Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = grassland desertification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3382 KiB  
Article
Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China
by Wangjun Li, Xiaolong Bai, Dongpeng Lv and Yurong Yang
J. Fungi 2025, 11(7), 525; https://doi.org/10.3390/jof11070525 - 16 Jul 2025
Viewed by 337
Abstract
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, [...] Read more.
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, remain unclear. Therefore, we conducted a field investigation combined with a greenhouse experiment to explore the importance of AMF compared to bacteria and fungi for plant biomass allocation. The results showed that plant biomass in degraded grasslands exhibited allometric biomass allocation, contrasting with isometric partitioning in non-degraded grasslands. AMF, not bacteria or fungi, were the primary microbial mediators of grassland degradation effects on plant biomass allocation based on structural equation modeling. The greenhouse experiment demonstrated that the selected AMF keystone species from the field study performed according to ecological network analysis, particularly multi-species combinations, enhanced the belowground biomass allocation of F. ovina under rocky desertification stress compared to single-species inoculations, through decreasing soil pH, enhancing alkaline phosphatase (ALP) activity, and increasing the expression level of AMF-inducible phosphate transporter (PT4). This study highlights the critical role of the AMF community, rather than individual species, in mediating plant survival strategies under rocky desertification stress. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

28 pages, 13570 KiB  
Article
Monitoring Vegetation Dynamics in Desertification Restoration Areas of Wuzhumuqin Grassland Ecosystem
by Fuguang Yang, Zhiguo Wang, Yongguang Zhai, Xiangli Yang, Tengfei Bao and Yonghui Wang
Appl. Sci. 2025, 15(12), 6855; https://doi.org/10.3390/app15126855 - 18 Jun 2025
Viewed by 241
Abstract
The desertified ecological restoration vegetation of Wuzhumuqin grassland plays an important role in the ecological restoration and protection of the region. However, there are few studies on the monitoring of the changes in ecological restoration vegetation in grassland sandy land in the past. [...] Read more.
The desertified ecological restoration vegetation of Wuzhumuqin grassland plays an important role in the ecological restoration and protection of the region. However, there are few studies on the monitoring of the changes in ecological restoration vegetation in grassland sandy land in the past. In order to improve the low efficiency of ecological restoration vegetation monitoring, this study used Gaofen-6 (GF-6) remote sensing data to calculate the kernel Normalized Difference Vegetation Index (kNDVI) and vegetation coverage of ecological restoration vegetation and analyze their spatial and temporal trends. At the same time, a transform three-branch network structure based on deep learning is proposed to extract visual features. The kernel Normalized Difference Vegetation Index-position-temporal awareness transformer (kNDVI-PT-Former) model monitoring method based on two-phase remote sensing image features combined with kNDVI for spatio-temporal feature extraction can accurately obtain the vegetation changes in desertification ecological restoration in Wuzhumuqin grassland. The results show that the kNDVI of the study area shows an increasing trend from 2019 to 2024. The kNDVI value is 0.4086 in 2019 and 0.4927 in 2024. From the perspective of the change trend of vegetation coverage, the overall vegetation coverage of the Wuzhumuqin desertification restoration study area showed a gradual increase trend from 2019 to 2024, and the vegetation coverage increased by 19% in 2024 compared with 2019. The transformation of vegetation coverage from low level to high level in the study area is more prominent. Based on the self-built monitoring dataset of more than 5.2 million pairs of grassland vegetation changes, through model comparison and analysis, the kNDVI-PT-Former model obtains that the Class Pixel Accuracy (CPA) is 0.7295, the Intersection over Union (IoU) is 0.7228, and the overall monitoring accuracy of the model is improved by 11%. Furthermore, the stability of the model’s performance was confirmed through evaluation with five-fold cross-validation. Full article
Show Figures

Figure 1

17 pages, 6414 KiB  
Article
Vegetation Restoration Significantly Increased Soil Organic Nitrogen Mineralization and Nitrification Rates in Karst Regions of China
by Lin Yang, Hui Yang, Lijun Liu, Shuting Yang, Dongni Wen, Xuelan Li, Lei Meng, Zhong Deng, Jian Liang, Danmei Lu and Tongbin Zhu
Forests 2025, 16(6), 1006; https://doi.org/10.3390/f16061006 - 15 Jun 2025
Viewed by 612
Abstract
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is [...] Read more.
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is of great significance for guiding the restoration of degraded ecosystems. This study used space-for-time substitution to investigate the dynamic changes in the rates of organic N mineralization (MNorg) and nitrification (ONH4) in soil at different vegetation restoration stages. Soil samples were collected from grassland (3–5 years), shrub-grassland (7–8 years), early-stage shrubland (15–20 years), late-stage shrubland (30–35 years), early-stage woodland (45–50 years), and late-stage woodland (70–80 years) in the subtropical karst region of China during the dry (December) and rainy (July) seasons. The MNorg and ONH4 were determined using the 15N labeling technique. The soil microbial community was determined using the phospholipid fatty acid method. Soil organic carbon (SOC), total nitrogen (TN), NH4+, NO3, and inorganic N contents, as well as the soil moisture content (SMC) were also measured. Our results showed that SOC and TN contents, and the SMC, as well as microbial community abundances increased markedly from grassland to the late-stage shrubland. Especially in the late-stage shrubland, the abundance of the total microbial community, bacteria, fungi, actinomycetes, and AMF in soil was significantly higher than other restoration stages. These results indicate that vegetation restoration significantly increased soil nutrient content and microbial community abundance. From grassland to the late-stage shrubland, the soil NH4+, NO3, and inorganic N contents increased significantly, and the NH4+:NO3 ratios changed from greater than 1 to less than 1, indicating that vegetation restoration significantly influenced soil inorganic N content and composition. As restoration progressed, the MNorg and ONH4 increased significantly, from 0.04 to 3.01 mg N kg−1 d−1 and 0.35 to 2.48 mg N kg−1 d−1 in the dry season, and from 3.26 to 7.20 mg N kg−1 d−1 and 1.47 to 10.7 mg N kg−1 d−1 in the rainy season. At the same vegetation restoration stage, the MNorg and ONH4 in the rainy season were markedly higher than those in the dry season. These results indicate that vegetation restoration and seasonal variations could significantly influence MNorg and ONH4. Correlation analysis showed that the increase in MNorg during vegetation restoration was mainly attributed to the increase in SOC and TN contents, as well as the total microbial community, bacterial, fungal, actinomycetes, and AMF abundances, and that the increase in ONH4 was mainly attributed to the increase in MNorg and the decrease in the F: B ratio. Moreover, the MNorg and ONH4 showed a strong positive correlation with inorganic N content. This study clarifies that vegetation restoration in karst regions could significantly increase MNorg and ONH4 through enhancing soil carbon and N contents, as well as microbial community abundances, thereby increasing the available soil N supply, which could provide a theoretical basis for soil fertility regulation in future rocky desertification management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 10209 KiB  
Article
Analysis of Ecological Environment Changes and Influencing Factors in the Upper Reaches of the Yellow River Based on the Remote Sensing Ecological Index
by Xianghua Tang, Ting Zhou, Chunlin Huang, Tianwen Feng and Qiang Bie
Sustainability 2025, 17(12), 5410; https://doi.org/10.3390/su17125410 - 11 Jun 2025
Viewed by 459
Abstract
The Upper Yellow River Region plays an irreplaceable role in water conservation and ecological protection in China. Due to both natural and human-induced factors, this area has experienced significant grassland deterioration, land desertification, and salinization. Consequently, evaluating the region’s environmental status plays a [...] Read more.
The Upper Yellow River Region plays an irreplaceable role in water conservation and ecological protection in China. Due to both natural and human-induced factors, this area has experienced significant grassland deterioration, land desertification, and salinization. Consequently, evaluating the region’s environmental status plays a vital role in promoting ecological conservation and sustainable growth in the Upper Yellow River Basin. This study constructed an ecological index based on remote-sensing data and examined its spatiotemporal changes from 1990 to 2020. Future ecological dynamics were predicted using the Hurst index, while key influencing factors were examined through an optimal-parameter-based GeoDetector and geographically weighted regression. The findings revealed the following: (1) RSEI values were generally lower in the north and increased progressively toward the south, indicating a notable spatial disparity. (2) Ecological conditions remained largely stable, with notable improvements observed in 65.47% of the study area. (3) It was anticipated that 52.76% of the region would continue to improve, whereas 24% is expected to experience further degradation. (4) Precipitation, temperature, elevation, and land cover were major factors contributing to ecological variation. Their impact on ecological quality varies across different geographic locations. These research findings provided references for the sustainable development and ecological civilization construction of the Upper Yellow River Region. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

12 pages, 3110 KiB  
Article
Effects of Artificial Vegetation Restoration Pattern on Soil Phosphorus Fractions in Alpine Desertification Grassland
by Hongyu Qian, Nairui Yang, Haodong Jiang, Yinan Li, Ao Shen and Yufu Hu
Plants 2025, 14(10), 1429; https://doi.org/10.3390/plants14101429 - 10 May 2025
Cited by 1 | Viewed by 445
Abstract
Phosphorus (P) is essential for plant growth, but its soil availability depends on the characteristics of P fractions. However, few studies have examined soil P fractions under ecological restoration in alpine and semi-humid regions. This study investigated three restoration methods on the eastern [...] Read more.
Phosphorus (P) is essential for plant growth, but its soil availability depends on the characteristics of P fractions. However, few studies have examined soil P fractions under ecological restoration in alpine and semi-humid regions. This study investigated three restoration methods on the eastern Tibetan Plateau: planting mixed grasses (MG), planting Salix cupularis alone (SA), and planting Salix cupularis in combination with grasses (SG), restored for 14 years, with untreated sandy land (CK) as control. Through field sampling and laboratory analysis, soil P fractions and physicochemical properties were analyzed. The findings demonstrate that the three ecological restoration modes could increase total P and total organic P content and reduce inorganic P content. Ecological restoration can improve the content of soil labile P (resin-Pi, NaHCO3-Pi, and NaHCO3-Po) by activating NaOH-Pi and HCl-P, thus improving the availability of soil P and increasing the potential P (residual-P) source. Soil P fractions content positively correlated with SWC, SOC, and TN (p < 0.05) but negatively with BD and pH (p < 0.05). The experimental outcomes of this study will help to understand the P availability and its potential sources during ecological restoration while providing a scientific foundation for selecting optimal restoration strategies in alpine sandy land. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

20 pages, 6222 KiB  
Article
Spatiotemporal Evolution and Prediction of Carbon Storage in Karst Fault Basin Based on FLUS and InVEST Models
by Jiabin Zhang, Rong Tang, Wenting Liu, Guobao Zhang, Xiangru Hao, Yaguang Gong, Ying Zhou and Yuanhui Yang
Sustainability 2025, 17(9), 3931; https://doi.org/10.3390/su17093931 - 27 Apr 2025
Viewed by 460
Abstract
Karst topography comprises a fragile ecological environment with a significant potential for carbon sequestration. It is characterized by severe rocky desertification, particularly in China’s karst fault basin. Therefore, there is a crucial need to scientifically evaluate the variations in carbon storage over time [...] Read more.
Karst topography comprises a fragile ecological environment with a significant potential for carbon sequestration. It is characterized by severe rocky desertification, particularly in China’s karst fault basin. Therefore, there is a crucial need to scientifically evaluate the variations in carbon storage over time and space in this area to ensure effective land space planning and regional ecological security, especially considering the dual carbon target. Using land use data (1985–2020) from the karst fault basin in Southwest China, the study employed the InVEST model to evaluate temporal and spatial variations in carbon storage. A time span of 35 years was examined, and predictions regarding carbon storage in 2050 were formulated under three different conditions: natural evolution, ecological protection, and cultivated land protection. These predictions were based on natural, social, and economic driving factors. The results revealed a fluctuating downward trend in regards to carbon storage in the study area from 1985 to 2020, with a total decrease of 2.1 × 106 t. After 2000, there has been significant improvement in the dynamic degree of land use for forest land, grassland, and construction land compared to the levels before 2000. Additionally, many land use types with high carbon density transitioned into those with lower carbon density. Spatially, the carbon density in the karst fault basin was higher in the north and lower in the central and southern basins. At the county spatial scale, except for the northern and central parts of the study area, there was a decrease in total carbon storage in the remaining counties. By 2050, under the ecological protection scenario, total carbon storage is projected to increase by approximately 6 × 106 t, whereas under the natural evolution and cultivated land protection scenarios, it is expected to decrease by 2 × 106 t and 3 × 106 t, respectively. Specifically, under the natural evolution scenario, only five counties will experience an increase in carbon storage, while the other counties will witness a decrease. The findings of this study offer a scientific basis for enhancing ecosystem carbon services through land management practices and the control of rocky desertification in the karst fault basin. They can inform decision-making processes regarding carbon sequestration, ecosystem restoration, and sustainable land use planning in the region. Full article
Show Figures

Figure 1

26 pages, 141581 KiB  
Article
Analysis of Grassland Vegetation Coverage Changes and Driving Factors in China–Mongolia–Russia Economic Corridor from 2000 to 2023 Based on RF and BFAST Algorithm
by Chi Qiu, Chao Zhang, Jiani Ma, Cuicui Yang, Jiayue Wang, Urtnasan Mandakh, Danzanchadav Ganbat and Nyamkhuu Myanganbuu
Remote Sens. 2025, 17(8), 1334; https://doi.org/10.3390/rs17081334 - 8 Apr 2025
Cited by 2 | Viewed by 784
Abstract
Changes in grassland vegetation coverage (GVC) and their causes in the China–Mongolia–Russia Economic Corridor (CMREC) region have been a hot button issue regarding the ecological environment and sustainable development. In this paper, multi-source remote sensing (RS) data were used to obtain GVC from [...] Read more.
Changes in grassland vegetation coverage (GVC) and their causes in the China–Mongolia–Russia Economic Corridor (CMREC) region have been a hot button issue regarding the ecological environment and sustainable development. In this paper, multi-source remote sensing (RS) data were used to obtain GVC from 2000 to 2023 based on random forest (RF) regression inversion. The nonlinear characteristics such as the number of mutations, magnitude of mutations, and time of mutations were detected and analyzed using the BFAST model. Driving factors such as climatic factors were introduced to quantitatively explain the driving mechanism of GVC changes. The results showed that: (1) RF model is the optimal model for the inversion of GVC in this region. The R2 of the RF training set reached 0.94, the RMSE of the test set was 12.86%, the correlation coefficient between the predicted and actual values was 0.76, and the CVRMSE was 18.07%. (2) During the period of 2000–2023, the number of mutations in GVC ranged from 0 to 5, and there were at least 1 mutation in 58.83% of the study area. The years with the largest proportion of mutations was 2010, followed by 2016, accounting for 14.57% and 11.60% of all mutations, respectively. The month with the highest percentage of mutations was October, and followed by June, accounting for 31.73% and 22.19% of all mutations, respectively. (3) The sustained and stable positive effect was shown by precipitation on GVC before and after the maximum mutation. Wind speed was a negative effect on GVC in areas with more severe desertification, such as Inner Mongolia, China and parts of Mongolia. On the other hand, GVC was reduced by the wind speed before and after the maximum mutations. Therefore, to guarantee the ecological security of the CMREC, governments should formulate new countermeasures to prevent desertification in the region according to the laws of nature and strengthen international cooperation. Full article
(This article belongs to the Special Issue Machine Learning for Spatiotemporal Remote Sensing Data (2nd Edition))
Show Figures

Figure 1

20 pages, 5285 KiB  
Article
Comparative Analysis of Salt Tolerance and Transcriptomics in Two Varieties of Agropyron desertorum at Different Developmental Stages
by Yuchen Li, Xintian Huang, Xiao Han, Hui Yang and Yan Zhao
Genes 2025, 16(4), 367; https://doi.org/10.3390/genes16040367 - 22 Mar 2025
Viewed by 499
Abstract
Background: Most of the grasslands in China are experiencing varying degrees of degradation, desertification, and salinization (collectively referred to as the “three degradations”), posing a serious threat to the country’s ecological security. Agropyron desertorum, known for its wide distribution, strong adaptability, and [...] Read more.
Background: Most of the grasslands in China are experiencing varying degrees of degradation, desertification, and salinization (collectively referred to as the “three degradations”), posing a serious threat to the country’s ecological security. Agropyron desertorum, known for its wide distribution, strong adaptability, and resistance, is an excellent grass species for the ecological restoration of grasslands affected by the “three degradations”. This study focused on two currently popular varieties of A. desertorum, exploring their salt tolerance mechanisms and identifying candidate genes for salt and alkali tolerance. Methods: Transcriptome sequencing was performed on two varieties of A. desertorum during the seed germination and seedling stages under varying degrees of saline–alkali stress. At the seed stage, we measured the germination rate, relative germination rate, germination index, and salt injury rate under different NaCl concentrations. During the seedling stage, physiological indicators, including superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), proline (PRO), soluble protein (SP), and catalase (CAT), were analyzed after exposure to 30, 60, 120, and 180 mM NaCl for 12 days. Analysis of differentially expressed genes (DEGs) at 6 and 24 h post-treatment with 120 mM NaCl revealed significant differences in the salt stress responses between the two cultivars. Results: Our study indicates that during the seed stage, A. desertorum (Schult.) exhibits a higher relative germination potential, relative germination rate, and relative germination index, along with a lower relative salt injury rate compared to A. desertorum cv. Nordan. Compared with A. desertorum cv. Nordan, A. desertorum (Schult.) has higher salt tolerance, which is related to its stronger antioxidant activity and different antioxidant-related pathways. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify the key biological processes and pathways involved in salt tolerance, including plant hormone signal transduction, antioxidant defense, and cell membrane stability. Conclusions: A. desertorum (Schult.) exhibits stronger salt tolerance than A. desertorum cv. Nordan. Salt stress at a concentration of 30–60 mM promotes the germination of the seeds of both Agropyron cultivars. The two Agropyron plants mainly overcome the damage caused by salt stress through the AsA-GSH pathway. This study provides valuable insights into the molecular mechanisms of salt tolerance in Agropyron species and lays the groundwork for future breeding programs aimed at improving salt tolerance in desert grasses. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Figure 1

25 pages, 1330 KiB  
Article
Afforestation Through Sand Control: Farmer Participation Under China’s New Round of Grain-for-Green Compensation Policy
by Pei Duan and Kangkang Wu
Agriculture 2025, 15(7), 671; https://doi.org/10.3390/agriculture15070671 - 21 Mar 2025
Viewed by 624
Abstract
Within the context of global desertification trends in arid regions, advancing afforestation and sand stabilization efforts are not only vital for human survival but are also key considerations in addressing the challenges of climate change and achieving sustainable development. This study, set against [...] Read more.
Within the context of global desertification trends in arid regions, advancing afforestation and sand stabilization efforts are not only vital for human survival but are also key considerations in addressing the challenges of climate change and achieving sustainable development. This study, set against the backdrop of China’s new round of Grain-for-Green compensation policies implemented in 2014, investigates farmers’ behavior in planting economically valuable forests and grasslands driven by compensation incentives. Grounded in the principles of behavioral economics and assuming farmers as rational “economic agents”, this study focuses on farmers residing on the northern and southern slopes of the Tianshan Mountains in Xinjiang. Employing the fuzzy-set qualitative comparative analysis (fsQCA) approach, it examines the intricate causal mechanisms that shape farmers’ involvement or lack thereof in economic forest and grassland activities. These mechanisms are analyzed through the lenses of resource endowment, psychological perception, and external environmental factors. The results indicate that perceived benefits and neighbor imitation serve as essential conditions for non-participation in planting economic forests and grasslands. Three configurational pathways account for participation: farmers motivated by perceived benefits, those guided by the combined influence of “psychological perception and external environment”, and individuals driven by ecological aspirations alongside neighbor imitation. Additionally, four configurational pathways explain non-participation, with two types of farmers identified: those facing a dual deficiency of psychological perception and external environment, and non-high income traditional farmers dependent on agricultural irrigation water. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

14 pages, 3514 KiB  
Article
Potential Habitat Suitability Analysis Under Climate Change for the Native Grass, Kengyilia thoroldiana, on the Qinghai–Tibet Plateau
by Qingqing Liu, Hairong Zhang, Miaohua He, Jianjun Shi and Yuan Ma
Agronomy 2025, 15(2), 481; https://doi.org/10.3390/agronomy15020481 - 17 Feb 2025
Viewed by 806
Abstract
Kengyilia thoroldiana (Oliv.) J. L. Yang, C. Yen, and B. R. Baum (K. thoroldiana) is a dominant species in the desertification area of the Qinghai–Tibet Plateau. In this study, based on 88 sample points of K. thoroldiana, the maximum entropy (MaxEnt) [...] Read more.
Kengyilia thoroldiana (Oliv.) J. L. Yang, C. Yen, and B. R. Baum (K. thoroldiana) is a dominant species in the desertification area of the Qinghai–Tibet Plateau. In this study, based on 88 sample points of K. thoroldiana, the maximum entropy (MaxEnt) method was used to analyze the current dominant factors of the distribution area of K. thoroldiana and predict its potential distribution. The results showed that the training and test data area under the curve (AUC) were 0.934 and 0.944, which indicated the reliability of the predicted results. Based on climatic variables and the results of the “Jackknife” method, the results showed that temperature was the main driver of K. thoroldiana’s distribution. By simulating the potential distribution of K. thoroldiana, the highly suitable areas were mainly located in the west, south, and southeast of Qinghai, southwest Gansu, and eastern Tibet. In future climate scenarios, the total suitable area for K. thoroldiana showed an expanding trend. According to the Sustainable Development (SSP126) scenario, the highly suitable areas could increase by 4.72% from 2021 to 2040 compared with the current climate scenario, and the highly suitable areas could increase by 12.71% from 2041 to 2060. An increase in the suitable areas of K. thoroldiana is essential for the ecological restoration of degraded grasslands. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 9263 KiB  
Article
Mapping Vegetation Changes in Mongolian Grasslands (1990–2024) Using Landsat Data and Advanced Machine Learning Algorithm
by Mandakh Nyamtseren, Tien Dat Pham, Thuy Thi Phuong Vu, Itgelt Navaandorj and Kikuko Shoyama
Remote Sens. 2025, 17(3), 400; https://doi.org/10.3390/rs17030400 - 24 Jan 2025
Cited by 4 | Viewed by 2515
Abstract
Grassland ecosystems provide a range of services in semi-arid and arid regions. However, they have significantly declined due to overgrazing and desertification. In the current study, we employed Landsat time series data (TM, OLI, OLI-2) spanning from 1990 to 2024, combined with vegetation [...] Read more.
Grassland ecosystems provide a range of services in semi-arid and arid regions. However, they have significantly declined due to overgrazing and desertification. In the current study, we employed Landsat time series data (TM, OLI, OLI-2) spanning from 1990 to 2024, combined with vegetation indices such as NDVI and SAVI, along with NDWI and digital elevation models (DEMs), to analyze land cover dynamics in the Ugii Lake watershed area, Mongolia. By integrating multisource remote sensing data into the advanced XGBoost (extreme gradient boosting) machine learning algorithm, we achieved high classification accuracy, with overall accuracies exceeding 94% and Kappa coefficients greater than 0.92. The results revealed a decline in montane grasslands (−6.2%) and an increase in other grassland types, suggesting ecosystem redistribution influenced by climatic and anthropogenic factors. Cropland exhibited resilience, recovering from a significant decline in the 1990s to moderate growth by 2024. Our findings highlight the stability of barren land and underscore pressures from ecological degradation and human activities. This study provides up-to-date statistical data to support decision-making in the conservation and sustainable management of grassland ecosystems in Mongolia under changing climatic conditions. Full article
Show Figures

Figure 1

14 pages, 4343 KiB  
Article
Characterization of a Natural Accession of Elymus sibiricus with In Situ Hybridization and Agronomic Evaluation
by Yizhuo Liu, Jiarui Ding, Chunfei Wu, Weiwei Song, Xinyu Zhao, Haibin Zhao, Yunfeng Qu, Hui Jin, Rui Zhang, Mingyao Li, Xinyu Yan, Liangyu Zhu, Yaqi Bao, Dianhao Liu, Xinling Li, Lei Cui, Hongjie Li and Yanming Zhang
Plants 2025, 14(1), 75; https://doi.org/10.3390/plants14010075 - 29 Dec 2024
Viewed by 907
Abstract
Elymus sibiricus, valued for its perennial nature, broad adaptability, strong cold tolerance, and high economic value in forage production, plays a crucial role in combating grassland degradation, desertification, and salinization. Using morphological and cytogenetic methods, this study evaluated the cold tolerance, post-harvest [...] Read more.
Elymus sibiricus, valued for its perennial nature, broad adaptability, strong cold tolerance, and high economic value in forage production, plays a crucial role in combating grassland degradation, desertification, and salinization. Using morphological and cytogenetic methods, this study evaluated the cold tolerance, post-harvest regeneration capacity, and perennial characteristics of the E. sibiricus accession 20HSC-Z9 in the Harbin region of China from 2020 to 2023. This accession exhibited a germination rate of over 90% and a 100% green-up rate, with purple coleoptiles indicating its strong cold tolerance. Over the three growing seasons, 20HSC-Z9 maintained stable green-up and regeneration rates, confirming its perennial nature. Morphologically, 20HSC-Z9 had an average tiller count ranging from 56 to 74, similar to that of the control accession 20HSC-ES, and its plant height was significantly lower than that of 20HSC-IWG. Furthermore, 20HSC-Z9 produced over 100 grains per spike, with a seed setting rate exceeding 90%, and a thousand-grain weight comparable to that of 20HSC-IWG. The grain protein content of 20HSC-Z9 reached a maximum of 21.19%, greater than that of the control accessions (15.6% and 18.5%). Chromosome composition analysis, using sequential multicolor genomic in situ hybridization and multicolor fluorescence in situ hybridization, confirmed the StStHH genomic constitution of 20HSC-Z9 and revealed translocations between the St and H subgenome chromosomes. These results suggest that 20HSC-Z9 has significant potential as a new perennial forage grass germplasm for cold regions, suitable for further domestication and breeding efforts. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

25 pages, 9836 KiB  
Article
Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China
by Xiran Sui, Qiongling Xu, Hui Tao, Bin Zhu, Guangshuai Li and Zengxin Zhang
Plants 2024, 13(23), 3412; https://doi.org/10.3390/plants13233412 - 5 Dec 2024
Cited by 5 | Viewed by 1842
Abstract
The arid and semi-arid regions of northwest China are characterized by sparse vegetation and fragile ecosystems, making them highly susceptible to the impacts of climate change and human activities. Based on observed meteorological data, the Normalized Difference Vegetation Index (NDVI), the Lund–Potsdam–Jena dynamic [...] Read more.
The arid and semi-arid regions of northwest China are characterized by sparse vegetation and fragile ecosystems, making them highly susceptible to the impacts of climate change and human activities. Based on observed meteorological data, the Normalized Difference Vegetation Index (NDVI), the Lund–Potsdam–Jena dynamic global vegetation model (LPJ), a vegetation recovery potential model, and the MK trend test method, this study investigated the spatiotemporal distribution of vegetation recovery potential in northwest China and its relationship with global warming and increasing precipitation. The results indicated that vegetation in northwest China significantly increased, with greening closely related to trends in warming and wetting during 1982–2019. However, the vegetation recovery potential declined due to climate change. Central and southern Xinjiang and central Qinghai exhibited higher grassland recovery potential, while the central Gobi Desert areas of northwest China had lower recovery potential. The eastern part of northwest China was highly sensitive to drought, with moderate vegetation growth and recovery potential. Remote sensing data indicated a 2.3% increase in vegetation coverage in the region, with an average vegetation recovery potential index (IVCP) of 0.31. According to the results of LPJ model, the average vegetation recovery potential index for northwest China was 0.14, indicating a 1.1% improvement potential in vegetation coverage. Overall, climate warming and wetting facilitated vegetation recovery in northwest China, particularly in mountainous areas. The findings provide valuable insights for ecological restoration efforts and offer practical guidance for combating desertification and enhancing sustainable development. Moreover, these results underline the importance of incorporating vegetation recovery potential into regional policy-making to improve environmental resilience in the face of ongoing climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

14 pages, 1624 KiB  
Article
The Soil and Water Conservation Effects of Different Plant Communities and Biological Soil Crust Symbiosis Patterns in the Ecologically Fragile Area of Central Ningxia
by Shuting Jiang, Tuoye Qi and Zilu Niu
Land 2024, 13(12), 2069; https://doi.org/10.3390/land13122069 - 2 Dec 2024
Cited by 1 | Viewed by 949
Abstract
Biological soil crusts are complex biological soil layers formed by mosses, lichens, cyanobacteria, and the underlying soil, which together with plants affect rainfall infiltration, surface runoff, soil evaporation, and water movement in the soil. The soil desertification and soil erosion in the ecologically [...] Read more.
Biological soil crusts are complex biological soil layers formed by mosses, lichens, cyanobacteria, and the underlying soil, which together with plants affect rainfall infiltration, surface runoff, soil evaporation, and water movement in the soil. The soil desertification and soil erosion in the ecologically fragile areas of central Ningxia are serious problems, and the ecological environment is extremely fragile. Effective ecological restoration technologies are urgently needed. This study took the grassland in the ecologically fragile area of central Ningxia as the object and investigated the impact of three plant communities and symbiotic patterns of biological soil crusts on soil erosion through field simulated rainfall experiments. The results showed that: (1) At a rainfall intensity of 90 mm h−1, the initial runoff time of each slope was significantly positively correlated with plant community type and biological soil crust coverage, and prolonged with the increase of plant community type and biological soil crust coverage. (2) With the extension of rainfall duration, the cumulative runoff on each slope exhibited an increasing trend. (3) The sediment concentration in runoff on slopes under different plant community and biological soil crust symbiotic patterns was significantly different, with the sediment concentration decreasing as the type of plant community and the coverage of biological soil crusts increased. (4) With the increase in the diversity of plant communities and the coverage of biological crusts, there was a gradual reduction in the volume of accumulated sediment. This study offers scientific management strategies and practical guidance for soil and water conservation efforts in the ecologically vulnerable areas of central Ningxia, highlighting the importance of promoting these symbiotic models within the region. Full article
Show Figures

Figure 1

16 pages, 4814 KiB  
Article
Vegetation Restoration Patterns Influence the Supply and Interrelations of Grassland Ecosystem Services in Karst Desertification Control
by Shuzhen Song, Xingyan Chen, Yuehua Song and Yongkuan Chi
Land 2024, 13(12), 2023; https://doi.org/10.3390/land13122023 - 27 Nov 2024
Cited by 1 | Viewed by 941
Abstract
An appropriate vegetation restoration pattern is crucial for maintaining and enhancing ecosystem functions and services in karst rocky desertification control areas. However, it is still unclear whether different vegetation restoration patterns will aggravate the trade-off of grassland ecosystem services in this area. This [...] Read more.
An appropriate vegetation restoration pattern is crucial for maintaining and enhancing ecosystem functions and services in karst rocky desertification control areas. However, it is still unclear whether different vegetation restoration patterns will aggravate the trade-off of grassland ecosystem services in this area. This study focuses on grassland ecosystems in the karst desertification control area, comparing artificial restoration measures (Dactylis glomerata single-species sowing grassland, DG; Lolium perenne single-species sowing grassland, LP; Lolium perenne + Trifolium repens mixed-species sowing grassland, LT) with natural restoration measures (NG). Seven ecosystem services (forage yield, soil retention, soil water conservation, carbon fixation and release, soil carbon storage, soil nutrient retention, and biodiversity conservation) as well as total ecosystem services were quantified using field monitoring data. The relationships between these services were evaluated through Spearman correlation analysis. The results showed that different vegetation restoration patterns significantly influenced the provisioning, regulating, and supporting services of the grassland ecosystem (p < 0.001). Three types of relationships were observed (trade-off, synergy, and neutral), but the trade-off relationship was not significant (p > 0.05). The total ecosystem service of LT (0.79) was significantly higher than that of NG (0.21), DG (0.36), and LP (0.41), with a significant synergy observed between soil nutrient conservation, forage yield, and carbon sequestration and oxygen release (p < 0.05). Therefore, LT is considered the best vegetation restoration practice for the karst rocky desertification control area compared with other patterns. This study provides theoretical guidance for vegetation restoration in degraded karst ecosystems. Full article
Show Figures

Figure 1

Back to TopTop