special Issue Fluorescent Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

10 pages, 5413 KiB  
Article
Effect of Compatibilizer on the Persistent Luminescence of Polypropylene/Strontium Aluminate Composites
by Anesh Manjaly Poulose, Hamid Shaikh, Arfat Anis, Abdullah Alhamidi, Nadavala Siva Kumar, Ahmed Yagoub Elnour and Saeed M. Al-Zahrani
Polymers 2022, 14(9), 1711; https://doi.org/10.3390/polym14091711 - 22 Apr 2022
Cited by 5 | Viewed by 2309
Abstract
There is a demand for long afterglow composites due to their potential applications in nighttime signal boards, sensors, and biomedical areas. In this study, Polypropylene (PP)/strontium aluminate-based composites [SrAl2O4:Eu2+/Dy3+ (SAO1) and Sr4Al [...] Read more.
There is a demand for long afterglow composites due to their potential applications in nighttime signal boards, sensors, and biomedical areas. In this study, Polypropylene (PP)/strontium aluminate-based composites [SrAl2O4:Eu2+/Dy3+ (SAO1) and Sr4Al14O25: Eu+2, Dy+3 (SAO2)] with maleic anhydride grafted PP compatibilizer (PRIEX) were prepared, and their auto-glowing properties were examined. After UV excitation at 320 nm, the PP/5PRIEX/SAO1 composites showed green emission at 520 nm, and blue emission was observed for PP/5PRIEX/SAO2 around 495 nm. The intensity of phosphorescence emission and phosphorescence decay was found to be proportional to the filler content (SAO1 and SAO2). The FTIR analysis excluded the copolymerization reaction between the SAO1 and SAO2 fillers and the PP matrix during the high-temperature melt mixing process. The SAO1 and SAO2 fillers decreased the overall crystallinity of the composites without affecting the Tm and Tc (melting and crystallization temperature) values. The thermal stability of the composites was slightly improved with the SAO1 and SAO2 fillers, as seen from the TGA curve. Due to the plasticizing effect of the compatibilizer and the agglomeration of the SAO1 and SAO2 fillers, the tensile modulus, tensile strength, and storage modulus of the composites was found to be decreased with an increase in the SAO1 and SAO2 content. The decreasing effect was more pronounced, especially with the bulk-sized SAO2 filler. Full article
(This article belongs to the Special Issue Advanced Thermoplastic Polymers and Composites)
Show Figures

Graphical abstract

12 pages, 3024 KiB  
Article
Green Synthesis of Phosphorescent Carbon Dots for Anticounterfeiting and Information Encryption
by Mingming Cheng, Lei Cao, Hanzhou Guo, Wenfei Dong and Li Li
Sensors 2022, 22(8), 2944; https://doi.org/10.3390/s22082944 - 12 Apr 2022
Cited by 24 | Viewed by 4692
Abstract
Room-temperature phosphorescent (RTP) carbon dots (CDs) have promising applications in bioimaging, anticounterfeiting, and information encryption owing to their long lifetimes and wide Stokes shifts. Numerous researchers are interested in developing highly bright RTP CDs using environmentally friendly and safe synthesis processes (e.g., natural [...] Read more.
Room-temperature phosphorescent (RTP) carbon dots (CDs) have promising applications in bioimaging, anticounterfeiting, and information encryption owing to their long lifetimes and wide Stokes shifts. Numerous researchers are interested in developing highly bright RTP CDs using environmentally friendly and safe synthesis processes (e.g., natural raw materials and zero-pollution production pathways). In this study, we successfully synthesized RTP CDs using a hydrothermal process employing natural vitamins as a raw material, ethylenediamine as a passivator, and boric acid as a phosphorescent enhancer, which is referred to as phosphorescent CD (PCD). The PCDs exhibit both bright blue fluorescence emission and green RTP emission, with a phosphorescence lifetime as long as 293 ms and an excellent green afterglow visible to the naked eye for up to 7.0 s. The total quantum yield is 12.69%. The phosphorescence quantum yield (PQY) is up to 5.15%. Based on the RTP performance, PCDs have been successfully employed for anticounterfeiting and information protection applications. The results of this study provide a green strategy for the scalable synthesis of RTP materials, which is a practical method for the fabrication of RTP materials with high efficiency and long afterglow lifetimes. Full article
(This article belongs to the Collection Recent Advances in Fluorescent Sensors)
Show Figures

Figure 1

16 pages, 4102 KiB  
Article
Biocompatible Probes Based on Rare-Earth Doped Strontium Aluminates with Long-Lasting Phosphorescent Properties for In Vitro Optical IMAGING
by David G. Calatayud, Teresa Jardiel, Erica Cordero-Oyonarte, Amador C. Caballero, Marina Villegas, Ana Valle-Noguera, Aranzazu Cruz-Adalia and Marco Peiteado
Int. J. Mol. Sci. 2022, 23(6), 3410; https://doi.org/10.3390/ijms23063410 - 21 Mar 2022
Cited by 18 | Viewed by 4368
Abstract
In recent decades, the demand for biomedical imaging tools has grown very rapidly as a key feature for biomedical research and diagnostic applications. Particularly, fluorescence imaging has gained increased attention as a non-invasive, inexpensive technique that allows real-time imaging. However, tissue auto-fluorescence under [...] Read more.
In recent decades, the demand for biomedical imaging tools has grown very rapidly as a key feature for biomedical research and diagnostic applications. Particularly, fluorescence imaging has gained increased attention as a non-invasive, inexpensive technique that allows real-time imaging. However, tissue auto-fluorescence under external illumination, together with a weak tissue penetration of low wavelength excitation light, largely restricts the application of the technique. Accordingly, new types of fluorescent labels are currently being investigated and, in this search, phosphorescent nanoparticles promise great potential, as they combine the interesting size-dependent properties of nanoscale materials with a long-lasting phosphorescence-type emission that allows optical imaging well after excitation (so avoiding autofluorescence). In this work, core-shell structures consisting of SrAlO:Eu,Dy luminescent cores encapsulated within a biocompatible silica shell were prepared, showing a green persistent phosphorescence with an afterglow time of more than 1000 s. A high-energy ball milling procedure was used to reduce the size of the starting phosphors to a size suitable for cellular uptake, while the silica coating was produced by a reverse micelle methodology that eventually allows the excitation and emission light to pass efficiently through the shell. Confocal fluorescence microscopy using HeLa cancer cells confirmed the potential of the all-ceramic composites produced as feasible labels for in vitro optical imaging. Full article
Show Figures

Figure 1

19 pages, 5791 KiB  
Article
Green Afterglow of Undoped SrAl2O4
by Bao-Gai Zhai and Yuan-Ming Huang
Nanomaterials 2021, 11(9), 2331; https://doi.org/10.3390/nano11092331 - 9 Sep 2021
Cited by 30 | Viewed by 3388
Abstract
Undoped SrAl2O4 nanocrystals were obtained via solution combustion using urea as fuel. The afterglow properties of undoped SrAl2O4 were investigated. Green afterglow from undoped SrAl2O4 is visible to the human eye when the 325 [...] Read more.
Undoped SrAl2O4 nanocrystals were obtained via solution combustion using urea as fuel. The afterglow properties of undoped SrAl2O4 were investigated. Green afterglow from undoped SrAl2O4 is visible to the human eye when the 325 nm irradiation of a helium–cadmium laser (13 mW) is ceased. The afterglow spectrum of undoped SrAl2O4 is peaked at about 520 nm. From the peak temperature (321 K) of the broad thermoluminescence glow curve, the trap depth of trap levels in undoped SrAl2O4 is estimated to be 0.642 eV using Urbach’s formula. Based on first-principles density functional calculations, the bandstructures and densities of states are derived for oxygen-deficient SrAl2O4 and strontium-deficient SrAl2O4, respectively. Our results demonstrate that the green afterglow of undoped SrAl2O4 originates from the midgap states introduced by oxygen and strontium vacancies. The observation of green afterglow from undoped SrAl2O4 helps in gaining new insight in exploring the afterglow mechanisms of SrAl2O4-based afterglow materials. Full article
Show Figures

Figure 1

12 pages, 3966 KiB  
Article
Strontium Aluminate-Based Long Afterglow PP Composites: Phosphorescence, Thermal, and Mechanical Characteristics
by Anesh Manjaly Poulose, Arfat Anis, Hamid Shaikh, Abdullah Alhamidi, Nadavala Siva Kumar, Ahmed Yagoub Elnour and Saeed M. Al-Zahrani
Polymers 2021, 13(9), 1373; https://doi.org/10.3390/polym13091373 - 22 Apr 2021
Cited by 28 | Viewed by 4825
Abstract
A tremendous potential has been observed in the designing of long afterglow materials for sensing, bioimaging, and encryption applications. In this study, two different strontium aluminate-based luminescent materials; SrAl2O4: Eu, Dy (S1), and Sr4Al14 [...] Read more.
A tremendous potential has been observed in the designing of long afterglow materials for sensing, bioimaging, and encryption applications. In this study, two different strontium aluminate-based luminescent materials; SrAl2O4: Eu, Dy (S1), and Sr4Al14O25: Eu, Dy (S2) were melt-mixed with polypropylene (PP) matrix, and the phosphorescence properties were evaluated. After excitation at 320 nm, the PP/S1 composite exhibited a green emission and the PP/S2 generated a blue emission at 520 nm and 495 nm, respectively. The emission spectra intensity increased by increasing the content of these luminescent fillers. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) experiments show that no chemical reaction occurred during the melt-mixing process. The differential scanning calorimetry (DSC) results revealed that the total crystallinity of the composites reduced by increasing the amount of the fillers; however, no changes in the temperature of melting (Tm) and crystallization (Tc) of PP were observed. Both fillers improved the impact strength of the composites, but the tensile strength (TS) and modulus (TM) decreased. Poly (ethylene glycol) dimethyl ether (P) plasticizer was used to improve the filler-matrix interaction and its dispersion; nevertheless, it adversely affected the intensity of the luminescence emissions. Full article
(This article belongs to the Special Issue Bio-Based Polymeric Films)
Show Figures

Figure 1

Back to TopTop