Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = glycan remodeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2439 KiB  
Article
CtGH76, a Glycoside Hydrolase 76 from Chaetomium thermophilum, with Elongated Glycan-Binding Canyon
by Silvana Ruth Ruppenthal, Wang Po-Hsun, Mohamed Watad, Christian Joshua Rosner, Marian Samuel Vogt, Markus Friedrich, Anna-Lisa Voigt, Angelique Petz, Petra Gnau and Lars-Oliver Essen
Int. J. Mol. Sci. 2025, 26(14), 6589; https://doi.org/10.3390/ijms26146589 - 9 Jul 2025
Viewed by 399
Abstract
Fungal cell walls, composed of polysaccharides and proteins, play critical roles in adaptation, cell division, and protection against environmental stress. Their polyglucan components are continuously remodeled by various types of glycosyl hydrolases (GHs) and transferases (GTs). In Saccharomyces cerevisiae and other ascomycetes, enzymes [...] Read more.
Fungal cell walls, composed of polysaccharides and proteins, play critical roles in adaptation, cell division, and protection against environmental stress. Their polyglucan components are continuously remodeled by various types of glycosyl hydrolases (GHs) and transferases (GTs). In Saccharomyces cerevisiae and other ascomycetes, enzymes of the Dfg5 subfamily, which belong as GTs to the GH76 family, cleave an α1,4 linkage between glucosamine and mannose to facilitate covalent linkage of GPI-anchored proteins to the cell wall’s polyglucans. In contrast, the functions of other fungal GH76 subfamilies are not understood. We characterized CtGH76 from the sordariomycete Chaetomium thermophilum, a member of the Fungi/Bacteria-mixed GH76 subfamily, revealing conserved structural features and functional divergence within the GH76 family. Notably, our structural characterization by X-ray crystallography combined with glycan fragment screening indicated that CtGH76 can recognize GPI-anchors like members of the Dfg5 subfamily but shows a broader promiscuity toward other glycans with central α1,6-mannobiose motifs due to the presence of an elongated glycan-binding canyon. These findings provide new insights into GH76 enzyme diversity and fungal cell wall maturation. Full article
Show Figures

Graphical abstract

16 pages, 556 KiB  
Article
Synthesis of Azide-Labeled β-Lactosylceramide Analogs Containing Different Lipid Chains as Useful Glycosphingolipid Probes
by Basant Mohamed, Rajendra Rohokale, Xin Yan, Amany M. Ghanim, Nermine A. Osman, Hanan A. Abdel-Fattah and Zhongwu Guo
Molecules 2025, 30(13), 2667; https://doi.org/10.3390/molecules30132667 - 20 Jun 2025
Viewed by 940
Abstract
β-Lactosylceramide (β-LacCer) is not only a key intermediate in the biosynthesis of complex glycosphingolipids (GSLs) but also an important regulator of many biological processes. To facilitate the investigation of β-LacCer and other GSLs, a series of β-LacCer analogs with an azido group at [...] Read more.
β-Lactosylceramide (β-LacCer) is not only a key intermediate in the biosynthesis of complex glycosphingolipids (GSLs) but also an important regulator of many biological processes. To facilitate the investigation of β-LacCer and other GSLs, a series of β-LacCer analogs with an azido group at the 6-C-position of the D-galactose in lactose and varied forms of the ceramide moiety were synthesized from commercially available lactose in sixteen linear steps by a versatile and diversity-oriented strategy, which engaged lipid remodeling and glycan functionalization at the final stage. These azide-labeled β-LacCer analogs are flexible and universal platforms that are suitable for further functionalization with other molecular tags via straightforward and biocompatible click chemistry, thereby paving the way for their application to various biological studies. Full article
Show Figures

Graphical abstract

14 pages, 1143 KiB  
Review
The Coordinated Changes in Platelet Glycan Patterns with Blood Serotonin and Exosomes
by Fusun Kilic
Int. J. Mol. Sci. 2024, 25(22), 11940; https://doi.org/10.3390/ijms252211940 - 6 Nov 2024
Viewed by 1087
Abstract
The structures of glycans, specifically their terminal positions, play an important role as ligands for receptors in regulating the adhesion ability of platelets. Recent advances in our understanding of free/unbound serotonin (5-HT) in blood plasma at supraphysiological levels implicate it as one of [...] Read more.
The structures of glycans, specifically their terminal positions, play an important role as ligands for receptors in regulating the adhesion ability of platelets. Recent advances in our understanding of free/unbound serotonin (5-HT) in blood plasma at supraphysiological levels implicate it as one of the most profound influencers in remodeling the platelet’s surface N-glycans. Proteomic analysis of the membrane vesicles identified enzymes, specifically glycosyltransferases, only on the surface of the platelets isolated from the supraphysiological level of 5-HT-containing blood plasma. However, these enzymes can only be effective on the cell surface under certain biological conditions, such as the level of their substrates, temperature, and pH of the environment. We hypothesize that exosomes released from various cells coordinate the required criteria for the enzymatic reaction on the platelet surface. The elevated plasma 5-HT level also accelerates the release of exosomes from various cells, as reported. This review summarizes the findings from a wide range of literature and proposes mechanisms to coordinate the exosomes and plasma 5-HT in remodeling the structures of N-glycans to make platelets more prone to aggregation. Full article
(This article belongs to the Special Issue Emerging Roles for Serotonin in Regulating Metabolism)
Show Figures

Figure 1

18 pages, 806 KiB  
Review
The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments
by Angelika Muchowicz, Agnieszka Bartoszewicz and Zbigniew Zaslona
Biomolecules 2024, 14(5), 513; https://doi.org/10.3390/biom14050513 - 24 Apr 2024
Cited by 4 | Viewed by 2445
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish [...] Read more.
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment. Full article
Show Figures

Figure 1

14 pages, 959 KiB  
Article
Investigation of Glycosaminoglycans in Urine and Their Alteration in Patients with Juvenile Idiopathic Arthritis
by Elżbieta Lato-Kariakin, Kornelia Kuźnik-Trocha, Anna Gruenpeter, Katarzyna Komosińska-Vassev, Krystyna Olczyk and Katarzyna Winsz-Szczotka
Biomolecules 2023, 13(12), 1737; https://doi.org/10.3390/biom13121737 - 2 Dec 2023
Cited by 1 | Viewed by 1818
Abstract
(1) Background: In this study, we evaluated the modulation of urine glycosaminoglycans (GAGs), which resulted from etanercept (ETA) therapy in patients with juvenile idiopathic arthritis (JIA) in whom methotrexate therapy failed to improve their clinical condition. (2) Methods: The sulfated GAGs (sGAGs, by [...] Read more.
(1) Background: In this study, we evaluated the modulation of urine glycosaminoglycans (GAGs), which resulted from etanercept (ETA) therapy in patients with juvenile idiopathic arthritis (JIA) in whom methotrexate therapy failed to improve their clinical condition. (2) Methods: The sulfated GAGs (sGAGs, by complexation with blue 1,9-dimethylmethylene), including chondroitin–dermatan sulfate (CS/DS) and heparan sulfate (HS), as well as non-sulfated hyaluronic acid (HA, using the immunoenzymatic method), were determined in the blood of 89 children, i.e., 30 healthy children and 59 patients with JIA both before and during two years of ETA treatment. (3) Results: We confirmed the remodeling of the urinary glycan profile of JIA patients. The decrease in the excretion of sGAGs (p < 0.05), resulting from a decrease in the concentration of the dominant fraction in the urine, i.e., CS/DS (p < 0.05), not compensated by an increase in the concentration of HS (p < 0.000005) and HA (p < 0.0005) in the urine of patients with the active disease, was found. The applied biological therapy, leading to clinical improvement in patients, at the same time, did not contribute to normalization of the concentration of sGAGs (p < 0.01) in the urine of patients, as well as CS/DS (p < 0.05) in the urine of sick girls, while it promoted equalization of HS and HA concentrations. These results indicate an inhibition of the destruction of connective tissue structures but do not indicate their complete regeneration. (4) Conclusions: The metabolisms of glycans during JIA, reflected in their urine profile, depend on the patient’s sex and the severity of the inflammatory process. The remodeling pattern of urinary glycans observed in patients with JIA indicates the different roles of individual types of GAGs in the pathogenesis of osteoarticular disorders in sick children. Furthermore, the lack of normalization of urinary GAG levels in treated patients suggests the need for continued therapy and continuous monitoring of its effectiveness, which will contribute to the complete regeneration of the ECM components of the connective tissue and thus protect the patient against possible disability. Full article
(This article belongs to the Special Issue Hyaluronic Acid and Proteoglycans: Basic and Biomedical Applications)
Show Figures

Figure 1

14 pages, 2859 KiB  
Article
Evaluation of Two Chemoenzymatic Glycan Remodeling Approaches to Generate Site-Specific Antibody–Drug Conjugates
by Qiang Yang, He Chen, Chong Ou, Zhihao Zheng, Xiao Zhang, Yunpeng Liu, Guanghui Zong and Lai-Xi Wang
Antibodies 2023, 12(4), 71; https://doi.org/10.3390/antib12040071 - 3 Nov 2023
Cited by 3 | Viewed by 4427
Abstract
Fc-glycosite-specific antibody–drug conjugation represents a promising direction for the preparation of site-specific antibody–drug conjugates (ADCs). In the present research, we conducted a systemic evaluation of two endoglycosidase-catalyzed chemoenzymatic glycoengineering technologies to prepare glycosite-specific ADCs. In the first two-step approach, the antibody was deglycosylated [...] Read more.
Fc-glycosite-specific antibody–drug conjugation represents a promising direction for the preparation of site-specific antibody–drug conjugates (ADCs). In the present research, we conducted a systemic evaluation of two endoglycosidase-catalyzed chemoenzymatic glycoengineering technologies to prepare glycosite-specific ADCs. In the first two-step approach, the antibody was deglycosylated and then reglycosylated with a modified intact N-glycan oxazoline. In the second one-pot approach, antibodies were deglycosylated and simultaneously glycosylated with a functionalized disaccharide oxazoline. For the comprehensive evaluation, we first optimized and scaled-up the preparation of azido glycan oxazolines. Afterwards, we proved that the one-pot glycan-remodeling approach was efficient for all IgG subclasses. Subsequently, we assembled respective ADCS using two technology routes, with two different linker-payloads combinations, and performed systemic in vitro and in vivo evaluations. All the prepared ADCs achieved high homogeneity and illustrated excellent stability in buffers with minimum aggregates, and exceptional stability in rat serum. All ADCs displayed a potent killing of BT-474 breast cancer cells. Moving to the mouse study, the ADCs prepared from two technology routes displayed potent and similar efficacy in a BT-474 xenograft model, which was comparable to an FDA-approved ADC generated from random conjugation. These ADCs also demonstrated excellent safety and did not cause body weight loss at the tested dosages. Full article
Show Figures

Figure 1

14 pages, 1009 KiB  
Article
Physical Exercise Induces Significant Changes in Immunoglobulin G N-Glycan Composition in a Previously Inactive, Overweight Population
by Nina Šimunić-Briški, Robert Zekić, Vedran Dukarić, Mateja Očić, Azra Frkatović-Hodžić, Helena Deriš, Gordan Lauc and Damir Knjaz
Biomolecules 2023, 13(5), 762; https://doi.org/10.3390/biom13050762 - 27 Apr 2023
Cited by 7 | Viewed by 3596
Abstract
Regular exercise improves health, modulating the immune system and impacting inflammatory status. Immunoglobulin G (IgG) N-glycosylation reflects changes in inflammatory status; thus, we investigated the impact of regular exercise on overall inflammatory status by monitoring IgG N-glycosylation in a previously inactive, middle-aged, overweight [...] Read more.
Regular exercise improves health, modulating the immune system and impacting inflammatory status. Immunoglobulin G (IgG) N-glycosylation reflects changes in inflammatory status; thus, we investigated the impact of regular exercise on overall inflammatory status by monitoring IgG N-glycosylation in a previously inactive, middle-aged, overweight and obese population (50.30 ± 9.23 years, BMI 30.57 ± 4.81). Study participants (N = 397) underwent one of three different exercise programs lasting three months with blood samples collected at baseline and at the end of intervention. After chromatographically profiling IgG N-glycans, linear mixed models with age and sex adjustment were used to investigate exercise effects on IgG glycosylation. Exercise intervention induced significant changes in IgG N-glycome composition. We observed an increase in agalactosylated, monogalctosylated, asialylated and core-fucosylated N-glycans (padj = 1.00 × 10−4, 2.41 × 10−25, 1.51 × 10−21 and 3.38 × 10−30, respectively) and a decrease in digalactosylated, mono- and di-sialylated N-glycans (padj = 4.93 × 10−12, 7.61 × 10−9 and 1.09 × 10−28, respectively). We also observed a significant increase in GP9 (glycan structure FA2[3]G1, β = 0.126, padj = 2.05 × 10−16), previously reported to have a protective cardiovascular role in women, highlighting the importance of regular exercise for cardiovascular health. Other alterations in IgG N-glycosylation reflect an increased pro-inflammatory IgG potential, expected in a previously inactive and overweight population, where metabolic remodeling is in the early stages due to exercise introduction. Full article
(This article belongs to the Special Issue Protein Glycosylation and Human Diseases)
Show Figures

Figure 1

21 pages, 3630 KiB  
Article
Black Poplar (Populus nigra L.) Root Extracellular Trap, Structural and Molecular Remodeling in Response to Osmotic Stress
by Océane Busont, Gaëlle Durambur, Sophie Bernard, Carole Plasson, Camille Joudiou, Laura Baude, Françoise Chefdor, Christiane Depierreux, François Héricourt, Mélanie Larcher, Sonia Malik, Isabelle Boulogne, Azeddine Driouich, Sabine Carpin and Frédéric Lamblin
Cells 2023, 12(6), 858; https://doi.org/10.3390/cells12060858 - 9 Mar 2023
Cited by 5 | Viewed by 3027
Abstract
The root extracellular trap (RET) consists of root-associated, cap-derived cells (root AC-DCs) and their mucilaginous secretions, and forms a structure around the root tip that protects against biotic and abiotic stresses. However, there is little information concerning the changes undergone by the RET [...] Read more.
The root extracellular trap (RET) consists of root-associated, cap-derived cells (root AC-DCs) and their mucilaginous secretions, and forms a structure around the root tip that protects against biotic and abiotic stresses. However, there is little information concerning the changes undergone by the RET during droughts, especially for tree species. Morphological and immunocytochemical approaches were used to study the RET of black poplar (Populus nigra L.) seedlings grown in vitro under optimal conditions (on agar-gelled medium) or when polyethylene glycol-mediated (PEG6000—infused agar-gelled medium) was used to mimic drought conditions through osmotic stress. Under optimal conditions, the root cap released three populations of individual AC-DC morphotypes, with a very low proportion of spherical morphotypes, and equivalent proportions of intermediate and elongated morphotypes. Immunolabeling experiments using anti-glycan antibodies specific to cell wall polysaccharide and arabinogalactan protein (AGP) epitopes revealed the presence of homogalacturonan (HG), galactan chains of rhamnogalacturonan-I (RG-I), and AGPs in root AC-DC cell walls. The data also showed the presence of xylogalacturonan (XGA), xylan, AGPs, and low levels of arabinans in the mucilage. The findings also showed that under osmotic stress conditions, both the number of AC-DCs (spherical and intermediate morphotypes) and the total quantity of mucilage per root tip increased, whereas the mucilage was devoid of the epitopes associated with the polysaccharides RG-I, XGA, xylan, and AGPs. Osmotic stress also led to reduced root growth and increased root expression of the P5CS2 gene, which is involved in proline biosynthesis and cellular osmolarity maintenance (or preservation) in aerial parts. Together, our findings show that the RET is a dynamic structure that undergoes pronounced structural and molecular remodeling, which might contribute to the survival of the root tip under osmotic conditions. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

19 pages, 1252 KiB  
Review
Neuraminidases—Key Players in the Inflammatory Response after Pathophysiological Cardiac Stress and Potential New Therapeutic Targets in Cardiac Disease
by Maren Heimerl, Thomas Gausepohl, Julia H. Mueller and Melanie Ricke-Hoch
Biology 2022, 11(8), 1229; https://doi.org/10.3390/biology11081229 - 17 Aug 2022
Cited by 9 | Viewed by 3845
Abstract
Glycoproteins and glycolipids on the cell surfaces of vertebrates and higher invertebrates contain α-keto acid sugars called sialic acids, terminally attached to their glycan structures. The actual level of sialylation, regulated through enzymatic removal of the latter ones by NEU enzymes, highly affects [...] Read more.
Glycoproteins and glycolipids on the cell surfaces of vertebrates and higher invertebrates contain α-keto acid sugars called sialic acids, terminally attached to their glycan structures. The actual level of sialylation, regulated through enzymatic removal of the latter ones by NEU enzymes, highly affects protein-protein, cell-matrix and cell-cell interactions. Thus, their regulatory features affect a large number of different cell types, including those of the immune system. Research regarding NEUs within heart and vessels provides new insights of their involvement in the development of cardiovascular pathologies and identifies mechanisms on how inhibiting NEU enzymes can have a beneficial effect on cardiac remodelling and on a number of different cardiac diseases including CMs and atherosclerosis. In this regard, a multitude of clinical studies demonstrated the potential of N-acetylneuraminic acid (Neu5Ac) to serve as a biomarker following cardiac diseases. Anti-influenza drugs i.e., zanamivir and oseltamivir are viral NEU inhibitors, thus, they block the enzymatic activity of NEUs. When considering the improvement in cardiac function in several different cardiac disease animal models, which results from NEU reduction, the inhibition of NEU enzymes provides a new potential therapeutic treatment strategy to treat cardiac inflammatory pathologies, and thus, administrate cardioprotection. Full article
Show Figures

Figure 1

19 pages, 3137 KiB  
Article
Oxygen-Dependent Changes in the N-Glycome of Murine Pulmonary Endothelial Cells
by Akos Tiboldi, Johannes Führer, Wolfgang Schaubmayr, Eva Hunyadi-Gulyas, Marie Louise Zach, Beatrix Hochreiter, Andreas Spittler, Roman Ullrich, Klaus Markstaller, Friedrich Altmann, Klaus Ulrich Klein and Verena Tretter
Antioxidants 2021, 10(12), 1947; https://doi.org/10.3390/antiox10121947 - 4 Dec 2021
Cited by 7 | Viewed by 3060
Abstract
Supplemental oxygen is frequently used together with mechanical ventilation to achieve sufficient blood oxygenation. Despite the undoubted benefits, it is vigorously debated whether too much oxygen can also have unpredicted side-effects. Uncertainty is also due to the fact that the molecular mechanisms are [...] Read more.
Supplemental oxygen is frequently used together with mechanical ventilation to achieve sufficient blood oxygenation. Despite the undoubted benefits, it is vigorously debated whether too much oxygen can also have unpredicted side-effects. Uncertainty is also due to the fact that the molecular mechanisms are still insufficiently understood. The lung endothelium is covered with an exceptionally broad glycocalyx, carrying N- and O-glycans, proteoglycans, glycolipids and glycosaminoglycans. Glycan structures are not genetically determined but depend on the metabolic state and the expression level and activity of biosynthetic and glycan remodeling enzymes, which can be influenced by oxygen and the redox status of the cell. Altered glycan structures can affect cell interactions and signaling. In this study, we investigated the effect of different oxygen conditions on aspects of the glycobiology of the pulmonary endothelium with an emphasis on N-glycans and terminal sialylation using an in vitro cell culture system. We combined a proteomic approach with N-glycan structure analysis by LC-MS, qRT-PCR, sialic acid analysis and lectin binding to show that constant and intermittent hyperoxia induced time dependent changes in global and surface glycosylation. An siRNA approach identified St6gal1 as being primarily responsible for the early transient increase of α2-6 sialylated structures in response to hyperoxia. Full article
(This article belongs to the Special Issue Cellular Oxidative Stress)
Show Figures

Figure 1

13 pages, 2874 KiB  
Article
State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis
by Evolène Deslignière, Anthony Ehkirch, Bastiaan L. Duivelshof, Hanna Toftevall, Jonathan Sjögren, Davy Guillarme, Valentina D’Atri, Alain Beck, Oscar Hernandez-Alba and Sarah Cianférani
Pharmaceuticals 2021, 14(6), 498; https://doi.org/10.3390/ph14060498 - 24 May 2021
Cited by 24 | Viewed by 6521
Abstract
Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). [...] Read more.
Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines. Full article
(This article belongs to the Special Issue Antibody-Drug Conjugates (ADC): 2021)
Show Figures

Graphical abstract

17 pages, 2687 KiB  
Article
PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti
by Jinglan Wang, Laura Alvarez, Silvia Bulgheresi, Felipe Cava and Tanneke den Blaauwen
Antibiotics 2021, 10(3), 274; https://doi.org/10.3390/antibiotics10030274 - 9 Mar 2021
Cited by 2 | Viewed by 3453
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the [...] Read more.
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle. Full article
(This article belongs to the Special Issue The Role of the Cell Wall in Host-Microbe Interactions)
Show Figures

Figure 1

19 pages, 1192 KiB  
Review
Targeting the “Sweet Side” of Tumor with Glycan-Binding Molecules Conjugated-Nanoparticles: Implications in Cancer Therapy and Diagnosis
by Nora Bloise, Mohammad Okkeh, Elisa Restivo, Cristina Della Pina and Livia Visai
Nanomaterials 2021, 11(2), 289; https://doi.org/10.3390/nano11020289 - 22 Jan 2021
Cited by 24 | Viewed by 5752
Abstract
Nanotechnology is in the spotlight of therapeutic innovation, with numerous advantages for tumor visualization and eradication. The end goal of the therapeutic use of nanoparticles, however, remains distant due to the limitations of nanoparticles to target cancer tissue. The functionalization of nanosystem surfaces [...] Read more.
Nanotechnology is in the spotlight of therapeutic innovation, with numerous advantages for tumor visualization and eradication. The end goal of the therapeutic use of nanoparticles, however, remains distant due to the limitations of nanoparticles to target cancer tissue. The functionalization of nanosystem surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to tumor cells. Cancer formation and metastasis are accompanied by profound alterations in protein glycosylation. Hence, the detection and targeting of aberrant glycans are of great value in cancer diagnosis and therapy. In this review, we provide a brief update on recent progress targeting aberrant glycosylation by functionalizing nanoparticles with glycan-binding molecules (with a special focus on lectins and anti-glycan antibodies) to improve the efficacy of nanoparticles in cancer targeting, diagnosis, and therapy and outline the challenges and limitations in implementing this approach. We envision that the combination of nanotechnological strategies and cancer-associated glycan targeting could remodel the field of cancer diagnosis and therapy, including immunotherapy. Full article
Show Figures

Figure 1

27 pages, 6316 KiB  
Article
The Degree of Cardiac Remodelling before Overload Relief Triggers Different Transcriptome and miRome Signatures during Reverse Remodelling (RR)—Molecular Signature Differ with the Extent of RR
by Patrícia G. Rodrigues, Daniela Miranda-Silva, Xidan Li, Cláudia Sousa-Mendes, Ricardo Martins-Ferreira, Zaher Elbeck, Adelino F. Leite-Moreira, Ralph Knöll and Inês Falcão-Pires
Int. J. Mol. Sci. 2020, 21(24), 9687; https://doi.org/10.3390/ijms21249687 - 18 Dec 2020
Cited by 3 | Viewed by 3337
Abstract
This study aims to provide new insights into transcriptome and miRome modifications occurring in cardiac reverse remodelling (RR) upon left ventricle pressure-overload relief in mice. Pressure-overload was established in seven-week-old C57BL/6J-mice by ascending aortic constriction. A debanding (DEB) surgery was performed seven weeks [...] Read more.
This study aims to provide new insights into transcriptome and miRome modifications occurring in cardiac reverse remodelling (RR) upon left ventricle pressure-overload relief in mice. Pressure-overload was established in seven-week-old C57BL/6J-mice by ascending aortic constriction. A debanding (DEB) surgery was performed seven weeks later in half of the banding group (BA). Two weeks later, cardiac function was evaluated through hemodynamics and echocardiography, and the hearts were collected for histology and small/bulk-RNA-sequencing. Pressure-overload relief was confirmed by the normalization of left-ventricle-end-systolic-pressure. DEB animals were separated into two subgroups according to the extent of cardiac remodelling at seven weeks and RR: DEB1 showed an incomplete RR phenotype confirmed by diastolic dysfunction persistence (E/e’ ≥ 16 ms) and increased myocardial fibrosis. At the same time, DEB2 exhibited normal diastolic function and fibrosis, presenting a phenotype closer to myocardial recovery. Nevertheless, both subgroups showed the persistence of cardiomyocytes hypertrophy. Notably, the DEB1 subgroup presented a more severe diastolic dysfunction at the moment of debanding than the DEB2, suggesting a different degree of cardiac remodelling. Transcriptomic and miRomic data, as well as their integrated analysis, revealed significant downregulation in metabolic and hypertrophic related pathways in DEB1 when compared to DEB2 group, including fatty acid β-oxidation, mitochondria L-carnitine shuttle, and nuclear factor of activated T-cells pathways. Moreover, extracellular matrix remodelling, glycan metabolism and inflammation-related pathways were up-regulated in DEB1. The presence of a more severe diastolic dysfunction at the moment of pressure overload-relief on top of cardiac hypertrophy was associated with an incomplete RR. Our transcriptomic approach suggests that a cardiac inflammation, fibrosis, and metabolic-related gene expression dysregulation underlies diastolic dysfunction persistence after pressure-overload relief, despite left ventricular mass regression, as echocardiographically confirmed. Full article
(This article belongs to the Special Issue Epigenetic Mechanisms of Cardiac Disease)
Show Figures

Graphical abstract

16 pages, 5049 KiB  
Article
Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening
by Pablo Ric-Varas, Marta Barceló, Juan A. Rivera, Sergio Cerezo, Antonio J. Matas, Julia Schückel, J. Paul Knox, Sara Posé, Fernando Pliego-Alfaro and José A. Mercado
Plants 2020, 9(7), 805; https://doi.org/10.3390/plants9070805 - 27 Jun 2020
Cited by 9 | Viewed by 5067
Abstract
Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium [...] Read more.
Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures. Full article
(This article belongs to the Special Issue Molecular Breeding for Fruit Quality)
Show Figures

Graphical abstract

Back to TopTop