Effects of Artificial Vegetation Restoration Pattern on Soil Phosphorus Fractions in Alpine Desertification Grassland
Abstract
1. Introduction
2. Results
2.1. Characteristics of TPi and TPo in Soil
2.2. Characteristics of P Fractions Content
2.3. Characteristics of the Ratio of Soil P Fraction to TP
2.4. Correlation Between Soil P Fractions and Physicochemical Properties
3. Discussion
4. Materials and Methods
4.1. Site Description
4.2. Measurement Parameters
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinfurth, K.; Hirte, J.; Morel, C.; Buczko, U. Conversion equations between Olsen-P and other methods used to assess plant available soil phosphorus in Europe—A review. Geoderma 2021, 401, 115339. [Google Scholar] [CrossRef]
- Li, J.; Xie, T.; Zhu, H.; Zhou, J.; Li, C.; Xiong, W.; Xu, L.; Wu, Y.; He, Z.; Li, X. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma 2021, 404, 115376. [Google Scholar] [CrossRef]
- Maharjan, M.; Maranguit, D.; Kuzyakov, Y. Phosphorus fractions in subtropical soils depending on land use. Eur. J. Soil Biol. 2018, 87, 17–24. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Huang, Y.J.; Li, Y.G.; Han, Z.L.; Zhang, S.J.; Zhang, Q.; Ma, X.X.; Jing, C.Q.; Gao, Y.Z.; Zhou, X.B.; et al. Patch size indirectly influences the distribution characteristics of phosphorus fractions in temperate desert moss crust soils. Catena 2025, 251, 108821. [Google Scholar] [CrossRef]
- Deng, Y.X.; Zhao, H.X.; Zhang, X.N.; Li, X.T.; Chi, G.J. The dissipation of organophosphate esters mediated by ryegrass root exudate oxalic acid in soil: Analysis of enzymes activities, microorganism. Chemosphere 2024, 256, 141896. [Google Scholar] [CrossRef]
- Nakayama, Y.H.; Wade, J.; Margenot, A.J. Does soil phosphomonesterase activity reflect phosphorus pools estimated by Hedley phosphorus fractionation. Geoderma 2021, 401, 115279. [Google Scholar] [CrossRef]
- Slazak, A.; Freese, D.; Matos, E.S.; Hüttl, R.F. Soil organic phosphorus fraction in pine-oak forest stands in Northeastern Germany. Geoderma 2010, 158, 156–162. [Google Scholar] [CrossRef]
- Huang, L.M.; Jia, X.X.; Zhang, G.L.; Shao, M.A. Soil organic phosphorus transformation during ecosystem development: A re view. Plant Soil 2017, 417, 17–42. [Google Scholar] [CrossRef]
- Ma, M.; Zhu, Y.; Wei, Y.; Zhao, N. Soil nutrient and vegetation diversity patterns of alpine wetlands on the Qinghai-Tibetan Plateau. Sustainability 2021, 13, 6221. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, S.; Umreen, S.; Zhou, C. Soil phosphorus fractionation and its association with soil phosphate-solubilizing bacteria in a chronosequence of plant restoration. Ecol. Eng. 2021, 164, 106208. [Google Scholar] [CrossRef]
- Bizuti, D.T.G.; Soares, T.D.M.; Duarte, M.M.; Casagrande, J.C.; Moreno, V.D.S.; Peinado, F.J.M.; Medeiros, S.D.S.D.; Melis, J.; Schweizer, D.; Brancalion, P.H.S. Recovery of soil phosphorus on former bauxite mines through tropical forest restoration. Restor. Ecol. 2020, 28, 1237–1246. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Duan, C.; Chadwick, D.R.; Jones, D.L. Response of soil phosphorus fractions and fluxes to different plant restoration types in a subtropical mountain ecosystem. Catena 2020, 193, 104663. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Shi, Z.M.; Zhao, G.D. Effects of three forest restoration pathways on soil biologically based phosphorus in the subalpine of western Sichuan. Acta Ecol. Sin. 2021, 41, 2698–2708. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Shen, S.; Li, F. Heterogeneity of soil structure and fertility during desertification of alpine grassland in northwest Sichuan. Ecosphere 2020, 11, e03161. [Google Scholar] [CrossRef]
- Hu, G.Y.; Dong, Z.B.; Lu, J.F.; Yan, C.Z. The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau. Aeolian Res. 2015, 19, 275–281. [Google Scholar] [CrossRef]
- Sun, H.R.; Liu, J.Y.; Wu, J.H.; Hu, H.Y.; Chen, Q.B.; Fang, H.Y.; Tao, K. Effects of alpine grassland degradation on soil microbial community structure and metabolic activity in the Qinghai-Tibet Plateau. Appl. Soil Ecol. 2024, 200, 105458. [Google Scholar] [CrossRef]
- Dong, S.K.; Shang, Z.H.; Gao, J.X.; Boone, R.B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Li, W.L.; Shang, X.J.; Yan, H.P.; Xu, J.; Liang, T.G. Impact of restoration measures on plant and soil characteristics in the degraded alpine grasslands of the Qinghai Tibetan Plateau: A meta-analysis. Agric. Ecosyst. Environ. 2023, 347, 108394. [Google Scholar] [CrossRef]
- Shu, X.Y.; Liu, W.J.; Hu, Y.F.; Xia, L.L.; Fan, K.K.; Zhang, Y.Y.; Zhang, Y.L.; Zhou, W. Ecosystem multifunctionality and soil microbial communities in response to ecological restoration in an alpine degraded grassland. Front. Plant Sci. 2023, 14, 1173962. [Google Scholar] [CrossRef]
- Jiang, H.D.; Yang, N.R.; Qian, H.Y.; Chen, G.; Wang, W.; Lu, J.K.; Li, Y.C.; Hu, Y.F. Effects of different ecological restoration pattern on soil organic nitrogen components in alpine sand land. Agronomy 2024, 14, 680. [Google Scholar] [CrossRef]
- Wang, Y.R.; Lin, X.Y.; Hui, H.; Sun, X.D.; Chen, B.; Pan, Y.Y.; Chen, J.W.; Guan, Q.W. Effects of poplar plantation types on soil phosphorus fractions. Chin. J. Ecol. 2021, 40, 1549–1556. [Google Scholar] [CrossRef]
- Zhou, F.Y.; Zhang, X.Y.; Zhao, Z.H.; Wu, Y.L.; Lei, Z.Y. Effects of sand-fixing forest growth of Mongolian pine on soil phosphorus change. Acta Ecol. Sin. 2022, 42, 635–645. [Google Scholar] [CrossRef]
- Hou, E.; Tan, X.; Heenan, M. A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Sci. Data 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Lungmuana; Lalparmawii, E. Variation of phosphorus pools as affected by land use in acidic soil of eastern Himalayan region of India. Geoderma Reg. 2023, 35, e00739. [Google Scholar] [CrossRef]
- Banach-Szott, M.; Dziamski, A.; Markiewicz, M. Properties of humic acids in meadow soils irrigated with the slope-and-flooding system. Agronomy 2021, 11, 2553. [Google Scholar] [CrossRef]
- Zhao, F.Z.; Ren, C.J.; Han, X.H.; Yang, G.H.; Wang, J.; Doughty, R. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. For. Ecol. Manag. 2018, 427, 289–295. [Google Scholar] [CrossRef]
- Maranguit, D.; Guillaume, T.; Kuzyakov, Y. Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena 2017, 149, 385–393. [Google Scholar] [CrossRef]
- Cross, A.F.; Schlesinger, W.H. Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 2001, 52, 155–172. [Google Scholar] [CrossRef]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Guan, Z.H.; Cao, Z.N.; Li, X.G.; Kühn, P.; Hu, G.Z.; Scholten, T.; Zhu, J.X.; He, J.S. Effects of winter grazing and N addition on soil phosphorus fractions in an alpine grassland on the Qinghai-Tibet Plateau. Agric. Ecosyst. Environ. 2023, 357, 108700. [Google Scholar] [CrossRef]
- Shu, X.Y.; Hu, Y.H.; Liu, W.J.; Xia, L.; Zhang, Y.Y.; Zhou, W.; Liu, W.L.; Zhang, Y.L. Linking between soil properties, bacterial communities, enzyme activities, and soil organic carbon mineralization under ecological restoration in an alpine degraded grassland. Front. Microbiol. 2023, 14, 1131836. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Z.; Yang, J.J.; Liu, H.Y.; Sardans, J.; Zhang, Y.H.; Wang, X.B.; Wei, C.Z.; Lü, X.T.; Dijkstra, F.A.; Jiang, Y.; et al. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology 2022, 103, e3616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Shi, L.L.; Wen, D.Z.; Yu, K.L. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biol. Fertil. Soils 2016, 52, 41–51. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agrochemical Analysis Methods; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Sui, Y.S.; Thompson, M.L.; Shang, C. Fractionation of phosphorus in a mollisol amended with biosolids. Soil Sci. Soc. Am. J. 1999, 63, 1174–1180. [Google Scholar] [CrossRef]
Depth (cm) | Treatment | TPi (mg·kg−1) | TPo (mg·kg−1) | TP (g·kg−1) |
---|---|---|---|---|
0–20 | CK | 74.97 ± 6.40 b | 33.17 ± 10.37 b | 0.11 ± 0.00 b |
MG | 64.91 ± 9.66 b | 59.89 ± 12.16 a | 0.12 ± 0.02 a | |
SA | 91.02 ± 7.11 a | 35.61 ± 7.92 b | 0.13 ± 0.00 a | |
SG | 72.03 ± 7.30 b | 53.53 ± 5.19 a | 0.13 ± 0.01 a | |
20–40 | CK | 78.55 ± 4.01 a | 25.33 ± 5.38 c | 0.10 ± 0.01 c |
MG | 57.93 ± 10.86 b | 107.84 ± 13.10 a | 0.17 ± 0.02 a | |
SA | 79.94 ± 9.94 a | 50.19 ± 15.20 b | 0.13 ± 0.02 b | |
SG | 69.54 ± 4.71 ab | 53.82 ± 8.66 b | 0.12 ± 0.01 bc | |
40–60 | CK | 84.37 ± 6.69 a | 20.50 ± 5.58 c | 0.10 ± 0.01 c |
MG | 59.19 ± 9.12 b | 63.28 ± 13.41 b | 0.12 ± 0.01 b | |
SA | 78.50 ± 5.50 a | 54.55 ± 9.19 b | 0.13 ± 0.01 b | |
SG | 54.92 ± 7.18 b | 137.07 ± 20.76 a | 0.19 ± 0.01 a |
Index | TP | TPi | TPo | Resin-P | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | HCl-P | Residual-P |
---|---|---|---|---|---|---|---|---|---|---|
SWC | 0.444 ** | −0.289 * | 0.455 ** | 0.090 | 0.084 | 0.337 * | 0.193 | 0.497 ** | −0.503 ** | 0.231 |
BD | −0.386 ** | 0.590 ** | −0.522 ** | −0.184 | −0.152 | −0.584 ** | 0.401 ** | −0.457 ** | 0.503 ** | −0.385 ** |
pH | −0.460 ** | 0.176 | −0.426 ** | 0.116 | −0.121 | −0.295 * | −0.043 | −0.377 ** | 0.250 | −0.400 ** |
SOC | 0.733 ** | −0.639 ** | 0.812 ** | 0.457 ** | 0.420 ** | 0.633 ** | −0.469 ** | 0.702 ** | −0.593 ** | 0.761 ** |
TN | 0.794 ** | −0.726 ** | 0.892 ** | 0.504 ** | 0.410 ** | 0.762 ** | −0.508 ** | 0.751 ** | −0.678 ** | 0.841 ** |
Treatment | Elevation (m) | Slop (°) | Height (m) | Crown Breat (m) | Coverage (%) |
---|---|---|---|---|---|
CK | 3420 | <5 | - | - | <5 |
MG | 3416 | <5 | - | - | 94.3 ± 0.8 |
SA | 3422 | <5 | 1.52 ± 0.11 | 1.90 ± 0.13 | 6.6 ± 1.4 |
SG | 3417 | <5 | 1.64 ± 0.15 | 1.91 ± 0.14 | 81.4 ± 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, H.; Yang, N.; Jiang, H.; Li, Y.; Shen, A.; Hu, Y. Effects of Artificial Vegetation Restoration Pattern on Soil Phosphorus Fractions in Alpine Desertification Grassland. Plants 2025, 14, 1429. https://doi.org/10.3390/plants14101429
Qian H, Yang N, Jiang H, Li Y, Shen A, Hu Y. Effects of Artificial Vegetation Restoration Pattern on Soil Phosphorus Fractions in Alpine Desertification Grassland. Plants. 2025; 14(10):1429. https://doi.org/10.3390/plants14101429
Chicago/Turabian StyleQian, Hongyu, Nairui Yang, Haodong Jiang, Yinan Li, Ao Shen, and Yufu Hu. 2025. "Effects of Artificial Vegetation Restoration Pattern on Soil Phosphorus Fractions in Alpine Desertification Grassland" Plants 14, no. 10: 1429. https://doi.org/10.3390/plants14101429
APA StyleQian, H., Yang, N., Jiang, H., Li, Y., Shen, A., & Hu, Y. (2025). Effects of Artificial Vegetation Restoration Pattern on Soil Phosphorus Fractions in Alpine Desertification Grassland. Plants, 14(10), 1429. https://doi.org/10.3390/plants14101429