Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,008)

Search Parameters:
Keywords = governance framework

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 (registering DOI) - 1 Aug 2025
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

26 pages, 1263 KiB  
Article
Identifying Key Digital Enablers for Urban Carbon Reduction: A Strategy-Focused Study of AI, Big Data, and Blockchain Technologies
by Rongyu Pei, Meiqi Chen and Ziyang Liu
Systems 2025, 13(8), 646; https://doi.org/10.3390/systems13080646 (registering DOI) - 1 Aug 2025
Abstract
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this [...] Read more.
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this gap by proposing two research questions (RQs): (1) What are the key success factors for artificial intelligence, big data, and blockchain in urban carbon emission reduction? (2) How do these technologies interact and support the transition to low-carbon cities? To answer these questions, the study employs a hybrid methodological framework combining the decision-making trial and evaluation laboratory (DEMATEL) and interpretive structural modeling (ISM) techniques. The data were collected through structured expert questionnaires, enabling the identification and hierarchical analysis of twelve critical success factors (CSFs). Grounded in sustainability transitions theory and institutional theory, the CSFs are categorized into three dimensions: (1) digital infrastructure and technological applications; (2) digital transformation of industry and economy; (3) sustainable urban governance. The results reveal that e-commerce and sustainable logistics, the adoption of the circular economy, and cross-sector collaboration are the most influential drivers of digital-enabled decarbonization, while foundational elements such as smart energy systems and digital infrastructure act as key enablers. The DEMATEL-ISM approach facilitates a system-level understanding of the causal relationships and strategic priorities among the CSFs, offering actionable insights for urban planners, policymakers, and stakeholders committed to sustainable digital transformation and carbon neutrality. Full article
Show Figures

Figure 1

33 pages, 870 KiB  
Article
Decarbonizing Urban Transport: Policies and Challenges in Bucharest
by Adina-Petruța Pavel and Adina-Roxana Munteanu
Future Transp. 2025, 5(3), 99; https://doi.org/10.3390/futuretransp5030099 (registering DOI) - 1 Aug 2025
Abstract
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for [...] Read more.
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for 55 package, are reflected in Romania’s transport policies, with a focus on implementation challenges and urban outcomes in Bucharest. By combining policy analysis, stakeholder mapping, and comparative mobility indicators, the paper critically assesses Bucharest’s current reliance on private vehicles, underperforming public transport satisfaction, and limited progress on active mobility. The study develops a context-sensitive reform framework for the Romanian capital, grounded in transferable lessons from Western and Central European cities. It emphasizes coordinated metropolitan governance, public trust-building, phased car-restraint measures, and investment alignment as key levers. Rather than merely cataloguing policy intentions, the paper offers practical recommendations informed by systemic governance barriers and public attitudes. The findings will contribute to academic debates on urban mobility transitions in post-socialist cities and provide actionable insights for policymakers seeking to operationalize EU decarbonization goals at the metropolitan scale. Full article
Show Figures

Figure 1

33 pages, 1497 KiB  
Article
Beyond Compliance: How Disruptive Innovation Unleashes ESG Value Under Digital Institutional Pressure
by Fang Zhang and Jianhua Zhu
Systems 2025, 13(8), 644; https://doi.org/10.3390/systems13080644 (registering DOI) - 1 Aug 2025
Abstract
Amid intensifying global ESG regulations and the expanding influence of green finance, China’s digital economy policies have emerged as key institutional instruments for promoting corporate sustainability. Leveraging the implementation of the National Big Data Comprehensive Pilot Zone as a quasi-natural experiment, this study [...] Read more.
Amid intensifying global ESG regulations and the expanding influence of green finance, China’s digital economy policies have emerged as key institutional instruments for promoting corporate sustainability. Leveraging the implementation of the National Big Data Comprehensive Pilot Zone as a quasi-natural experiment, this study utilizes panel data of Chinese listed firms from 2009 to 2023 and applies multi-period Difference-in-Differences (DID) and Spatial DID models to rigorously identify the policy’s effects on corporate ESG performance. Empirical results indicate that the impact of digital economy policy is not exerted through a direct linear pathway but operates via three institutional mechanisms, enhanced information transparency, eased financing constraints, and expanded fiscal support, collectively constructing a logic of “institutional embedding–governance restructuring.” Moreover, disruptive technological innovation significantly amplifies the effects of the transparency and fiscal mechanisms, but exhibits no statistically significant moderating effect on the financing constraint pathway, suggesting a misalignment between innovation heterogeneity and financial responsiveness. Further heterogeneity analysis confirms that the policy effect is concentrated among firms characterized by robust governance structures, high levels of property rights marketization, and greater digital maturity. This study contributes to the literature by developing an integrated moderated mediation framework rooted in institutional theory, agency theory, and dynamic capabilities theory. The findings advance the theoretical understanding of ESG policy transmission by unpacking the micro-foundations of institutional response under digital policy regimes, while offering actionable insights into the strategic alignment of digital transformation and sustainability-oriented governance. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

29 pages, 540 KiB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 (registering DOI) - 1 Aug 2025
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

22 pages, 1968 KiB  
Article
Evaluating the Implementation of Information Technology Audit Systems Within Tax Administration: A Risk Governance Perspective for Enhancing Digital Fiscal Integrity
by Murat Umbet, Daulet Askarov, Kristina Rudžionienė, Česlovas Christauskas and Laura Alikulova
J. Risk Financial Manag. 2025, 18(8), 422; https://doi.org/10.3390/jrfm18080422 (registering DOI) - 1 Aug 2025
Abstract
This study evaluates the impact of digital systems and IT audit frameworks on tax performance and integrity within tax administrations. Using international data from organizations like the World Bank, OECD (Organisation for Economic Co-operation and Development), and IMF (International Monetary Fund), the research [...] Read more.
This study evaluates the impact of digital systems and IT audit frameworks on tax performance and integrity within tax administrations. Using international data from organizations like the World Bank, OECD (Organisation for Economic Co-operation and Development), and IMF (International Monetary Fund), the research examines the relationship between tax revenue as a percentage of GDP, digital infrastructure, corruption perception, e-government development, and cybersecurity readiness. Quantitative analysis, including correlation, regression, and clustering methods, reveals a strong positive relationship between digital maturity, e-governance, and tax performance. Countries with advanced digital governance systems and robust IT audit frameworks, such as COBIT, tend to show higher tax revenues and lower corruption levels. The study finds that e-government development and anti-corruption measures explain over 40% of the variance in tax performance. Cluster analysis distinguishes between digitally advanced, high-compliance countries and those lagging in IT adoption. The findings suggest that digital transformation strengthens fiscal integrity by automating compliance and reducing human contact, which in turn mitigates bribery risks and enhances fraud detection. The study highlights the need for adopting international best practices to guide the digitalization of tax administrations, improving efficiency, transparency, and trust in public finance. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

38 pages, 1463 KiB  
Article
Industry 4.0 and Collaborative Networks: A Goals- and Rules-Oriented Approach Using the 4EM Method
by Thales Botelho de Sousa, Fábio Müller Guerrini, Meire Ramalho de Oliveira and José Roberto Herrera Cantorani
Platforms 2025, 3(3), 14; https://doi.org/10.3390/platforms3030014 (registering DOI) - 1 Aug 2025
Abstract
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business [...] Read more.
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business Rules and Goals Models to operationalize Industry 4.0 solutions through enterprise collaboration. Using the For Enterprise Modeling (4EM) method, the research integrates qualitative insights from expert opinions, including interviews with 12 professionals (academics, industry professionals, and consultants) from Brazilian manufacturing sectors. The Goals Model identifies five main objectives—competitiveness, efficiency, flexibility, interoperability, and real-time collaboration—while the Business Rules Model outlines 18 actionable recommendations, such as investing in digital infrastructure, upskilling employees, and standardizing information technology systems. The results reveal that cultural resistance, limited resources, and knowledge gaps are critical barriers, while interoperability and stakeholder integration emerge as enablers of digital transformation. The study concludes that successfully adopting Industry 4.0 requires technological investments, organizational alignment, structured governance, and collaborative ecosystems. These models provide a practical roadmap for companies navigating the complexities of Industry 4.0, emphasizing adaptability and cross-functional synergy. The research contributes to the literature on collaborative networks by connecting theoretical frameworks with actionable enterprise-level strategies. Full article
Show Figures

Figure 1

29 pages, 1125 KiB  
Article
Orchestrating Power: The Cultural–Institutional Nexus and the Rise of Digital Innovation Ecosystems in Great Power Rivalry
by Deganit Paikowsky, Dmitry Payson and Yaacov Falkov
Systems 2025, 13(8), 643; https://doi.org/10.3390/systems13080643 (registering DOI) - 1 Aug 2025
Abstract
This article examines how digital innovation ecosystems have emerged as strategic institutions of power in contemporary world politics. It argues that, unlike Cold War technological rivalries driven by centralized, state-led control, today’s digital competition depends on states’ capacity to orchestrate scalable, multistakeholder ecosystems. [...] Read more.
This article examines how digital innovation ecosystems have emerged as strategic institutions of power in contemporary world politics. It argues that, unlike Cold War technological rivalries driven by centralized, state-led control, today’s digital competition depends on states’ capacity to orchestrate scalable, multistakeholder ecosystems. Using a cultural–institutional framework, we explain how differences in strategic culture and institutional governance impact the ecosystem’s vitality and performance. A qualitative comparative analysis of the United States, China, and Russia reveals that constructive orchestration, aligning state institutions with generative, commercial-to-national innovation flows, enhances digital leadership, whereas rigid, obstructive governance limits it. This highlights ecosystem governance as a critical dimension of statecraft in the digital age. The findings underscore that the positions of great powers in the global technological hierarchy depend not only on resources or capabilities but also on the effectiveness of ecosystem governance as an evolving instrument of geopolitical power. Full article
Show Figures

Figure 1

12 pages, 736 KiB  
Article
Hybrid Framework of Fermi–Dirac Spin Hydrodynamics
by Zbigniew Drogosz
Physics 2025, 7(3), 31; https://doi.org/10.3390/physics7030031 (registering DOI) - 1 Aug 2025
Abstract
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac [...] Read more.
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac statistics are obtained and compared with the earlier derived versions where the Boltzmann approximation was used. The expressions in the two cases are found to have the same form, but the coefficients are shown to be governed by different functions. The relative differences between the tensor coefficients in the Fermi–Dirac and Boltzmann cases are found to grow exponentially with the baryon chemical potential. In the proposed formalism, nonequilibrium processes are studied including mathematically possible dissipative corrections. Standard conservation laws are applied, and the condition of positive entropy production is shown to allow for the transfer between the spin and orbital parts of angular momentum. Full article
(This article belongs to the Special Issue High Energy Heavy Ion Physics—Zimányi School 2024)
Show Figures

Figure 1

16 pages, 5622 KiB  
Article
Molecular Dynamics Simulations on the Deformation Behaviors and Mechanical Properties of the γ/γ′ Superalloy with Different Phase Volume Fractions
by Xinmao Qin, Wanjun Yan, Yilong Liang and Fei Li
Crystals 2025, 15(8), 706; https://doi.org/10.3390/cryst15080706 (registering DOI) - 31 Jul 2025
Abstract
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, [...] Read more.
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, high-strain-rate service environments. Our investigation revealed that the tensile behavior of the superalloy depends critically on the Vγ. When the Vγ increased from 13.5 to 67%, the system’s tensile strength exhibited a non-monotonic response, peaking at Vγ = 40.3% before progressively decreasing. Conversely, the maximum uniform plastic strain decreased linearly and significantly when Vγ increased. These results establish an atomistically informed framework that elucidates the composition–microstructure–property relationships in γ(Ni)/γ(Ni3Al) superalloys, specifically addressing how Vγ governs variations in deformation mechanisms and mechanical performance. Furthermore, this work provides quantitative design paradigm for optimizing γ(Ni3Al) precipitate architecture and compositional tuning in the Ni-based γ(Ni)/γ(Ni3Al) superalloy. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

34 pages, 530 KiB  
Article
Optimal Governance for Post-Concession Logistics Infrastructure: A Comparative Study of Self-Operation vs. Delegation Under Information Asymmetry
by Minghua Xiong
Sustainability 2025, 17(15), 6982; https://doi.org/10.3390/su17156982 (registering DOI) - 31 Jul 2025
Abstract
Public–private partnership (PPP) logistics infrastructure projects have become increasingly prevalent globally. Consequently, the effective management of these projects as their concession periods expire presents a crucial challenge for governments, vital for the sustainable management of PPP logistics infrastructure. This study addresses this challenge [...] Read more.
Public–private partnership (PPP) logistics infrastructure projects have become increasingly prevalent globally. Consequently, the effective management of these projects as their concession periods expire presents a crucial challenge for governments, vital for the sustainable management of PPP logistics infrastructure. This study addresses this challenge by focusing on the pivotal post-concession decision: whether the government should self-operate the mature logistics infrastructure or re-delegate its management to a private entity. Our theoretical model, built on a principal–agent framework, first establishes a social welfare baseline under government self-operation and then analyzes delegated operation under symmetric information, identifying efficiency frontiers. Under symmetric information, we find that government self-operation is more advantageous when its own operational efficiency is sufficiently high, irrespective of the private enterprise’s efficiency; conversely, delegating to an efficient private enterprise is optimal only when government operational efficiency is low. We also demonstrate that if the government can directly specify the demand quantity and service level and delegates operation via a fixed fee, the enterprise can be incentivized to align with the social optimum. However, under asymmetric information, potential welfare gains from delegation are inevitably offset by informational rent and output distortion. We further uncover non-monotonic impacts of parameters like the proportion of low-cost firms on social welfare loss and demonstrate how information asymmetry can indirectly compromise the long-term resilience of the infrastructure. Ultimately, our work asserts that delegation is only superior if its potential efficiency gains sufficiently offset the inherent losses stemming from information asymmetry. Full article
(This article belongs to the Section Sustainable Transportation)
21 pages, 1433 KiB  
Article
Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions
by Qaiser Khan, Peyman Pourafshary, Fahimeh Hadavimoghaddam and Reza Khoramian
Appl. Sci. 2025, 15(15), 8536; https://doi.org/10.3390/app15158536 (registering DOI) - 31 Jul 2025
Abstract
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), [...] Read more.
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), Gradient Boost Regressor (GBR), and Extreme Gradient Boosting (XGBoost)—to predict DC based on pressure, temperature, and salinity. The dataset, comprising 176 data points, spans pressures from 0.10 to 30.00 MPa, temperatures from 286.15 to 398.00 K, salinities from 0.00 to 6.76 mol/L, and DC values from 0.13 to 4.50 × 10−9 m2/s. The data was split into 80% for training and 20% for testing to ensure reliable model evaluation. Model performance was assessed using R2, RMSE, and MAE. The RF model demonstrated the best performance, with an R2 of 0.95, an RMSE of 0.03, and an MAE of 0.11 on the test set, indicating high predictive accuracy and generalization capability. In comparison, GBR achieved an R2 of 0.925, and XGBoost achieved an R2 of 0.91 on the test set. Feature importance analysis consistently identified temperature as the most influential factor, followed by salinity and pressure. This study highlights the potential of ML models for predicting CO2 diffusion in brine, providing a robust, data-driven framework for optimizing CO2-EOR processes and carbon storage strategies. The findings underscore the critical role of temperature in diffusion behavior, offering valuable insights for future modeling and operational applications. Full article
23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 (registering DOI) - 31 Jul 2025
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
34 pages, 1543 KiB  
Article
Smart Money, Greener Future: AI-Enhanced English Financial Text Processing for ESG Investment Decisions
by Junying Fan, Daojuan Wang and Yuhua Zheng
Sustainability 2025, 17(15), 6971; https://doi.org/10.3390/su17156971 (registering DOI) - 31 Jul 2025
Abstract
Emerging markets face growing pressures to integrate sustainable English business practices while maintaining economic growth, particularly in addressing environmental challenges and achieving carbon neutrality goals. English Financial information extraction becomes crucial for supporting green finance initiatives, Environmental, Social, and Governance (ESG) compliance, and [...] Read more.
Emerging markets face growing pressures to integrate sustainable English business practices while maintaining economic growth, particularly in addressing environmental challenges and achieving carbon neutrality goals. English Financial information extraction becomes crucial for supporting green finance initiatives, Environmental, Social, and Governance (ESG) compliance, and sustainable investment decisions in these markets. This paper presents FinATG, an AI-driven autoregressive framework for extracting sustainability-related English financial information from English texts, specifically designed to support emerging markets in their transition toward sustainable development. The framework addresses the complex challenges of processing ESG reports, green bond disclosures, carbon footprint assessments, and sustainable investment documentation prevalent in emerging economies. FinATG introduces a domain-adaptive span representation method fine-tuned on sustainability-focused English financial corpora, implements constrained decoding mechanisms based on green finance regulations, and integrates FinBERT with autoregressive generation for end-to-end extraction of environmental and governance information. While achieving competitive performance on standard benchmarks, FinATG’s primary contribution lies in its architecture, which prioritizes correctness and compliance for the high-stakes financial domain. Experimental validation demonstrates FinATG’s effectiveness with entity F1 scores of 88.5 and REL F1 scores of 80.2 on standard English datasets, while achieving superior performance (85.7–86.0 entity F1, 73.1–74.0 REL+ F1) on sustainability-focused financial datasets. The framework particularly excels in extracting carbon emission data, green investment relationships, and ESG compliance indicators, achieving average AUC and RGR scores of 0.93 and 0.89 respectively. By automating the extraction of sustainability metrics from complex English financial documents, FinATG supports emerging markets in meeting international ESG standards, facilitating green finance flows, and enhancing transparency in sustainable business practices, ultimately contributing to their sustainable development goals and climate action commitments. Full article
Back to TopTop