Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = giant aerosols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 2191 KB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 - 4 Aug 2025
Viewed by 434
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

29 pages, 10723 KB  
Article
Combined Raman Lidar and Ka-Band Radar Aerosol Observations
by Pilar Gumà-Claramunt, Aldo Amodeo, Fabio Madonna, Nikolaos Papagiannopoulos, Benedetto De Rosa, Christina-Anna Papanikolaou, Marco Rosoldi and Gelsomina Pappalardo
Remote Sens. 2025, 17(15), 2662; https://doi.org/10.3390/rs17152662 - 1 Aug 2025
Viewed by 291
Abstract
Aerosols play an important role in global meteorology and climate, as well as in air transport and human health, but there are still many unknowns on their effects and importance, in particular for the coarser (giant and ultragiant) aerosol particles. In this study, [...] Read more.
Aerosols play an important role in global meteorology and climate, as well as in air transport and human health, but there are still many unknowns on their effects and importance, in particular for the coarser (giant and ultragiant) aerosol particles. In this study, we aim to exploit the synergy between Raman lidar and Ka-band cloud radar to enlarge the size range in which aerosols can be observed and characterized. To this end, we developed an inversion technique that retrieves the aerosol microphysical properties based on cloud radar reflectivity and linear depolarization ratio. We applied this technique to a 6-year-long dataset, which was created using a recently developed methodology for the identification of giant aerosols in cloud radar measurements, with measurements from Potenza in Italy. Similarly, using collocated and concurrent lidar profiles, a dataset of aerosol microphysical properties using a widely used inversion technique complements the radar-retrieved dataset. Hence, we demonstrate that the combined use of lidar- and radar-derived aerosol properties enables the inclusion of particles with radii up to 12 µm, which is twice the size typically observed using atmospheric lidar alone. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

26 pages, 2007 KB  
Article
Giant Aerosol Observations with Cloud Radar: Methodology and Effects
by Pilar Gumà-Claramunt, Fabio Madonna, Aldo Amodeo, Matthias Bauer-Pfundstein, Nikolaos Papagiannopoulos, Marco Rosoldi and Gelsomina Pappalardo
Remote Sens. 2025, 17(3), 419; https://doi.org/10.3390/rs17030419 - 26 Jan 2025
Cited by 2 | Viewed by 718
Abstract
In this study, we present an innovative methodology for the identification of giant aerosols using cloud radar. The methodology makes use of several insects studies in order to separate radar-derived atmospheric plankton signatures into the contributions of insects and giant aerosols. The methodology [...] Read more.
In this study, we present an innovative methodology for the identification of giant aerosols using cloud radar. The methodology makes use of several insects studies in order to separate radar-derived atmospheric plankton signatures into the contributions of insects and giant aerosols. The methodology is then applied to a 6-year-long cloud radar dataset in Potenza, South Italy. Forty giant aerosol events per year were found, which is in good agreement with the site’s climatological record. A sensitivity study on the effects of the giant aerosols on three atmospheric variables and under different atmospheric stability conditions showed that the presence of giant aerosols (a) increased the aerosol optical depth in all the atmospheric stability conditions, (b) decreased the Ångström exponent for the highest and lowest stability conditions and had the opposite effect for the intermediate stability condition, and (c) increased the accumulated precipitation in all the atmospheric conditions, especially in the most unstable ones. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

7 pages, 4961 KB  
Proceeding Paper
An Overview of the ASKOS Campaign in Cabo Verde
by Eleni Marinou, Peristera Paschou, Ioanna Tsikoudi, Alexandra Tsekeri, Vasiliki Daskalopoulou, Dimitra Kouklaki, Nikos Siomos, Vasileios Spanakis-Misirlis, Kalliopi Artemis Voudouri, Thanasis Georgiou, Eleni Drakaki, Anna Kampouri, Kyriaki Papachristopoulou, Ioanna Mavropoulou, Sotiris Mallios, Emmanouil Proestakis, Antonis Gkikas, Iliana Koutsoupi, Ioannis Panagiotis Raptis, Stelios Kazadzis, Holger Baars, Athina Floutsi, Razvan Pirloaga, Anca Nemuc, Franco Marenco, Maria Kezoudi, Alkistis Papetta, Grisa Močnik, Jesús Yus Díez, Claire L. Ryder, Natalie Ratcliffe, Konrad Kandler, Aryasree Sudharaj and Vassilis Amiridisadd Show full author list remove Hide full author list
Environ. Sci. Proc. 2023, 26(1), 200; https://doi.org/10.3390/environsciproc2023026200 - 21 Sep 2023
Cited by 3 | Viewed by 2021
Abstract
In the framework of the ESA-NASA Joint Aeolus Tropical Atlantic Campaign (JATAC), the ASKOS experiment was implemented during the summer and autumn of 2021 and 2022. ASKOS comprised roughly 9 weeks of measurements in the Saharan dust outflow towards the North Atlantic, with [...] Read more.
In the framework of the ESA-NASA Joint Aeolus Tropical Atlantic Campaign (JATAC), the ASKOS experiment was implemented during the summer and autumn of 2021 and 2022. ASKOS comprised roughly 9 weeks of measurements in the Saharan dust outflow towards the North Atlantic, with operations conducted from the Cabo Verde Islands. Through its unprecedented dataset of synergistic measurements in the region, ASKOS will allow for the calibration and validation of the aerosol/cloud product from Aeolus and the preparation of the terrain for EarthCARE cal/val activities. Moreover, ASKOS marks a turning point in our ability to study Saharan dust properties and the processes affecting its atmospheric transport, as well as the link to other components of the Earth’s system, such as the effect of dust particles on cloud formation over the Eastern Atlantic and the effect of large and giant particles on radiation. This is possible through the synergy of diverse observations acquired during the experiment, which include intense 24/7 ground-based aerosol, cloud, wind, and radiation remote sensing measurements, and UAV-based aerosol in situ measurements within the Saharan air layer, up to 5.3 km altitude, offering particle size-distributions up to 40 μm as well as sample collection for mineralogical analysis. We provide an outline of the novel measurements along with the main scientific objectives of ASKOS. The campaign data will be publicly available by September of 2023 through the EVDC portal (ESA Validation Data Center). Full article
Show Figures

Figure 1

10 pages, 2340 KB  
Communication
Volcanic Eruption of Cumbre Vieja, La Palma, Spain: A First Insight to the Particulate Matter Injected in the Troposphere
by Michaël Sicard, Carmen Córdoba-Jabonero, Africa Barreto, Ellsworth J. Welton, Cristina Gil-Díaz, Clara V. Carvajal-Pérez, Adolfo Comerón, Omaira García, Rosa García, María-Ángeles López-Cayuela, Constantino Muñoz-Porcar, Natalia Prats, Ramón Ramos, Alejandro Rodríguez-Gómez, Carlos Toledano and Carlos Torres
Remote Sens. 2022, 14(10), 2470; https://doi.org/10.3390/rs14102470 - 20 May 2022
Cited by 17 | Viewed by 4085
Abstract
The volcanic eruption of Cumbre Vieja (La Palma Island, Spain), started on 19 September 2021 and was declared terminated on 25 December 2021. A complete set of aerosol measurements were deployed around the volcano within the first month of the eruptive activity. This [...] Read more.
The volcanic eruption of Cumbre Vieja (La Palma Island, Spain), started on 19 September 2021 and was declared terminated on 25 December 2021. A complete set of aerosol measurements were deployed around the volcano within the first month of the eruptive activity. This paper describes the results of the observations made at Tazacorte on the west bank of the island where a polarized micro-pulse lidar was deployed. The analyzed two-and-a-half months (16 October–31 December) reveal that the peak height of the lowermost and strongest volcanic plume did not exceed 3 km (the mean of the hourly values is 1.43 ± 0.45 km over the whole period) and was highly variable. The peak height of the lowermost volcanic plume steadily increased until week 11 after the eruption started (and 3 weeks before its end) and started decreasing afterward. The ash mass concentration was assessed with a method based on the polarization capability of the instrument. Two days with a high ash load were selected: The ash backscatter coefficient, aerosol optical depth, and the volume and particle depolarization ratios were, respectively, 3.6 (2.4) Mm−1sr−1, 0.52 (0.19), 0.13 (0.07) and 0.23 (0.13) on 18 October (15 November). Considering the limitation of current remote sensing techniques to detect large-to-giant particles, the ash mass concentration on the day with the highest ash load (18 October) was estimated to have peaked in the range of 800–3200 μg m−3 in the lowermost layer below 2.5 km. Full article
Show Figures

Graphical abstract

28 pages, 24789 KB  
Review
Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging
by Amy A. Simon, Michael H. Wong, Lawrence A. Sromovsky, Leigh N. Fletcher and Patrick M. Fry
Remote Sens. 2022, 14(6), 1518; https://doi.org/10.3390/rs14061518 - 21 Mar 2022
Cited by 12 | Viewed by 6655
Abstract
Each of the giant planets, Jupiter, Saturn, Uranus, and Neptune, has been observed by at least one robotic spacecraft mission. However, these missions are infrequent; Uranus and Neptune have only had a single flyby by Voyager 2. The Hubble Space Telescope, particularly the [...] Read more.
Each of the giant planets, Jupiter, Saturn, Uranus, and Neptune, has been observed by at least one robotic spacecraft mission. However, these missions are infrequent; Uranus and Neptune have only had a single flyby by Voyager 2. The Hubble Space Telescope, particularly the Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments, and large ground-based telescopes with adaptive optics systems have enabled high-spatial-resolution imaging at a higher cadence, and over a longer time, than can be achieved with targeted missions to these worlds. These facilities offer a powerful combination of high spatial resolution, often <0.05”, and broad wavelength coverage, from the ultraviolet through the near infrared, resulting in compelling studies of the clouds, winds, and atmospheric vertical structure. This coverage allows comparisons of atmospheric properties between the planets, as well as in different regions across each planet. Temporal variations in winds, cloud structure, and color over timescales of days to years have been measured for all four planets. With several decades of data already obtained, we can now begin to investigate seasonal influences on dynamics and aerosol properties, despite orbital periods ranging from 12 to 165 years. Future facilities will enable even greater spatial resolution and, combined with our existing long record of data, will continue to advance our understanding of atmospheric evolution on the giant planets. Full article
(This article belongs to the Special Issue Remote Sensing Observations of the Giant Planets)
Show Figures

Figure 1

Back to TopTop