Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = global collapse resistance capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5688 KiB  
Article
Fragility Assessment and Reinforcement Strategies for Transmission Towers Under Extreme Wind Loads
by Lanxi Weng, Jiaren Yi, Fubin Chen and Zhenru Shu
Appl. Sci. 2025, 15(15), 8493; https://doi.org/10.3390/app15158493 (registering DOI) - 31 Jul 2025
Viewed by 116
Abstract
Transmission towers are particularly vulnerable to extreme wind events, which can lead to structural damage or collapse, thereby compromising the stability of power transmission systems. Enhancing the wind-resistant capacity of these towers is therefore critical for improving the reliability and resilience of electrical [...] Read more.
Transmission towers are particularly vulnerable to extreme wind events, which can lead to structural damage or collapse, thereby compromising the stability of power transmission systems. Enhancing the wind-resistant capacity of these towers is therefore critical for improving the reliability and resilience of electrical infrastructure. This study utilizes finite element analysis (FEA) to evaluate the structural response of a 220 kV transmission tower subjected to fluctuating wind loads, effectively capturing the dynamic characteristics of wind-induced forces. A comprehensive dynamic analysis is conducted to account for uncertainties in wind loading and variations in wind direction. Through this approach, this study identifies the most critical wind angle and local structural weaknesses, as well as determines the threshold wind speed that precipitates structural collapse. To improve structural resilience, a concurrent multi-scale modeling strategy is adopted. This allows for localized analysis of vulnerable components while maintaining a holistic understanding of the tower’s global behavior. To mitigate failure risks, the traditional perforated plate reinforcement technique is implemented. The reinforcement’s effectiveness is evaluated based on its impact on load-bearing capacity, displacement control, and stress redistribution. Results reveal that the critical wind direction is 45°, with failure predominantly initiating from instability in the third section of the tower leg. Post-reinforcement analysis demonstrates a marked improvement in structural performance, evidenced by a significant reduction in top displacement and stress intensity in the critical leg section. Overall, these findings contribute to a deeper understanding of the wind-induced fragility of transmission towers and offer practical reinforcement strategies that can be applied to enhance their structural integrity under extreme wind conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

30 pages, 3858 KiB  
Article
An Assessment of Shipping Network Resilience Under the Epidemic Transmission Using a SEIR Model
by Bo Song, Lei Shi and Zhanxin Ma
J. Mar. Sci. Eng. 2025, 13(6), 1166; https://doi.org/10.3390/jmse13061166 - 13 Jun 2025
Viewed by 497
Abstract
Epidemics spread through shipping networks and have dual characteristics as both biological sources of infection and triggers of cascading failures. However, existing resilience models fail to capture this dual and coupled dynamics. To minimize the cascading impacts of epidemics on global shipping networks, [...] Read more.
Epidemics spread through shipping networks and have dual characteristics as both biological sources of infection and triggers of cascading failures. However, existing resilience models fail to capture this dual and coupled dynamics. To minimize the cascading impacts of epidemics on global shipping networks, this paper proposes an innovative resilience assessment framework that considers the interaction between epidemic transmission and the shipping network cascading failure. First, a weighted shipping network topology is constructed based on route flow characteristics to quantify route frequency, stopping time, and the number of infected people, and the epidemic transmission across ports is modeled with an improved SEIR model, which contains a heterogeneous infectivity function and a dynamic transmission matrix, revealing a dual transmission mechanism inside and outside the ports. Second, a two-stage cascading failure model is developed: a direct failure triggered by infected people exceeding the threshold and an indirect failure triggered by the dynamic redistribution of loads. The load redistribution strategy is optimized to reconcile the residual port capacity and the risk of infection. Finally, a multidimensional resilience assessment framework covering structural destruction resistance, network efficiency, path redundancy, and a cascading failure propagation rate is constructed. Example validation shows that the improved load redistribution strategy reduces the maximum connected subgraph decay rate by 68.2%, reduces the cascading failure rate by 88%, and improves the peak network efficiency by 128.2%. In case of multi-source epidemics, the state of the network collapse can be shortened by 12 days if the following recovery strategy is adopted: initially repair high connectivity hubs (e.g., Port of Shanghai), and then repair high centrality nodes (e.g., Antwerp Port) to achieve a balance between recovery efficiency and network functionality. The research results reduce the risk of systemic disruptions in maritime networks and provide decision-making tools for dynamic port scheduling during pandemics. Full article
Show Figures

Figure 1

35 pages, 14623 KiB  
Article
Numerical Design of the Roof Structure of a Vehicle Charging Carport Based on the Dragonfly Wing Grid Pattern
by Xiaoqing Mei, Chajuan Liu, Xinxia Wang and Yangyang Wei
Buildings 2023, 13(4), 1071; https://doi.org/10.3390/buildings13041071 - 18 Apr 2023
Viewed by 2660
Abstract
The realization of the global “Double carbon” target is closely related to the energy-saving travel of human beings. Along with the increase in the number of new energy vehicles around the world, the number of new energy vehicle charging post carports has also [...] Read more.
The realization of the global “Double carbon” target is closely related to the energy-saving travel of human beings. Along with the increase in the number of new energy vehicles around the world, the number of new energy vehicle charging post carports has also increased. However, the collapse of the carport of the new energy vehicle charging post often occurs. The search for ways to optimize the carport structure construction and build a lighter and more stable charging post carport structure has become one of the hot spots in the new energy vehicle industry. Dragonfly wings have a comprehensive evolution in structure, form and function, and their stiffness, stability and resistance to deformation may be a potential solution to optimize the structure of the shed roof. Inspired by this, the study designs two new energy vehicle charging pile canopies based on the dragonfly wing mesh structure to enhance the loading capacity and structural stability of the canopies. The study firstly concludes that the dragonfly wing mesh can enhance the stiffness through experimental analysis, and simulates and models the structure based on the quadrilateral mesh wrinkling and hexagonal mesh arching in its mesh morphology, combined with the national design standard of the charging pile canopy. Studies on the numerical design experiment of the new energy vehicle charging station canopy model based on finite element software under different natural loads, the deflection of shed under the action of self-weight and the deflection, tensile stress and compressive stress under external load are analyzed, and the results show that: (1) The grid structure of the dragonfly wing bionic charging pile shed can optimize the stiffness of the car charging pile shed. (2) According to the wing structure, the test results of the shed roof structure under different working conditions are better than the national standard. (3) Compared with the vertical load, the transverse load of the arched membrane structure, which is represented by the charging pile shed of the new energy vehicle, is larger. (4) According to the stress point of the shed, the structure constraint of the shed can effectively reduce the pressure on the and share part of the load, which can enhance the stability of the shed. (5) In comparison with the displacement of common carport types, the bionic carport shows superior stability and durability. The new bionic carport structure proposed by the research, with stronger pressure bearing, smaller force deformation and lighter weight, is a kind of membrane structure for stable new energy vehicle charging pile carports, which will help further the optimization and promotion of the new energy vehicle industry. Full article
(This article belongs to the Special Issue Advances in the Behaviour of Steel Structures)
Show Figures

Figure 1

19 pages, 4960 KiB  
Article
Performance of Medium-Rise Buildings with Reinforced Concrete Shear Walls Designed for High Seismic Hazard
by Claudio Alarcón, Álvaro López and Juan Carlos Vielma
Materials 2023, 16(5), 1859; https://doi.org/10.3390/ma16051859 - 24 Feb 2023
Cited by 5 | Viewed by 3337
Abstract
This work has evaluated the collapse fragility of a typical Chilean building for residential use, structured based on shear-resistant RC walls and inverted beams arranged along its entire perimeter, using the incremental dynamic analysis (IDA) for the evaluation of its structural behavior, using [...] Read more.
This work has evaluated the collapse fragility of a typical Chilean building for residential use, structured based on shear-resistant RC walls and inverted beams arranged along its entire perimeter, using the incremental dynamic analysis (IDA) for the evaluation of its structural behavior, using for this the 2018 version of the SeismoStruct software. This method evaluates the global collapse capacity of the building from the graphical representation of its maximum inelastic response, obtained through a non-linear time–history analysis, against the scaled intensity of a set of seismic records obtained in the subduction zone, thus creating the IDA curves of the building. The processing of the seismic records is included within the applied methodology to make them compatible with the elastic spectrum of the Chilean design, achieving an adequate seismic input in the two main structural directions. In addition, an alternative IDA method based on the elongated period is applied to calculate the seismic intensity. The results of the IDA curve obtained with this procedure and the standard IDA analysis are analyzed and compared. The results show that the method relates very well to the structure’s demand and capacity and confirms the non-monotonous behavior exposed by other authors. Regarding the alternative IDA procedure, the results indicate that the method is inadequate, failing to improve the results obtained by the standard method. Full article
(This article belongs to the Special Issue Seismic Research on Bridges and Engineering Structures)
Show Figures

Figure 1

17 pages, 7201 KiB  
Article
The Seismic Performance and Global Collapse Resistance Capacity of Infilled Reinforced Concrete Frames Considering the Axial–Shear–Bending Interaction of Columns
by Linjie Huang, Jianping Han, Hongwei Wen, Chunyu Li, Haocheng He, Yuxin Luo and Zhendong Qian
Buildings 2022, 12(11), 2030; https://doi.org/10.3390/buildings12112030 - 20 Nov 2022
Cited by 4 | Viewed by 2328
Abstract
This paper presents a mechanism and method for simulating the axial–shear–bending interaction of a reinforced concrete (RC) column. The three-dimensional model of a multi-story infilled RC frame was modeled using the OpenSees software. Static pushover and nonlinear dynamic analyses under fortification and rare [...] Read more.
This paper presents a mechanism and method for simulating the axial–shear–bending interaction of a reinforced concrete (RC) column. The three-dimensional model of a multi-story infilled RC frame was modeled using the OpenSees software. Static pushover and nonlinear dynamic analyses under fortification and rare earthquakes were conducted using the model. Finally, based on the incremental dynamic analyses of 22 suites of ground-motion records, the global collapse resistance capacity of the infilled RC frame was evaluated using the evaluation method of a normal distribution. The analytical results show that the axial–shear–bending interaction is a key factor that affects the seismic response of infilled RC frames. Under the fortification earthquake condition, no obvious damage to physical structures was evident; the influence was relatively minor. However, under the condition of a rare earthquake, severe damage to physical structures was evident, resulting in the underestimation of the lateral inter-story drift ratio, while the degradation rates of the load capacity and global collapse resistance capacities for the infilled concrete frames were highly overestimated when the axial–shear–bending interaction was not considered. Full article
Show Figures

Figure 1

20 pages, 5819 KiB  
Article
Shaking Table Tests of a Novel Flat Slab-Flanged Wall (FSFW) Coupled System with Embedded Concrete-Filled-Steel-Tubes in Wall Piers
by Xin-Yu Zhao, Xiao-Dan Fang, Fan Wang and Jing Zhou
Buildings 2022, 12(9), 1441; https://doi.org/10.3390/buildings12091441 - 13 Sep 2022
Cited by 2 | Viewed by 1984
Abstract
The flat slab-flanged wall (FSFW) coupled system has gained popularity in recent years; however, its seismic performance remains an issue, as beams and columns in it are commonly eliminated. To tackle this problem, embedding concrete-filled steel tubes (CFSTs) in wall piers has been [...] Read more.
The flat slab-flanged wall (FSFW) coupled system has gained popularity in recent years; however, its seismic performance remains an issue, as beams and columns in it are commonly eliminated. To tackle this problem, embedding concrete-filled steel tubes (CFSTs) in wall piers has been proposed to strengthen the system; the viability of this approach has been verified at the member level. Along this line, this study embarks on a shaking table testing of a 1/8-scale five-story FSFW structure equipped with CFSTs in walls, with an aim to understand the overall seismic behavior of such an enhanced system. As with the practice in many countries, the plan layout of the test structure consisted of four rows of wall piers, thus presenting a ‘fish-bone’ floor configuration that relied only upon the walls to resist gravity and lateral loads. The structure was subjected to a suite of input ground motions along with white-noise excitations. By so doing, its damage progression, pattern and dynamic characteristics were clearly identified. Furthermore, a non-linear time history analysis was conducted using PERFORM-3D, and the goodness-of-fit of the computed responses to the experimental records was examined. Findings indicated that the application of CFSTs was instrumental in resisting the simulated earthquake loads acting on the FSFW system, hence the global response limits required by codes of practice were met, even in the case of extremely strong earthquakes. Nevertheless, the junction between the shear walls and floor slabs was found to be the weakest links in the whole system. Designers are thus cautioned to implement proper detailing in those regions to prevent local distress, though it did not appear to acutely impair the system’s collapse-resisting capacity. Full article
(This article belongs to the Special Issue Building Physics, Structural and Safety Engineering)
Show Figures

Figure 1

19 pages, 4993 KiB  
Article
Evaluation of the Seismic Capacity of Existing Moment Resisting Frames by a Simplified Approach: Examples and Numerical Application
by Rosario Montuori, Elide Nastri, Vincenzo Piluso and Paolo Todisco
Appl. Sci. 2021, 11(6), 2594; https://doi.org/10.3390/app11062594 - 15 Mar 2021
Cited by 22 | Viewed by 3029
Abstract
The capacity of a structure can be assessed using inelastic analysis, requiring sophisticated numerical procedures such as pushover and incremental dynamic analyses. A simplified method for the evaluation of the seismic performance of steel moment resisting frames (MRFs) to be used in everyday [...] Read more.
The capacity of a structure can be assessed using inelastic analysis, requiring sophisticated numerical procedures such as pushover and incremental dynamic analyses. A simplified method for the evaluation of the seismic performance of steel moment resisting frames (MRFs) to be used in everyday practice has been recently proposed. This method evaluates the capacity of buildings employing an analytical trilinear model without resorting to any non−linear analysis. Despite the methodologies suggested by codes, the assessing procedure herein described is of easy application, also by hand calculation. Furthermore, it constitutes a suitable tool to check the capacity of the buildings designed with the new seismic code prescriptions. The proposed methodology has been set up through a large parametric analysis, carried out on 420frames designed according to three different approaches: the theory of plastic mechanism control (TPMC), ensuring the design of structures showing global collapse mechanism (GMRFs), the one based on the Eurocode 8 design requirements (SMRFs), and a simple design against horizontal loads (OMRFs) without specific seismic requirements. In this paper, some examples of the application of this simplified methodology are proposed with references to structures supposed to exhibit global, partial and soft storey mechanism. Full article
(This article belongs to the Special Issue Seismic Design, Assessment and Retrofit of Steel Buildings)
Show Figures

Figure 1

21 pages, 10198 KiB  
Article
Rapid Retrofit of Reinforced Concrete Frames after Progressive Collapse to Increase Sustainability
by Shuang Li, Sidi Shan, Haiyu Zhang and Yi Li
Sustainability 2019, 11(15), 4195; https://doi.org/10.3390/su11154195 - 2 Aug 2019
Cited by 12 | Viewed by 4592
Abstract
A structural progressive collapse is usually a local failure, in which the damage is concentrated at beams that bridge the removal column and the column itself. In many cases, retrofitting the damaged structure is more economical and more sustainable than reconstructing the entire [...] Read more.
A structural progressive collapse is usually a local failure, in which the damage is concentrated at beams that bridge the removal column and the column itself. In many cases, retrofitting the damaged structure is more economical and more sustainable than reconstructing the entire structure. A progressive collapse test of a 1/3 scale, four-bay by two-story reinforced concrete (RC) frame was conducted, after which the structure was retrofitted with carbon fiber reinforced polymer (CFRP) wraps and retested. The center column in the first story was removed and the frame was pushed down quasistatically under displacement control to investigate the progressive collapse performances of the retrofitted RC frame. The test results were represented systematically at different areas in terms of the resistance forces, crack developments, and local and global failure modes. Numerical models were built to verify the test frame before and after the retrofitting. A design method was proposed to retrofit an RC frame using CFRP wraps after a progressive collapse. The test frame was redesigned to improve the retrofitting and used as an example to demonstrate the rationality of the proposed retrofit design method. The results indicated that the proposed retrofitting technology rapidly restored the frame structure to its original capacity before the progressive collapse occurred, whilst consistently satisfying the priorities of being economical and sustainable. Full article
Show Figures

Figure 1

24 pages, 11729 KiB  
Article
Multi-Directional Seismic Assessment of Historical Masonry Buildings by Means of Macro-Element Modelling: Application to a Building Damaged during the L’Aquila Earthquake (Italy)
by Francesco Cannizzaro, Bartolomeo Pantò, Marco Lepidi, Salvatore Caddemi and Ivo Caliò
Buildings 2017, 7(4), 106; https://doi.org/10.3390/buildings7040106 - 13 Nov 2017
Cited by 28 | Viewed by 9516
Abstract
The experience of the recent earthquakes in Italy caused a shocking impact in terms of loss of human life and damage in buildings. In particular, when it comes to ancient constructions, their cultural and historical value overlaps with the economic and social one. [...] Read more.
The experience of the recent earthquakes in Italy caused a shocking impact in terms of loss of human life and damage in buildings. In particular, when it comes to ancient constructions, their cultural and historical value overlaps with the economic and social one. Among the historical structures, churches have been the object of several studies which identified the main characteristics of the seismic response and the most probable collapse mechanisms. More rarely, academic studies have been devoted to ancient palaces, since they often exhibit irregular and complicated arrangement of the resisting elements, which makes their response very difficult to predict. In this paper, a palace located in L’Aquila, severely damaged by the seismic event of 2009 is the object of an accurate study. A historical reconstruction of the past strengthening interventions as well as a detailed geometric relief is performed to implement detailed numerical models of the structure. Both global and local models are considered and static nonlinear analyses are performed considering the influence of the input direction on the seismic vulnerability of the building. The damage pattern predicted by the numerical models is compared with that observed after the earthquake. The seismic vulnerability assessments are performed in terms of ultimate peak ground acceleration (PGA) using capacity curves and the Italian code spectrum. The results are compared in terms of ultimate ductility demand evaluated performing nonlinear dynamic analyses considering the actual registered seismic input of L’Aquila earthquake. Full article
(This article belongs to the Special Issue Traditional and Innovative Approaches in Seismic Design)
Show Figures

Figure 1

Back to TopTop