Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = glacial hydrology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18493 KiB  
Article
Aeolian Landscapes and Paleoclimatic Legacy in the Southern Chacopampean Plain, Argentina
by Enrique Fucks, Yamile Rico, Luciano Galone, Malena Lorente, Sebastiano D’Amico and María Florencia Pisano
Geographies 2025, 5(3), 33; https://doi.org/10.3390/geographies5030033 - 14 Jul 2025
Viewed by 444
Abstract
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its [...] Read more.
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its subsurface preserves sediments from the Miocene marine transgression, while the surface hosts some of the country’s most productive soils. Two main geomorphological domains are recognized: fluvial systems dominated by alluvial megafans in the north, and aeolian systems characterized by loess accumulation and wind erosion in the south. The southern sector exhibits diverse landforms such as deflation basins, ridges, dune corridors, lunettes, and mantiform loess deposits. Despite their regional extent, the origin and chronology of many aeolian features remain poorly constrained, as previous studies have primarily focused on depositional units rather than wind-sculpted erosional features. This study integrates remote sensing data, field observations, and a synthesis of published chronometric and sedimentological information to characterize these aeolian landforms and elucidate their genesis. Our findings confirm wind as the dominant morphogenetic agent during Late Quaternary glacial stadials. These aeolian morphologies significantly influence the region’s hydrology, as many permanent and ephemeral water bodies occupy deflation basins or intermediate low-lying sectors prone to flooding under modern climatic conditions, which are considerably wetter than during their original formation. Full article
Show Figures

Figure 1

18 pages, 3073 KiB  
Review
Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events
by José González-Cao, Helena Barreiro-Fonta, Diego Fernández-Nóvoa and Orlando García-Feal
Hydrology 2025, 12(6), 133; https://doi.org/10.3390/hydrology12060133 - 29 May 2025
Viewed by 947
Abstract
Recent scientific literature has consistently highlighted a significant increase in both the frequency and intensity of flood events, primarily attributed to the effects of climate change. Projections suggest that this trend will likely intensify in the coming decades. In this context, enhancing our [...] Read more.
Recent scientific literature has consistently highlighted a significant increase in both the frequency and intensity of flood events, primarily attributed to the effects of climate change. Projections suggest that this trend will likely intensify in the coming decades. In this context, enhancing our understanding of flooding dynamics becomes not only necessary but urgent. A critical component of this advancement lies in the numerical analysis of historical flood events, which provides valuable insights into flood behaviour across extended temporal and spatial scales. This approach enables two key outcomes: a significant improvement in conventional methods for estimating return periods and a reduction in the uncertainties associated with historical flood events by simulating multiple plausible scenarios to identify the most likely one. This paper presents a comprehensive review of the scientific literature focused on the numerical simulation and reconstruction of past flood events. Two main conclusions emerge from this review: First, the temporal scope of the studies is notably wide, covering events ranging from glacial periods to those occurring in the mid-20th century. Second, there exists a pronounced spatial imbalance in the geographical distribution of these studies, with certain regions significantly underrepresented. This review provides a valuable resource for researchers and practitioners working in flood risk assessment and hydrological modelling. By consolidating existing knowledge, it supports the development and refinement of decision-support tools aimed at improving mitigation strategies to reduce the impact of flooding on both populations and infrastructure. Full article
Show Figures

Figure 1

25 pages, 6878 KiB  
Article
Assessment of Water Resource Sustainability and Glacier Runoff Impact on the Northern and Southern Slopes of the Tianshan Mountains
by Qingshan He, Jianping Yang, Qiudong Zhao, Hongju Chen, Yanxia Wang, Hui Wang and Xin Wang
Sustainability 2025, 17(11), 4812; https://doi.org/10.3390/su17114812 - 23 May 2025
Viewed by 456
Abstract
Water resources are vital for sustainable development in arid regions, where glacial runoff plays a significant role in maintaining water supply. This study quantitatively assesses the sustainability of water resources in the Manas River Basin (MnsRB) and the Muzati River Basin (MztRB), situated [...] Read more.
Water resources are vital for sustainable development in arid regions, where glacial runoff plays a significant role in maintaining water supply. This study quantitatively assesses the sustainability of water resources in the Manas River Basin (MnsRB) and the Muzati River Basin (MztRB), situated on the northern and southern slopes of the Tianshan Mountains, respectively, over the period from 1991 to 2050. Freshwater availability was simulated and projected using the Variable Infiltration Capacity Chinese Academy of Sciences (VIC-CAS) hydrological model. Furthermore, three development modes—traditional development, economic growth, and water-saving—were established to estimate future water consumption. The levels of water stress were also applied to assess water resources sustainability in the MnsRB and MztRB. Results indicate that from 1991 to 2020, the average annual available freshwater resources were 13.94 × 108 m3 in the MnsRB and 14.27 × 108 m3 in the MztRB, with glacial runoff contributing 20.24% and 65.58%, respectively. Under the SSP5-8.5 scenario, available freshwater resources are projected to decline by 10.94% in the MnsRB and 4.37% in the MztRB by 2050. Total water withdrawal has increased significantly over the past 30 years, with agriculture water demand accounting for over 80%. The levels of water stress during this period were 1.14 for the MnsRB and 0.87 for the MztRB. Glacial runoff significantly mitigates water stress in both basins, with average reductions of 21.16% and 69.84% between 1991 and 2050. Consequently, clear policies, regulations, and incentives focused on water conservation are vital for effectively tackling the increasing challenge of water scarcity in glacier-covered arid regions. Full article
(This article belongs to the Special Issue Impacts of Climate Change on the Water–Food–Energy Nexus)
Show Figures

Figure 1

15 pages, 6813 KiB  
Article
Bedload Dynamics in a Partially Glaciated Catchment: Insights from over One Decade of Measuring Bedload Transport Processes and Future Perspectives Under Climate Change
by Sabrina Schwarz, Michael Paster, Andrea Lammer, Dorian Shire-Peterlechner, Michael Tritthart, Helmut Habersack and Rolf Rindler
Water 2025, 17(9), 1394; https://doi.org/10.3390/w17091394 - 6 May 2025
Viewed by 567
Abstract
Glacial retreat is a widely recognised phenomenon, and yet the processes of glaciofluvial bedload in high-alpine river systems remain largely unobserved. This study investigates the impact of hydrological and climatic changes on bedload and water discharge dynamics in the Rofenache catchment in the [...] Read more.
Glacial retreat is a widely recognised phenomenon, and yet the processes of glaciofluvial bedload in high-alpine river systems remain largely unobserved. This study investigates the impact of hydrological and climatic changes on bedload and water discharge dynamics in the Rofenache catchment in the Ötztal Alps over a 14-year period. Utilising high-resolution bedload data from plate geophones and direct calibration measurements, we analyse water discharge and bedload transport, focusing on hysteresis events influenced by temperature and precipitation. Our findings reveal that water discharge and bedload transport processes are non-linear, with counterclockwise hysteresis dominating; this is consistent with previous studies in glaciated catchment areas. The inclusion of temperature and precipitation data further highlights the significant influence of temperature on hysteresis events in the catchment area. This research provides insights into the bedload dynamics of a high-alpine river under the effects of climate change, emphasising the need for continued monitoring and analysis to understand the evolving interactions between hydrological and sedimentological processes and climatic factors in partially glaciated catchments. Full article
(This article belongs to the Special Issue Advances in River Restoration and Sediment Transport Management)
Show Figures

Graphical abstract

26 pages, 11207 KiB  
Article
Glacier, Wetland, and Lagoon Dynamics in the Barroso Mountain Range, Atacama Desert: Past Trends and Future Projections Using CA-Markov
by German Huayna, Edwin Pino-Vargas, Jorge Espinoza-Molina, Carolina Cruz-Rodríguez, Fredy Cabrera-Olivera, Lía Ramos-Fernández, Bertha Vera-Barrios, Karina Acosta-Caipa and Eusebio Ingol-Blanco
Hydrology 2025, 12(3), 64; https://doi.org/10.3390/hydrology12030064 - 20 Mar 2025
Cited by 1 | Viewed by 1042
Abstract
Glacial retreat is a major global challenge, particularly in arid and semi-arid regions where glaciers serve as critical water sources. This research focuses on glacial retreat and its impact on land cover and land use changes (LULC) in the Barroso Mountain range, Tacna, [...] Read more.
Glacial retreat is a major global challenge, particularly in arid and semi-arid regions where glaciers serve as critical water sources. This research focuses on glacial retreat and its impact on land cover and land use changes (LULC) in the Barroso Mountain range, Tacna, Peru, which is a critical area for water resources in the hyperarid Atacama Desert. Employing advanced remote sensing techniques through the Google Earth Engine (GEE) cloud computing platform, we analyzed historical trends (1985–2022) using Landsat satellite imagery. A normalized index classification was carried out to generate LULC maps for the years 1986, 2001, 2012, and 2022. Future projections until 2042 were developed using Cellular Automata–Markov (CA–Markov) modeling in QGIS, incorporating six predictive environmental variables. The resulting maps presented an overall accuracy (OA) greater than 83%. Historical analysis revealed a dramatic glacier reduction from 44.7 km2 in 1986 to 7.4 km2 in 2022. In contrast, wetlands expanded substantially from 5.70 km2 to 12.14 km2, indicating ecosystem shifts potentially driven by glacier meltwater availability. CA–Markov chain modeling projected further glacier loss to 3.07 km2 by 2042, while wetlands are expected to expand to 18.8 km2 and bodies of water will reach 4.63 km2. These future projections (with accuracies above 84%) underline urgent implications for water management, environmental sustainability, and climate adaptation strategies, particularly with regard to downstream hydrological risks and ecosystem resilience. Full article
Show Figures

Figure 1

16 pages, 986 KiB  
Article
Formation of Ice Ih Clusters in Solid-Phase Glacial Water with Low Concentrations of Ca2⁺ and Mg2⁺ Ions
by Ignat Ignatov, Yordan G. Marinov, Paunka Vassileva, Teodora P. Popova, Georgi Gluhchev, Mario T. Iliev, Fabio Huether, Zhechko Dimitrov and Irina Gotova
Crystals 2025, 15(3), 254; https://doi.org/10.3390/cryst15030254 - 9 Mar 2025
Cited by 3 | Viewed by 909
Abstract
This study explores the structural and chemical interactions between glacial water, ice Ih, and hydration clusters of divalent cations (Ca2⁺ and Mg2⁺). Ice Ih, with its hexagonal lattice and tetrahedral bonding network, is incompatible with [...] Read more.
This study explores the structural and chemical interactions between glacial water, ice Ih, and hydration clusters of divalent cations (Ca2⁺ and Mg2⁺). Ice Ih, with its hexagonal lattice and tetrahedral bonding network, is incompatible with the hydration shells of Ca2⁺ and Mg2⁺, which adopt octahedral geometries in aqueous solutions. During freezing, these hydration clusters become disordered, causing distortions in the ice structure. Slow freezing reduces these distortions, while rapid freezing traps ions in amorphous regions, preventing proper alignment of hydration clusters. Through advanced techniques such as chemical and isotopic analysis, computational modeling, and electrical impedance spectroscopy, this study examines ion exclusion mechanisms and water-clustering behaviors. The results show that both ions are largely excluded from the solid phase during freezing, with Mg2⁺ exhibiting stronger exclusion due to its smaller ionic radius and greater hydration energy. This study also highlights the role of sediments in modulating ion patterns in glacial ice. This work deepens our understanding of ion–ice interactions, offering insights for cryochemistry, hydrology, and environmental science. The integration of experimental and computational methods provides new perspectives on divalent cations’ role in modifying ice’s crystalline structure and explains isotopic variability in glacial waters. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 4522 KiB  
Article
A Community-Led Assessment to Identify Groundwater-Dependent Lakes in Parkland County (Alberta, Canada)
by Brian Smerdon, Jenna Bahija Tarrabain Maccagno, Bradley Peter, Walter Neilson, Dave Mussell and David Trew
Water 2025, 17(3), 440; https://doi.org/10.3390/w17030440 - 5 Feb 2025
Viewed by 928
Abstract
Responding to a growing concern about impacts from anthropogenic activity on several dozen lakes, a group of citizens initiated and led a water quality sampling program that included characterizing groundwater dependence. The small lakes are located on hummocky glacial terrain near Edmonton, Alberta, [...] Read more.
Responding to a growing concern about impacts from anthropogenic activity on several dozen lakes, a group of citizens initiated and led a water quality sampling program that included characterizing groundwater dependence. The small lakes are located on hummocky glacial terrain near Edmonton, Alberta, Canada. A team of volunteers collected lake samples for a variety of limnological and ecological analyses to document lake health and trophic state, and collaborated with a university research group to identify groundwater dependence using specific environmental tracers (δ2H, δ18O, and 222Rn). Water chemistry and isotopic measurements are largely explained by the position of a lake within the local groundwater flow system. A simple metric to express the likelihood of groundwater dependence was calculated using the total dissolved solids (TDS), δ18O, and 222Rn values. Across the relatively small study area, a greater likelihood of groundwater dependence was determined for lakes located downgradient from an elevated recharge area. In contrast, where the water table was relatively flat, a lower likelihood of groundwater dependence was found. These results were similar to the spatial pattern of a trophic state, indicating that groundwater dependence may be one of the factors responsible for lake ecological status. The data generated by citizens and the knowledge gained about the hydrology of this area will help discussions between landowners and decision makers on how to best manage land use in this diverse landscape. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

44 pages, 7018 KiB  
Review
Rethinking the Lake History of Taylor Valley, Antarctica During the Ross Sea I Glaciation
by Michael S. Stone, Peter T. Doran and Krista F. Myers
Geosciences 2025, 15(1), 9; https://doi.org/10.3390/geosciences15010009 - 4 Jan 2025
Cited by 2 | Viewed by 1394
Abstract
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the [...] Read more.
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the RIS was grounded along the southern Victoria Land coast, completely blocking the mouths of several of the McMurdo Dry Valleys (MDVs). Several authors have proposed that very large paleolakes, proglacial to the RIS, existed in many of the MDVs. Studies of these large paleolakes have been key in the interpretation of the regional landscape, climate, hydrology, and glacier and ice sheet movements. By far the most studied of these large paleolakes is Glacial Lake Washburn (GLW) in Taylor Valley. Here, we present a comprehensive review of literature related to GLW, focusing on the waters supplying the paleolake, signatures of the paleolake itself, and signatures of past glacial movements that controlled the spatial extent of GLW. We find that while a valley-wide proglacial lake likely did exist in Taylor Valley during the early stages of the Ross Sea I glaciation, during later stages two isolated lakes occupied the eastern and western sections of the valley, confined by an expansion of local alpine glaciers. Lake levels above ~140 m asl were confined to western Taylor Valley, and major lake level changes were likely driven by RIS movements, with climate variables playing a more minor role. These results may have major implications for our understanding of the MDVs and the RIS during the Ross Sea I glaciation. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

18 pages, 10675 KiB  
Article
Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins
by Ruibiao Yang, Jinglu Wu, Guojing Gan, Ru Guo and Hongliang Zhang
Water 2024, 16(24), 3699; https://doi.org/10.3390/w16243699 - 22 Dec 2024
Cited by 1 | Viewed by 2144
Abstract
The implementation of accurate water balance assessment in glacier basins is essential for the management and sustainable development of water resources in the basins. In this study, a hybrid modeling framework was constructed to enhance runoff prediction and water balance assessment in glacier [...] Read more.
The implementation of accurate water balance assessment in glacier basins is essential for the management and sustainable development of water resources in the basins. In this study, a hybrid modeling framework was constructed to enhance runoff prediction and water balance assessment in glacier basins. An improved physical hydrological model (SEGSWAT+) was combined with a machine learning model (ML) to capture the relationship between runoff residuals and water balance components through the Shapley additive explanations (SHAP) method. Based on the enhancement of the runoff fitting results of the existing model, the runoff residuals are decomposed and used to correct the hydrological process component values, thus improving the accuracy of the water balance results. We evaluated the performance and correction results of the method using various ML methods. We analyzed the results for two consecutive periods from 1959 to 2022 for the glacial sub-basins of three tributaries of the Upper Ili River Basin in central Asia. The results show that the hybrid framework based on extreme gradient boosting (XGBoost) with an average NSE value of 0.93 has the best performance, and the bias based on the evapotranspiration component and soil water content change component is reduced by 3.2–5%, proving the effectiveness of the water balance correction. This study advances the interpretation of ML models for hydrologic assessment of areas with complex hydrodynamic characteristics. Full article
Show Figures

Figure 1

13 pages, 9172 KiB  
Technical Note
Surge Mechanisms of Garmo Glacier: Integrating Multi-Source Data for Insights into Acceleration and Hydrological Control
by Kunpeng Wu, Jing Feng, Pingping Cheng, Tobias Bolch, Zongli Jiang, Shiyin Liu and Adnan Ahmad Tahir
Remote Sens. 2024, 16(24), 4619; https://doi.org/10.3390/rs16244619 - 10 Dec 2024
Cited by 1 | Viewed by 1067
Abstract
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that [...] Read more.
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that the glacier surged between 27 April and 30 September 2022, with peak speeds reaching 8.3 ± 0.03 m d−1. During April 2020 and September 2022, the receiving zone thickened by 37.9 ± 0.55 m, while the reservoir zone decreased by 35.2 ± 0.55 m on average. The velocity decomposition suggests that this meltwater gradually warmed the glacier bed, accelerating the glacier during the pre-surge phase. During the surge, substantial drainage events coincided with sharp deceleration, ultimately halting the surge and suggesting hydrological control. Extreme climate events may not immediately trigger glacial surges; they can substantially impact glacial surging processes over an extended period. Full article
Show Figures

Graphical abstract

19 pages, 11478 KiB  
Article
A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains
by Jun Liu, Yan Qin, Haidong Han, Qiudong Zhao and Yongqiang Liu
Remote Sens. 2024, 16(23), 4356; https://doi.org/10.3390/rs16234356 - 22 Nov 2024
Viewed by 1020
Abstract
The local or overall mass balance of a glacier is significantly influenced by the spatial heterogeneity of its overlying debris thickness. Accurately estimating the debris thickness of glaciers is essential for understanding their hydrological processes and the impact of climate change. This study [...] Read more.
The local or overall mass balance of a glacier is significantly influenced by the spatial heterogeneity of its overlying debris thickness. Accurately estimating the debris thickness of glaciers is essential for understanding their hydrological processes and the impact of climate change. This study focuses on the Koxkar Glacier in the Tian Shan Mountains, using debris thickness data to compare the accuracy of three commonly used approaches for estimating the spatial distribution of debris thickness. The three measurement approaches include two empirical relationships between the land surface temperature (LST) and debris thickness approaches, empirical relationship approach 1 and empirical relationship approach 2, and the energy balance of debris approach. The analysis also explores the potential influence of topographic factors on the debris distribution. By incorporating temperature data from the debris profiles, this study examines the applicability of each approach and identifies areas for possible improvement. The results indicate that (1) all three debris thickness estimation approaches effectively capture the distribution characteristics of glacial debris, although empirical relationship approach 2 outperforms the others in describing the spatial patterns; (2) the accuracy of each approach varies depending on the debris thickness, with the energy balance of debris approach being most accurate for debris less than 50 cm thick, while empirical relationship approach 1 performs better for debris thicker than 50 cm and empirical relationship approach 2 demonstrates the highest overall accuracy; and (3) topographic factors, particularly the elevation, significantly influence the accuracy of debris thickness estimates. Furthermore, the empirical relationships between the LST and debris thickness require field data and focus solely on the surface temperature, neglecting other influencing factors. The energy balance of debris approach is constrained by its linear assumption of the temperature profile, which is only valid within a specific range of debris thickness; beyond this range, it significantly underestimates the values. These findings provide evidence-based support for improving remote-sensing methods for debris thickness estimation. Full article
(This article belongs to the Special Issue Earth Observation of Glacier and Snow Cover Mapping in Cold Regions)
Show Figures

Figure 1

19 pages, 20524 KiB  
Article
Comparison of Multiple Methods for Supraglacial Melt-Lake Volume Estimation in Western Greenland During the 2021 Summer Melt Season
by Nathan Rowley, Wesley Rancher and Christopher Karmosky
Glacies 2024, 1(2), 92-110; https://doi.org/10.3390/glacies1020007 - 6 Nov 2024
Viewed by 1372
Abstract
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available [...] Read more.
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available at 30 m spatial resolution but with temporal resolution limited by satellite overpass times and cloud cover. We propose two novel methods to quantify the volume of meltwater stored in these lakes, including a high-resolution surface DEM (ArcticDEM) and an ablation model using daily averaged automated weather station data. We compare our methods to the depth-reflectance method for five supraglacial melt-lakes during the 2021 summer melt season. We find agreement between the depth-reflectance and DEM lake infilling methods, within +/−15% for most cases, but our ablation model underproduces by 0.5–2 orders of magnitude the volumetric melt needed to match our other methods, and with a significant lag in meltwater onset for routing into the lake basin. Further information regarding energy balance parameters, including insolation and liquid precipitation amounts, is needed for adequate ablation modelling. Despite the differences in melt-lake volume estimates, our approach in combining remote sensing and meteorological methods provides a framework for analysis of seasonal melt-lake evolution at significantly higher spatial and temporal scales, to understand the drivers of meltwater production and its influence on the spatial distribution and extent of meltwater volume stored on the ice sheet surface. Full article
Show Figures

Figure 1

11 pages, 2193 KiB  
Article
Comprehensive Overview of Long-Term Ecosystem Research Datasets at LTER Site Oberes Stubachtal
by Bernhard Zagel, Hans Wiesenegger, Robert R. Junker and Gerhard Ehgartner
Data 2024, 9(10), 110; https://doi.org/10.3390/data9100110 - 25 Sep 2024
Viewed by 1499
Abstract
This article provides a comprehensive overview of all currently available datasets of the Long-term Ecosystem Research (LTER) site Oberes Stubachtal. The site is located in the Hohe Tauern mountain range (Eastern Alps, Austria) and includes both protected areas (Hohe Tauern National Park) and [...] Read more.
This article provides a comprehensive overview of all currently available datasets of the Long-term Ecosystem Research (LTER) site Oberes Stubachtal. The site is located in the Hohe Tauern mountain range (Eastern Alps, Austria) and includes both protected areas (Hohe Tauern National Park) and unprotected areas (Stubach valley). While the main research focus of the site is on high mountains, glaciology, glacial hydrology, and biodiversity, the eLTER Whole-System Approach (WAILS) was used for data selection. This approach involves a systematic screening of all available data to assess their suitability as eLTER Standard Observations (SOs). This includes the geosphere, atmosphere, hydrosphere, biosphere, and sociosphere. These SOs are fundamental to the development of a comprehensive long-term ecosystem research framework. In total, more than 40 datasets have been collated for the LTER site Oberes Stubachtal and included in the Dynamic Ecological Information Management System—Site and Data Registry (DEIMS-SDR), the eLTER’s data platform. This paper provides a detailed inventory of the datasets and their primary attributes, evaluates them against the WAILS-required observation data, and offers insights into strategies for future initiatives. All datasets are made available through dedicated repositories for FAIR (findable, accessible, interoperable, reusable) use. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

21 pages, 6840 KiB  
Article
Evolution Characteristics of Meteorological and Hydrological Drought in an Arid Oasis of Northwest China
by Yier Dan, Hao Tian, Muhammad Arsalan Farid, Guang Yang, Xiaolong Li, Pengfei Li, Yongli Gao, Xinlin He, Fadong Li, Bing Liu and Yi Li
Water 2024, 16(15), 2088; https://doi.org/10.3390/w16152088 - 24 Jul 2024
Viewed by 1301
Abstract
In the context of global warming, the acceleration of the water cycle increases the risk of meteorological drought (MD) and hydrological drought (HD) in the arid region of Northwest China. The Manas River Basin is a typical agricultural oasis and the largest oasis [...] Read more.
In the context of global warming, the acceleration of the water cycle increases the risk of meteorological drought (MD) and hydrological drought (HD) in the arid region of Northwest China. The Manas River Basin is a typical agricultural oasis and the largest oasis farming area in Xinjiang, Northwest China. Droughts in this basin have significant implications for both agricultural production and the livelihoods of inhabitants. To evaluate the MD and HD and provide information for drought relief in the MRB, the standardized precipitation evapotranspiration index (SPEI) and standardized runoff index (SRI) were calculated using long-term rainfall and runoff data. Subsequently, combined with ArcGIS 10.3 software and the trend analysis method, the SPEI and SRI characteristics were evaluated at different time scales (1-, 3-, 6-, and 12-month). There were three main findings. First, both MD and HD were alleviated, with significantly more HD alleviation. MDs in spring and autumn exhibited a trend of aggravation. The SRIs in summer, autumn, and winter increased significantly at a confidence level of p < 0.01, with an insignificant decline in spring. In the 2010s, the frequency of light drought of MD was stable at 10% to 20%, while severe and extreme droughts increased. The frequency of HDs has decreased since the 1990s. Second, on annual and seasonal scales, MDs occurred mainly as light and moderate droughts. The highest frequency of MD was 24% of moderate droughts in winter. Spatially, the northern region of the MRB was characterized by more frequent light and extreme droughts. Third, runoff in the Manas River Basin increased significantly during the 1990s, which may have been related to the acceleration of glacial retreat in the Tianshan Mountains. This study can effectively reveal the changes in meteorological and hydrological drought in NWC and provide the basis for risk decision-making and management for watershed managers. Full article
(This article belongs to the Special Issue Advances in Ecohydrology in Arid Inland River Basins)
Show Figures

Figure 1

21 pages, 7687 KiB  
Article
Hydrological Regime of Rivers in the Periglacial Zone of the East European Plain in the Late MIS 2
by Aleksey Sidorchuk, Andrei Panin and Olga Borisova
Quaternary 2024, 7(3), 32; https://doi.org/10.3390/quat7030032 - 19 Jul 2024
Cited by 1 | Viewed by 1116
Abstract
At the end of the Pleniglacial and the first half of the Late Glacial period, approximately between 18 and 14 ka BP, rivers of the central and southern parts of the East European Plain had channels up to 10 times as large as [...] Read more.
At the end of the Pleniglacial and the first half of the Late Glacial period, approximately between 18 and 14 ka BP, rivers of the central and southern parts of the East European Plain had channels up to 10 times as large as the present day channels of the same rivers. These ancient channels, called large meandering palaeochannels, are widespread in river floodplains and low terraces. The hydrological regime of these large rivers is of great interest in terms of the palaeoclimatology of the late Marine Isotope Stage 2 (MIS 2). In this study, we aimed at quantitative estimation of maximum flood discharges of rivers in the Dnepr, Don and Volga basins in the late MIS 2. To approach this, we used massive measurements of the morphometric characteristics of large palaeochannels on topographic maps and remote sensing data—palaeochannel width, meander wavelength and their relationships with river flow parameters. The runoff depth of the maximum flood, which corresponds to the maximum depth of daily snow thaw during the snowmelt period, was obtained for unit basins with an area of <1000 km2. The mean value for the southern megaslope of the East European Plain was 44.2 mm/day (6 times the modern value), with 46 mm/day for the Volga River (5.5 times), 45 mm/day (6.3 times) for the Don River and 39 mm/day (8 times the modern value) for the Dnepr River basins. In general, the Dnepr basin was drier than the Don and Volga basins, which corresponds well to the modern distribution of humidity. At the same time, the westernmost part of the Dnepr River basin was relatively wet in the past, and the decrease in humidity from the past to the modern situation was greater there than in the eastern and central regions. The obtained results contradict the prevailing ideas, based mainly on climatic modeling and palynological data, that the climate of Europe was cold and dry during MIS 2. The reason is that palaeoclimatic reconstructions were made predominantly for the LGM epoch (23–20 ka BP). On the East European Plain, the interval 18–14 ka BP is rather poorly studied. Our results of paleoclimatological and palaeohydrological reconstructions showed that the Late Pleniglacial and the first half of the Late Glacial period was characterized by a dramatic increase in precipitation and river discharge relative to the present day. Full article
Show Figures

Figure 1

Back to TopTop