Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = glass fiber reinforced plastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4177 KB  
Article
Inline Profiling of Reactive Thermoplastic Pultruded GFRP Rebars: A Study on the Influencing Factors
by Moritz Fünkner, Georg Zeeb, Michael Wilhelm, Peter Eyerer and Frank Henning
J. Compos. Sci. 2026, 10(1), 55; https://doi.org/10.3390/jcs10010055 - 19 Jan 2026
Viewed by 135
Abstract
Compared to reinforcing concrete with steel bars, rebars—made of fiber-reinforced plastic—have a high potential for resource savings in the construction industry due to their corrosion resistance. For the large-volume market of reinforcement elements, efficient manufacturing processes must be developed to ensure the best [...] Read more.
Compared to reinforcing concrete with steel bars, rebars—made of fiber-reinforced plastic—have a high potential for resource savings in the construction industry due to their corrosion resistance. For the large-volume market of reinforcement elements, efficient manufacturing processes must be developed to ensure the best possible bond behavior between concrete and rebar. In contrast to established FRP-rebars made with thermosetting materials, the use of a thermoplastic matrix enables surface profiling without severing the edge fibers as well as subsequent bending of the bar. The rebars to be produced in this study are based on the process of reactive thermoplastic pultrusion of continuously glass fiber reinforced aPA6. Their surface must enable a mechanical interlocking between the reinforcement bar and concrete. Concepts for a profiling device have been methodically developed and evaluated. The resulting concept of a double wheel embossing unit with a variable infeed and an infrared preheating section is built as a prototype, implemented in a pultrusion line, and further optimized. For a comprehensive understanding of the embossing process, reinforcement bars are manufactured, characterized, and evaluated under parameter variation according to a statistical experimental plan. The present study demonstrates the relationship between the infeed, preheating temperature, and haul-off speed with respect to the embossing depth, which is equivalent to the rib height. No degradation of the Young’s modulus was observed as a result of the profiling process. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

24 pages, 14994 KB  
Article
Comparative Analyses of Drilling Force, Temperature, and Damage in Natural and Glass Fiber-Reinforced Al–Epoxy Composites
by Muammer Kına, Uğur Köklü, Sezer Morkavuk, Mustafa Ay, Yalçın Boztoprak, Barkın Bakır and Murat Demiral
Polymers 2026, 18(2), 229; https://doi.org/10.3390/polym18020229 - 15 Jan 2026
Viewed by 166
Abstract
This study examined the drilling performance of five polymer composite systems: three natural fiber (jute, flax, hemp) composites with aluminum particle-reinforced epoxy, one glass fiber-reinforced composite with the same matrix, and an unreinforced aluminum particle-filled epoxy (Al–epoxy). Drilling experiments were performed at spindle [...] Read more.
This study examined the drilling performance of five polymer composite systems: three natural fiber (jute, flax, hemp) composites with aluminum particle-reinforced epoxy, one glass fiber-reinforced composite with the same matrix, and an unreinforced aluminum particle-filled epoxy (Al–epoxy). Drilling experiments were performed at spindle speeds of 1500 and 3000 rpm with feed rates of 50, 75, and 100 mm/min in order to evaluate the effect of cutting parameters on the drilling performance. Cutting zone temperatures were measured using thermocouples embedded within the drill bit’s cooling channels, while thrust forces were recorded with a dynamometer. Additionally, hole exit damage and inner hole surface roughness were evaluated to assess machining quality. The results showed that increasing spindle speed reduces thrust forces due to thermal softening of the matrix, whereas natural fiber-reinforced composites generally exhibit higher thrust forces and slightly rougher inner hole surfaces compared to synthetic counterparts. During drilling, the measured thrust forces ranged from 320 to 693 N for the glass fiber-reinforced specimen and from 335 to 702 N for the Al–epoxy specimen, while for natural fiber-reinforced composites the thrust force values were 352–679 N for hemp, 241–719 N for jute, and 571–732 N for flax specimens. Synthetic specimens (glass fiber and Al–epoxy) exhibited comparable cutting temperature ranges (288–371 °C and 248–327 °C, respectively), whereas natural fiber-reinforced composites showed higher and broader temperature ranges of 311–389 °C for hemp, 368–374 °C for jute, and 307–379 °C for flax specimens. The overall results indicated that lower forces were generated during the drilling of synthetic glass fiber-reinforced composites, while among natural fiber-reinforced plastics, flax fiber-reinforced composites stood out by exhibiting a balanced machining response. Full article
(This article belongs to the Special Issue Advanced Polymer Composites with High Mechanical Properties)
Show Figures

Figure 1

18 pages, 2109 KB  
Article
Considering the Effects of Temperature on FRP–Steel Hybrid Sucker-Rod String Design
by Xin Lu, Zhisheng Xing, Xingyuan Liang, Zhuangzhuang Zhang, Guoqing Han, Peidong Mai and Shuping Chang
Processes 2026, 14(2), 305; https://doi.org/10.3390/pr14020305 - 15 Jan 2026
Viewed by 132
Abstract
With the continuous increase in well depth and the gradual depletion of formation energy, the pump-setting depths in rod-pumped wells have increased significantly, leading to higher suspension loads at the pumping unit. The application of glass fiber-reinforced plastic (FRP) sucker rods can effectively [...] Read more.
With the continuous increase in well depth and the gradual depletion of formation energy, the pump-setting depths in rod-pumped wells have increased significantly, leading to higher suspension loads at the pumping unit. The application of glass fiber-reinforced plastic (FRP) sucker rods can effectively reduce suspension loads due to their low density and high tensile strength. However, the mechanical performance of FRP rods is highly sensitive to temperature, which poses challenges for their application in deep and high-temperature wells. In FRP–steel hybrid sucker-rod string design, the influence of temperature—particularly on FRP rods—must therefore be carefully considered to prevent failures such as rod parting or coupling separation. This study systematically investigates the effects of temperature on the mechanical properties of FRP sucker rods, including elastic modulus, flexural shear strength, and tensile strength. Based on the operating characteristics of sucker-rod pumping systems and established design criteria, a temperature-aware design methodology for FRP–steel hybrid rod strings is developed and implemented in dedicated design software. The proposed approach enables rational determination of the FRP–steel partition depth under thermal constraints while satisfying mechanical safety requirements. A field case study is conducted to validate the design results, demonstrating that the software provides reliable and practical guidance for hybrid rod-string design in deep wells. Full article
Show Figures

Figure 1

27 pages, 13586 KB  
Article
Numerical and Experimental Study of Continuous Beams Made of Self-Compacting Concrete Strengthened by GFRP Materials
by Žarko Petrović, Andrija Zorić, Bojan Milošević, Slobodan Ranković and Predrag Petronijević
Eng 2026, 7(1), 37; https://doi.org/10.3390/eng7010037 - 10 Jan 2026
Viewed by 217
Abstract
This paper presents an experimental and numerical investigation of continuous reinforced concrete (RC) beams made of self-compacting concrete (SCC) strengthened with fiber-reinforced polymer (FRP) bars using the Near-Surface Mounted (NSM) method. While the majority of previous studies have focused on simply supported beams, [...] Read more.
This paper presents an experimental and numerical investigation of continuous reinforced concrete (RC) beams made of self-compacting concrete (SCC) strengthened with fiber-reinforced polymer (FRP) bars using the Near-Surface Mounted (NSM) method. While the majority of previous studies have focused on simply supported beams, this work examines two-span continuous beams, which are more representative of real structural behavior. Four SCC beams were tested under static loading to evaluate the influence of the FRP reinforcement position on flexural capacity and deformational characteristics. The beams were strengthened using glass FRP (GFRP) bars embedded in epoxy adhesive within pre-cut grooves in the concrete cover. Experimental results showed that FRP reinforcement significantly increased the ultimate load capacity, while excessive reinforcement reduced ductility, leading to a more brittle failure mode. A three-dimensional finite element model was developed in Abaqus/Standard using the Concrete Damage Plasticity (CDP) model to simulate the nonlinear behavior of concrete and the bond–slip interaction at the epoxy–concrete interface. The numerical predictions closely matched the experimental load–deflection responses, with a maximum deviation of less than 3%. The validated model provides a reliable tool for parametric analysis and can serve as a reference for optimizing the design of continuous SCC beams strengthened by the NSM FRP method. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

19 pages, 5648 KB  
Article
A Composite Material Repair Structure: For Defect Repair of Branch Pipe Fillet Welds in Oil and Gas Pipelines
by Liangshuo Zhao, Yingjie Qiao, Zhongtian Yin, Bo Xie, Bangyu Wang, Jingxue Zhou, Siyu Chen, Zheng Wang, Xiaodong Wang, Xiaohong Zhang, Xiaotian Bian, Xin Zhang, Yan Wu and Peng Wang
Materials 2026, 19(2), 222; https://doi.org/10.3390/ma19020222 - 6 Jan 2026
Viewed by 232
Abstract
In the oil and gas pipeline industry, numerous small-diameter branch pipe fillet welds exist, which are prone to stress concentration because of diverse geometric shapes. The internal welding defects within these welds pose severe hazards to safe production. Specifically, the irregular geometry often [...] Read more.
In the oil and gas pipeline industry, numerous small-diameter branch pipe fillet welds exist, which are prone to stress concentration because of diverse geometric shapes. The internal welding defects within these welds pose severe hazards to safe production. Specifically, the irregular geometry often leads to internal root defects where the weld metal fails to fully penetrate the joint or fuse with the base material (referred to as incomplete penetration and incomplete fusion). This study developed a GF-CF-GF (CF is carbon fiber, GF is glass fiber) sandwich composite reinforcement structure for pipe fittings with these specific internal defects (main pipe: Φ323.9 × 12.5 mm; branch pipe: Φ76 × 5 mm) through a combination of finite element analysis (FEA) and burst test verification. The inherent correlation between structural factors and pressure-bearing capacity was revealed by analyzing the influence of defect sizes. Based on FEA, the repair layer coverage should be designed to be within 400 mm from the defect along the main pipe wall direction and within 100 mm from the defect along the branch pipe wall direction, with required thicknesses of 5.6 mm for incomplete penetration and 3.2 mm for incomplete fusion. Analysis of the actual burst test pressure curve showed that the elastic-plastic transition interval of the repaired pipes increased by approximately 2 MPa compared to normal undamaged pipes, and their pressure-bearing capacities rose by 1.57 MPa (incomplete penetration) and 1.76 MPa (incomplete fusion). These results demonstrate the feasibility of the proposed reinforcement design, which has potential applications in the safety and integrity of oil and gas transportation. Full article
Show Figures

Graphical abstract

22 pages, 1625 KB  
Review
Recycled Electric and Electronic Waste in Concrete: A Review of Mechanical Performance and Sustainability Potential with a Case Study in Romania
by Cristian Georgeoi, Ioan Petran, Camelia Maria Negrutiu and Pavel Ioan Sosa
CivilEng 2026, 7(1), 2; https://doi.org/10.3390/civileng7010002 - 31 Dec 2025
Viewed by 298
Abstract
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste [...] Read more.
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste (ECW), Waste Electrical Cable Rubber (WECR), copper fiber (Cu Fib.), aluminum Fibers (Al fib.), steel fibers, basalt fibers, glass fibers, aramid−carbon fibers, Kevlar fibers, jute fibers, and optical fibers, were tested for influence on compressive, flexural, tensile strength, modulus of elasticity, and water absorption. Outcomes show that fine particle waste at low levels (0.2–1.5%) can improve mechanical performance, while higher levels of replacement or coarse particles generally reduce performance. Mechanical and physical properties are highly sensitive to material type, particle size, and dose. Life cycle assessment (LCA) and predictive modeling are recommended as validation for sustainability benefits. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

19 pages, 6735 KB  
Article
Innovative Metal–Polymer Composite Panels with Integrated Channels for Thermal Management Systems Using Hybrid Friction Stir Channeling—HFSC
by Arménio N. Correia, Virgínia Infante, Daniel F. O. Braga, Ricardo Baptista and Pedro Vilaça
Metals 2026, 16(1), 16; https://doi.org/10.3390/met16010016 - 24 Dec 2025
Viewed by 348
Abstract
In this research, we assess the feasibility of employing hybrid friction stir channeling (HFSC) to produce composite panels that combined an 8 mm thick AA6082-T6 aluminum alloy and 5 mm thick glass-fiber-reinforced Noryl GFN2. HFSC is an innovative solid-state technology that combines both [...] Read more.
In this research, we assess the feasibility of employing hybrid friction stir channeling (HFSC) to produce composite panels that combined an 8 mm thick AA6082-T6 aluminum alloy and 5 mm thick glass-fiber-reinforced Noryl GFN2. HFSC is an innovative solid-state technology that combines both friction stir joining and channeling characteristics, which enable the generation of integral internal channels while joining different components. A parametric study was outlined to explore the effects of the travel speed, probe length, and tool plunging on the resulting composite panels. The resulting composite panels were subsequently subjected to a comprehensive analysis encompassing exterior ceiling quality, internal channel, and joining interface morphology. Depending on the processing parameters, the geometry of the channels was found to be quasi-rectangular or quasi-trapezoidal, with significant variability on cross-sectional area, resulting in hydraulic diameters ranging from 1.2 to 2.9 mm. The joining interface was characterized by a concavity of aluminum that was extruded downwards into the polymeric molten pool, which was clinched after polymeric re-solidification. The experimental results prove the ability to join metals and polymers while creating an integral channel in a single process step using HFSC. Despite the positive effect of irregular shaped channels on heat exchange, the numerical models evidenced a detrimental effect of 14.3 and 16.3% on ultimate tensile and flexural loads, respectively. This way, this fabrication technology evidenced promising characteristics that are suitable for manufacturing thermal management systems such as conformal cooling for plastic injection molding or battery trays for EVs. Full article
Show Figures

Figure 1

34 pages, 8482 KB  
Article
Lightweight Aluminum–FRP Crash Management System Developed Using a Novel Hybrid Forming Technology
by Amir Hajdarevic, Xiangfan Fang, Saarvesh Jayakumar and Sharath Christy Anand
Vehicles 2026, 8(1), 2; https://doi.org/10.3390/vehicles8010002 - 22 Dec 2025
Viewed by 416
Abstract
The one-step hybrid forming process is a novel process to fabricate a metal fiber-reinforced plastic (FRP) structure with reduced cycle time and cost compared to classical multi-step methods. It is realized by a combined forming tool for both sheet metal and FRP forming [...] Read more.
The one-step hybrid forming process is a novel process to fabricate a metal fiber-reinforced plastic (FRP) structure with reduced cycle time and cost compared to classical multi-step methods. It is realized by a combined forming tool for both sheet metal and FRP forming to create a hybrid part in only one step. During the forming process, sheet metal pre-coated with an adhesion promoter is joined with the FRP simultaneously. In this work, the crashworthiness and lightweight potential of a hybrid crash management system manufactured with a hybrid forming process were investigated. It includes the experimental behaviors and finite element analysis of glass mat thermoplastics (GMT), as well as aluminum–GMT hybrid structures, under dynamic axial crushing loadings. Beginning with the original geometry of a series aluminum crash management system, the design was optimized for a hybrid forming process, where an aluminum sheet metal part is reinforced by a GMT structure with a ground layer and additional ribs. The forming behavior and fiber filling of the GMT crash box were determined and analyzed as well. Finite element method optimization was used to obtain the optimal geometry of the hybrid crash box with the highest possible specific energy absorption and the utmost homogeneous force level over displacement. A hybrid bumper beam was also developed, along with other necessary connection parts, to join the beam with the crash box and the entire crash management system (CMS) to the vehicle body. The joining technique was determined to be a key factor restricting the lightweight potential of the hybrid CMS. Full article
Show Figures

Figure 1

25 pages, 5342 KB  
Article
Evaluation of Jute–Glass Ratio Effects on the Mechanical, Thermal, and Morphological Properties of PP Hybrid Composites for Sustainable Automotive Applications
by Tunahan Özyer and Emre Demirci
Polymers 2025, 17(24), 3335; https://doi.org/10.3390/polym17243335 - 17 Dec 2025
Viewed by 468
Abstract
This study investigates polypropylene (PP)–based biocomposites reinforced with systematically varied jute and glass fiber ratios as sustainable, lightweight alternatives for semi-structural automotive parts. Four formulations (J20/G0, J15/G5, J10/G10, J5/G15) with a constant 20 wt% total fiber were produced by injection molding and characterized [...] Read more.
This study investigates polypropylene (PP)–based biocomposites reinforced with systematically varied jute and glass fiber ratios as sustainable, lightweight alternatives for semi-structural automotive parts. Four formulations (J20/G0, J15/G5, J10/G10, J5/G15) with a constant 20 wt% total fiber were produced by injection molding and characterized through mechanical, thermal, and morphological analyses. Tensile, flexural, and Charpy impact tests showed progressive improvements in strength, stiffness, and energy absorption with increasing glass fiber content, while ductility was maintained or slightly enhanced. SEM revealed a transition from fiber pull-out in jute-rich systems to fiber rupture and stronger matrix adhesion in glass-rich hybrids. Thermal analyses confirmed the benefits of hybridization: heat deflection temperature increased from 75 °C (J20/G0) to 103 °C (J5/G15), and thermogravimetry indicated improved stability and higher char residue. DSC showed negligible changes in crystallization and melting, confirming that fiber partitioning does not significantly affect PP crystallinity. Benchmarking demonstrated mechanical and thermal performance comparable to acrylonitrile–butadiene–styrene (ABS) and acrylonitrile–styrene–acrylate (ASA), widely used in automotive components. Finally, successful molding of a prototype exterior mirror cap from J20/G0 validated industrial processability. These findings highlight jute–glass hybrid PP composites as promising, sustainable alternatives to conventional engineering plastics for automotive engineering applications. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

27 pages, 7103 KB  
Article
Study on the Influence of Airfoil and Angle of Attack on Ice Distribution and Aerodynamic Performance of Blade Surface
by Chuanxi Wang, Chong Jiao, Tong Wu, Ruxin Zheng, Dong Liang, Zhiyuan Liu and Yan Li
Coatings 2025, 15(12), 1416; https://doi.org/10.3390/coatings15121416 - 3 Dec 2025
Viewed by 401
Abstract
As an efficient and clean renewable energy source, wind energy plays a crucial role in optimizing the energy structure and facilitating a low-carbon transition. However, onshore and offshore wind turbines in cold regions are prone to blade icing, which not only results in [...] Read more.
As an efficient and clean renewable energy source, wind energy plays a crucial role in optimizing the energy structure and facilitating a low-carbon transition. However, onshore and offshore wind turbines in cold regions are prone to blade icing, which not only results in a decrease in power generation efficiency and an increase in blade load but also poses the risk of equipment damage. This study employed icing wind tunnel tests and numerical simulation methods to investigate the icing patterns and variations in aerodynamic performance under different blade materials, blade airfoils, and blade angles of attack. The results indicate that with the decrease in ambient temperature, the icing amount on aluminum alloy blades is significantly higher than that on glass fiber reinforced plastic (GFRP) blades; furthermore, the lower the ambient temperature, the smaller the difference in icing distribution characteristics between the two types of blades. When the blade angle of attack changes, the icing distribution characteristics on the blade surface exhibit significant variations. Under the condition of large angles of attack, the icing amount on the lower airfoil surface of the blade increases, while that on the upper airfoil surface decreases. Icing leads to a reduction in the airfoil lift coefficient and an increase in the drag coefficient, thereby causing a decline in the lift-to-drag ratio. With the extension of icing time, the aerodynamic performance of the blade continues to deteriorate. When the icing time reaches 5 min, the maximum reduction in the airfoil lift coefficient is 60.1%, the maximum increase in the drag coefficient is 40.9%, and the maximum reduction in the lift-to-drag ratio is 67.7%. In addition, the blade lift and drag coefficients undergo significant changes with the increase in the angle of attack. For airfoils with large angles of attack, a distinct phenomenon of advanced flow separation is observed after icing. This study can provide a data foundation for research on icing characteristics of wind turbine blades in cold regions and the subsequent development of anti-icing and de-icing methods. Full article
Show Figures

Figure 1

45 pages, 27537 KB  
Review
Enhancing the Performance of FFF-Printed Parts: A Review of Reinforcement and Modification Strategies for Thermoplastic Polymers
by Jakub Leśniowski, Adam Stawiarski and Marek Barski
Materials 2025, 18(22), 5185; https://doi.org/10.3390/ma18225185 - 14 Nov 2025
Viewed by 1076
Abstract
The technology of 3D printing has become one of the most effective methods of creating various parts, such as those used for fast prototyping. The most important aspect of 3D printing is the selection and application of the appropriate material, also known as [...] Read more.
The technology of 3D printing has become one of the most effective methods of creating various parts, such as those used for fast prototyping. The most important aspect of 3D printing is the selection and application of the appropriate material, also known as filament. The current review concerns mainly the description of the mechanical and physical properties of the different filaments and the possibilities of improving those properties. The review begins with a short description of the development of 3D printing technology. Next, the basic characteristics of thermoplastics used in the fused filament fabrication (FFF) are discussed, namely polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyethylene terephthalate glycol (PETG). According to modern concepts, the printed parts can be reinforced with the use of different kinds of fibers, namely synthetic fibers (carbon, glass, aramid) or natural fibers (wood, flax, hemp, jute). Thus, the impact of such a reinforcement on the performance of FFF composites is also presented. The current review, unlike other works, primarily addresses the problem of the aging of parts made from the thermoplastics above. Environmental conditions, including UV radiation, can drastically reduce the physical and mechanical properties of printed elements. Moreover, the current review contains a detailed discussion about the influence of the different fibers on the final mechanical properties of the printed elements. Generally, the synthetic fibers improve the mechanical performance, with documented increases in tensile modulus reaching, for instance, 700% for carbon-fiber-reinforced ABS or over 15-fold for continuous aramid composites, enabling their use in functional, load-bearing components. In contrast, the natural ones could even decrease the stiffness and strength (e.g., wood–plastic composites), or, as in the case of flax, significantly increase stiffness (by 88–121%) while offering a sustainable, lightweight alternative for non-structural applications. Full article
Show Figures

Figure 1

11 pages, 3250 KB  
Communication
Characteristics of Low-Frequency Metasurface Microwave Absorption Filter with Composite Molding and Size Dependency
by Sangwon Baek, Wonwoo Choi, Sun-Woong Kim, Minah Yoon, Taein Choi, Hak Joo Lee and Kichul Kim
Materials 2025, 18(22), 5094; https://doi.org/10.3390/ma18225094 - 10 Nov 2025
Viewed by 544
Abstract
This study presents a lightweight metasurface microwave absorption filter (MMAF) designed for low-frequency stealth applications in the L-band. The metasurface is optimized using a genetic algorithm to achieve broadband absorption at subwavelength thickness. The fabricated MMAF consists of a glass fiber-reinforced plastic layer, [...] Read more.
This study presents a lightweight metasurface microwave absorption filter (MMAF) designed for low-frequency stealth applications in the L-band. The metasurface is optimized using a genetic algorithm to achieve broadband absorption at subwavelength thickness. The fabricated MMAF consists of a glass fiber-reinforced plastic layer, a metasurface layer, and a dielectric layer with a size of 30 × 30 cm2. It maintains a reflection coefficient below −10 dB in the frequency range of 1.01–1.78 GHz. Experiments using small MMAFs measuring 15 × 15 cm2 confirmed stable performance after composite molding. In addition, the results from small MMAFs configured in a 2 × 2 array were similar to those of the 30 × 30 cm2 structure. These results highlight the potential of the MMAF for scalable deployment on curved or segmented surfaces, expanding its applicability to various stealth platforms. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

31 pages, 11474 KB  
Article
Tribological Performance of Glass/Kevlar Hybrid Epoxy Composites: Effects of Pressurized Water-Immersion Aging Under Reciprocating Sliding Wear
by Mehmet İskender Özsoy, Mustafa Özgür Bora, Satılmış Ürgün, Sinan Fidan and Erman Güleç
Polymers 2025, 17(21), 2944; https://doi.org/10.3390/polym17212944 - 4 Nov 2025
Cited by 2 | Viewed by 678
Abstract
This study quantifies how pressurized water immersion alters the reciprocating sliding behavior of glass and Kevlar woven fabric-reinforced polymer hybrid composite laminates. Specimens were immersed in deionized water at 10 bar and 25 °C for 0, 7, 14, and 21 days, then tested [...] Read more.
This study quantifies how pressurized water immersion alters the reciprocating sliding behavior of glass and Kevlar woven fabric-reinforced polymer hybrid composite laminates. Specimens were immersed in deionized water at 10 bar and 25 °C for 0, 7, 14, and 21 days, then tested against a 6 mm 100Cr6 steel ball at 20 N under four regimes that combine 1 or 2 Hz with 10 m or 20 m total sliding. Water uptake rose from 0 to 8.54% by day 21 and followed a short-time Fickian square root of time trend, indicating diffusion-controlled sorption. The coefficient of friction exhibited a robust nonmonotonic response with a pronounced minimum at 14 days that was typically 20 to 40% lower than the unaged reference across frequencies and distances, while 7 days produced a partial decrease and 21 days trended upward. Three-dimensional profilometry showed progressive widening and deepening of wear tracks with immersion, for example, at 1 Hz and 10 m width increased from about 1596 to about 2050 to 2101 μm and depth from about 128 to about 184 to 185 μm, with a transient narrowing at 2 Hz after 7 days. Scanning electron microscopy corroborated a transition from mild plowing to matrix plasticization with fiber–matrix debonding and debris compaction. Beyond geometric wear metrics, this study re-processed the existing profilometry and COF records to derive a moisture-dependent mechanistic approach. Moisture uptake up to 8.54% reorganizes the third body at the interface so that friction drops markedly at 14 days (typically 20–40% below the unaged state), while concurrent matrix plasticization and interface weakening enlarge the wear cross-section extracted from the same 3D maps, decoupling friction from damage width/depth under wet conditioning. Factorial analysis ranked immersion time as the dominant driver of damage for width and depth with frequency as a secondary factor and sliding distance as a minor factor, highlighting immersion-controlled tribological design windows for marine and humid service. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

28 pages, 11028 KB  
Article
Effectiveness of Advanced Support at Tunnel Face in ADECO-RS Construction
by Xiaoyu Dou, Chong Xu, Jiaqi Guo, Xin Huang and An Zhang
Buildings 2025, 15(20), 3744; https://doi.org/10.3390/buildings15203744 - 17 Oct 2025
Viewed by 578
Abstract
Tunnel construction in weak and fractured strata often faces risks such as tunnel face instability and large deformation of surrounding rock, which are difficult to effectively control using conventional support methods. Based on the engineering background of the No. 8# TA Tunnel in [...] Read more.
Tunnel construction in weak and fractured strata often faces risks such as tunnel face instability and large deformation of surrounding rock, which are difficult to effectively control using conventional support methods. Based on the engineering background of the No. 8# TA Tunnel in the F3 section of Georgia’s E60 Highway, this study employed ADECO-RS and developed a 3D numerical model with finite difference software to simulate full-face tunnel excavation process. The influence of advanced reinforcement measures on the stability of the surrounding rock was systematically investigated. The control effectiveness of different advanced reinforcement schemes was evaluated by comparing the displacement field, stress field, and plastic zone distribution of the surrounding rock under three conditions: no support, advanced pipe roof support, and a combination of pipe roof and glass fiber bolts. A comprehensive quantitative analysis of the synergistic effect of the combined reinforcement was also performed. The results indicated that significant extrusion deformation of the tunnel face and vault settlement occurred after excavation. The pressure arch developed within a range of 17.5 to 22 m above the tunnel vault. The surrounding rock of this tunnel was classified as type B (short-term stable). Deformation primarily occurred within one tunnel diameter ahead of the face, with the deformation rate significantly reduced after support. Advanced pipe roof support effectively restrained surrounding rock deformation, while the combination of advanced pipe roof and glass fiber bolts delivered better performance: reducing final convergence by 73.10%, pre-convergence by 82.69%, and face extrusion by 87.66%. The combined support also contracted the pressure arch boundaries from 17.5 to 22 m to 6–12.5 m, reduced the extent of major principal stress deflection, and significantly shrinks the plastic zone. Glass fiber bolts played a key role in controlling plastic zone expansion and ensuring stability. This study provides theoretical and numerical references for safe construction and advanced support design in tunnels under complex geological conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 2906 KB  
Article
Effect of PEG-600 Incorporation on the Mechanical and Thermal Response of Tunable Fiber-Reinforced Shape Memory Polymer Composites
by Marylen T. De la Cruz, Riana Gabrielle P. Gamboa, Ricky Kristan M. Raguindin, Jon Dewitt E. Dalisay and Eduardo R. Magdaluyo
Polymers 2025, 17(20), 2742; https://doi.org/10.3390/polym17202742 - 14 Oct 2025
Cited by 1 | Viewed by 1782
Abstract
Shape memory polymer composites (SMPCs) are an intelligent class of materials capable of self-actuation, offering promising applications in diverse stimuli-responsive material systems. This study developed epoxy-based SMPCs reinforced with carbon–aramid fibers at a 15:85 ratio, with their glass transition temperature (Tg) [...] Read more.
Shape memory polymer composites (SMPCs) are an intelligent class of materials capable of self-actuation, offering promising applications in diverse stimuli-responsive material systems. This study developed epoxy-based SMPCs reinforced with carbon–aramid fibers at a 15:85 ratio, with their glass transition temperature (Tg) tailored by incorporating 5 wt.% (SMPC-5) and 10 wt.% (SMPC-10) polyethylene glycol (PEG-600). Dynamic mechanical analysis (DMA) confirmed that PEG addition effectively reduced the Tg from 89.79 °C in the neat composite (SMPC-P) to 70.28 °C in SMPC-5 and 59.34 °C in SMPC-10. Incorporating 5 wt.% PEG enhanced storage and loss moduli, whereas excessive plasticization at 10 wt.% reduced stiffness. Infrared spectroscopy analysis revealed shifts and increased intensities in hydroxyl (OH), aliphatic C-H, and carbonyl (C=O) groups, indicating enhanced intermolecular interactions and bond formation. Tensile testing showed that the carbon–aramid filler significantly improved tensile strength and stiffness, with SMPC-10 achieving the highest tensile strength (233.59 MPa) and SMPC-5 the highest Young’s modulus (14.081 GPa). These results highlight the complementary role of carbon–aramid reinforcement and PEG plasticization in tuning thermomechanical behavior, providing baseline insights for designing SMPCs with tailored actuation and reliable structural performance. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

Back to TopTop