Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging
Abstract
:1. Introduction
2. History of High-Resolution Imaging
3. Cloud Top Appearance
3.1. Jupiter
3.2. Saturn
3.3. Uranus
3.4. Neptune
4. Dynamics and Cloud Variability
4.1. Zonal Winds
4.2. Waves
4.3. Vertical Cloud Structure
5. Discussion
Planet | Orbital | Orbital | Orbital | Axial | 2/ | 2/ |
---|---|---|---|---|---|---|
Period | Inclination | Eccentricity | Tilt | at 0.1 bar | at 1 bar | |
Jupiter | 11.9 years | 1.3 | 0.049 | 3.1 | 1 | 0.2 |
Saturn | 29.5 years | 2.5 | 0.052 | 26.7 | 1 | 0.3 |
Uranus | 84.0 years | 0.8 | 0.047 | 97.8 | 3 | 0.7 |
Neptune | 164.8 years | 1.8 | 0.010 | 28.3 | 2 | 0.3 |
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peek, B. The Planet Jupiter; Faber and Faber: London, UK, 1958. [Google Scholar]
- Rogers, J. The Giant Planet Jupiter; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Chapman, C.R. Jupiter’s Zonal Winds: Variation with Latitude. J. Atmos. Sci. 1969, 26, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Hide, R. Jupiter and Saturn. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1974, 336, 63–84. [Google Scholar]
- Peebles, P. The Structure and Composition of Jupiter and Saturn. Astrophys. J. 1964, 140, 328. [Google Scholar] [CrossRef]
- Owen, T. The spectra of Jupiter and Saturn in the photographic infrared. Icarus 1969, 10, 355–364. [Google Scholar] [CrossRef]
- Hubbard, W. Thermal Models of Jupiter and Saturn. Astrophys. J. 1969, 155, 333. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; et al. The Jupiter System Through the Eyes of Voyager 1. Science 1979, 204, 951–972. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.A.; Beebe, R.; Boyce, J.; Briggs, G.; Carr, M.; Collins, S.A.; Cook, A.F.; Danielson, G.E.; Davies, M.E.; et al. The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results. Science 1979, 206, 927–950. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.; Beebe, R.; Boyce, J.; Briggs, G.; Bunker, A.; Collins, S.A.; Hansen, C.J.; Johnson, T.V.; Mitchell, J.L.; et al. Encounter with Saturn: Voyager 1 Imaging Science Results. Science 1981, 212, 163–191. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.; Batson, R.; Bridges, P.; Inge, J.; Masursky, H.; Shoemaker, E.; Beebe, R.; Boyce, J.; Briggs, G.; et al. A New Look at the Saturn System: The Voyager 2 Images. Science 1982, 215, 504–537. [Google Scholar] [CrossRef]
- Smith, B.; Soderblom, L.; Beebe, R.; Bliss, D.; Boyce, J.; Brahic, A.; Briggs, G.; Brown, R.; Collins, S.; Cook, A.; et al. Voyager 2 in the Uranian System: Imaging Science Results. Science 1986, 233, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.A.; Soderblom, L.A.; Banfield, D.; Barnet, C.; Basilevsky, A.T.; Beebe, R.F.; Bollinger, K.; Boyce, J.M.; Brahic, A.; Briggs, G.A.; et al. Voyager 2 at Neptune: Imaging Science Results. Science 1989, 246, 1422–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Melendo, E.; Arregi, J.; Rojas, J.; Hueso, R.; Barrado-Izagirre, N.; Gómez-Forrellad, J.; Pérez-Hoyos, S.; Sanz-Requena, J.; Sánchez-Lavega, A. Dynamics of Jupiter’s equatorial region at cloud top level from Cassini and HST images. Icarus 2011, 211, 1242–1257. [Google Scholar] [CrossRef]
- Wong, M.H.; Simon, A.A.; Tollefson, J.W.; de Pater, I.; Barnett, M.N.; Hsu, A.I.; Stephens, A.W.; Orton, G.S.; Fleming, S.W.; Goullaud, C.; et al. High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019. Astrophys. J. Suppl. 2020, 247, 58. [Google Scholar] [CrossRef]
- Simon, A.A.; Wong, M.H.; Orton, G.S. First Results from the Hubble OPAL Program: Jupiter in 2015. Astrophys. J. 2015, 812, 55. [Google Scholar] [CrossRef] [Green Version]
- Beckers, J.M. Adaptive Optics for Astronomy: Principles, Performance, and Applications. Annu. Rev. Astron. Astrophys. 1993, 31, 13–62. [Google Scholar] [CrossRef]
- Rigaut, F. Astronomical Adaptive Optics. Publ. Astron. Soc. Pac. 2015, 127, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- de Pater, I.; Fletcher, L.N.; Pérez-Hoyos, S.; Hammel, H.B.; Orton, G.S.; Wong, M.H.; Luszcz-Cook, S.; Sánchez-Lavega, A.; Boslough, M. A multi-wavelength study of the 2009 impact on Jupiter: Comparison of high resolution images from Gemini, Keck and HST. Icarus 2010, 210, 722–741. [Google Scholar] [CrossRef]
- de Pater, I.; Wong, M.H.; Marcus, P.; Luszcz-Cook, S.; Ádámkovics, M.; Conrad, A.; Asay-Davis, X.; Go, C. Persistent rings in and around Jupiter’s anticyclones—Observations and theory. Icarus 2010, 210, 742–762. [Google Scholar] [CrossRef]
- de Pater, I.; Wong, M.H.; de Kleer, K.; Hammel, H.B.; Ádámkovics, M.; Conrad, A. Keck adaptive optics images of Jupiter’s north polar cap and Northern Red Oval. Icarus 2011, 213, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Hueso, R.; de Pater, I.; Simon, A.; Sánchez-Lavega, A.; Delcroix, M.; Wong, M.H.; Tollefson, J.W.; Baranec, C.; de Kleer, K.; Luszcz-Cook, S.H.; et al. Neptune long-lived atmospheric features in 2013–2015 from small (28-cm) to large (10-m) telescopes. Icarus 2017, 295, 89–109. [Google Scholar] [CrossRef] [Green Version]
- Hammel, H.B.; Sitko, M.L.; Lynch, D.K.; Orton, G.S.; Russell, R.W.; Geballe, T.R.; de Pater, I. Distribution of Ethane and Methane Emission on Neptune. Astron. J. 2007, 134, 637–641. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; de Pater, I.; Fry, P.M.; Hammel, H.B.; Marcus, P. High S/N Keck and Gemini AO imaging of Uranus during 2012–2014: New cloud patterns, increasing activity, and improved wind measurements. Icarus 2015, 258, 192–223. [Google Scholar] [CrossRef] [Green Version]
- de Pater, I.; Sromovsky, L.A.; Fry, P.M.; Hammel, H.B.; Baranec, C.; Sayanagi, K.M. Record-breaking storm activity on Uranus in 2014. Icarus 2015, 252, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Sromovsky, L.A.; Fry, P.M. The methane abundance and structure of Uranus’ cloud bands inferred from spatially resolved 2006 Keck grism spectra. Icarus 2008, 193, 252–266. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Fry, P.M. Spatially resolved cloud structure on Uranus: Implications of near-IR adaptive optics imaging. Icarus 2007, 192, 527–557. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Fry, P.M.; Hammel, H.B.; de Pater, I.; Rages, K.A.; Showalter, M.R. Dynamics, evolution, and structure of Uranus’ brightest cloud feature. Icarus 2007, 192, 558–575. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Fry, P.M. Dynamics of cloud features on Uranus. Icarus 2005, 179, 459–484. [Google Scholar] [CrossRef]
- Hammel, H.B.; de Pater, I.; Gibbard, S.G.; Lockwood, G.W.; Rages, K. New cloud activity on Uranus in 2004: First detection of a southern feature at 2.2 micron. Icarus 2005, 175, 284–288. [Google Scholar] [CrossRef]
- Gibbard, S.G.; de Pater, I.; Hammel, H.B. Near-infrared adaptive optics imaging of the satellites and individual rings of Uranus. Icarus 2005, 174, 253–262. [Google Scholar] [CrossRef] [Green Version]
- de Pater, I.; Gibbard, S.G.; Macintosh, B.A.; Roe, H.G.; Gavel, D.T.; Max, C.E. Keck Adaptive Optics Images of Uranus and Its Rings. Icarus 2002, 160, 359–374. [Google Scholar] [CrossRef] [Green Version]
- Hammel, H.B.; Rages, K.; Lockwood, G.W.; Karkoschka, E.; de Pater, I. New Measurements of the Winds of Uranus. Icarus 2001, 153, 229–235. [Google Scholar] [CrossRef]
- Tollefson, J.; de Pater, I.; Marcus, P.S.; Luszcz-Cook, S.; Sromovsky, L.A.; Fry, P.M.; Fletcher, L.N.; Wong, M.H. Vertical wind shear in Neptune’s upper atmosphere explained with a modified thermal wind equation. Icarus 2018, 311, 317–339. [Google Scholar] [CrossRef]
- de Pater, I.; Fletcher, L.N.; Luszcz-Cook, S.; DeBoer, D.; Butler, B.; Hammel, H.B.; Sitko, M.L.; Orton, G.; Marcus, P.S. Neptune’s global circulation deduced from multi-wavelength observations. Icarus 2014, 237, 211–238. [Google Scholar] [CrossRef]
- Fitzpatrick, P.J.; de Pater, I.; Luszcz-Cook, S.; Wong, M.H.; Hammel, H.B. Dispersion in Neptune’s zonal wind velocities from NIR Keck AO observations in July 2009. Astrophys. Space Sci. 2014, 350, 65–88. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.C.; de Pater, I.; Marcus, P. Neptune’s zonal winds from near-IR Keck adaptive optics imaging in August 2001. Astrophys. Space Sci. 2012, 337, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Fry, P.M.; Sromovsky, L.A. Keck NIRC2 photometry of Uranus, uranian satellites, and Triton in August 2004. Icarus 2007, 192, 117–134. [Google Scholar] [CrossRef]
- Gibbard, S.G.; de Pater, I.; Roe, H.G.; Martin, S.; Macintosh, B.A.; Max, C.E. The altitude of Neptune cloud features from high-spatial-resolution near-infrared spectra. Icarus 2003, 166, 359–374. [Google Scholar] [CrossRef] [Green Version]
- Max, C.E.; Macintosh, B.A.; Gibbard, S.G.; Gavel, D.T.; Roe, H.G.; de Pater, I.; Ghez, A.M.; Acton, D.S.; Lai, O.; Stomski, P.; et al. Cloud Structures on Neptune Observed with Keck Telescope Adaptive Optics. Astron. J. 2003, 125, 364–375. [Google Scholar] [CrossRef]
- Wizinowich, P.; Acton, D.S.; Shelton, C.; Stomski, P.; Gathright, J.; Ho, K.; Lupton, W.; Tsubota, K.; Lai, O.; Max, C.; et al. First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery. Pub. Astro. Soc. Pac. 2000, 112, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Uno, T.; Kasaba, Y.; Tao, C.; Sakanoi, T.; Kagitani, M.; Fujisawa, S.; Kita, H.; Badman, S.V. Vertical emissivity profiles of Jupiter’s northern H3+ and H2 infrared auroras observed by Subaru/IRCS. J. Geophys. Res. (Space Phys.) 2014, 119, 10219–10241. [Google Scholar] [CrossRef] [Green Version]
- Kita, H.; Fujisawa, S.; Tao, C.; Kagitani, M.; Sakanoi, T.; Kasaba, Y. Horizontal and vertical structures of Jovian infrared aurora: Observation using Subaru IRCS with adaptive optics. Icarus 2018, 313, 93–106. [Google Scholar] [CrossRef]
- Watanabe, H.; Kita, H.; Tao, C.; Kagitani, M.; Sakanoi, T.; Kasaba, Y. Pulsation Characteristics of Jovian Infrared Northern Aurora Observed by the Subaru IRCS with Adaptive Optics. Geophys. Res. Lett. 2018, 45, 11547–11554. [Google Scholar] [CrossRef]
- Wong, M.H.; Marchis, F.; Marchetti, E.; Amico, P.; Tordo, S.; Bouy, H.; de Pater, I. A shift in Jupiter’s equatorial haze distribution imaged with the Multi-Conjugate Adaptive Optics Demonstrator at the VLT. arXiv 2008, arXiv:0810.3703. [Google Scholar]
- Chowdhury, M.N.; Stallard, T.S.; Melin, H.; Johnson, R.E. Exploring Key Characteristics in Saturn’s Infrared Auroral Emissions Using VLT-CRIRES: H3+ Intensities, Ion Line-of-Sight Velocities, and Rotational Temperatures. Geophys. Res. Lett. 2019, 46, 7137–7146. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.G.J.; Fletcher, L.N.; Read, P.L.; Tice, D.; de Pater, I.; Orton, G.S.; Teanby, N.A.; Davis, G.R. Spectral analysis of Uranus’ 2014 bright storm with VLT/SINFONI. Icarus 2016, 264, 72–89. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.G.J.; Wong, M.H.; Simon, A.A.; Orton, G.S.; Toledo, D. HST/WFC3 observations of Uranus’ 2014 storm clouds and comparison with VLT/SINFONI and IRTF/Spex observations. Icarus 2017, 288, 99–119. [Google Scholar] [CrossRef]
- Braude, A.S.; Irwin, P.G.; Orton, G.S.; Fletcher, L.N. Colour and tropospheric cloud structure of Jupiter from MUSE/VLT: Retrieving a universal chromophore. Icarus 2020, 338, 113589. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.G.J.; Dobinson, J.; James, A.; Toledo, D.; Teanby, N.A.; Fletcher, L.N.; Orton, G.S.; Pérez-Hoyos, S. Latitudinal variation of methane mole fraction above clouds in Neptune’s atmosphere from VLT/MUSE-NFM: Limb-darkening reanalysis. Icarus 2021, 357, 114277. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Toledo, D.; Braude, A.S.; Bacon, R.; Weilbacher, P.M.; Teanby, N.A.; Fletcher, L.N.; Orton, G.S. Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune’s atmosphere from VLT/MUSE Narrow Field Mode Observations. Icarus 2019, 331, 69–82. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Teanby, N.A.; Davis, G.R.; Fletcher, L.N.; Orton, G.S.; Calcutt, S.B.; Tice, D.S.; Hurley, J. Further seasonal changes in Uranus’s cloud structure observed by Gemini-North and UKIRT. Icarus 2012, 218, 47–55. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Teanby, N.A.; Davis, G.R.; Fletcher, L.N.; Orton, G.S.; Tice, D.; Kyffin, A. Uranus’s cloud structure and seasonal variability from Gemini-North and UKIRT observations. Icarus 2011, 212, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.G.J.; Teanby, N.A.; Davis, G.R.; Fletcher, L.N.; Orton, G.S.; Tice, D.; Hurley, J.; Calcutt, S.B. Multispectral imaging observations of Neptune’s cloud structure with Gemini-North. Icarus 2011, 216, 141–158. [Google Scholar] [CrossRef]
- Giles, R.S.; Orton, G.S.; Stephens, A.W.; Wong, M.H.; Irwin, P.G.J.; Sinclair, J.A.; Tabataba-Vakili, F. Wave Activity in Jupiter’s North Equatorial Belt From Near-Infrared Reflectivity Observations. Geophys. Res. Lett. 2019, 46, 1232–1241. [Google Scholar] [CrossRef]
- Roman, M.T.; Banfield, D.; Gierasch, P.J. Aerosols and methane in the ice giant atmospheres inferred from spatially resolved, near-infrared spectra: I. Uranus, 2001–2007. Icarus 2018, 310, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Roddier, F.; Roddier, C.; Graves, J.E.; Northcott, M.J.; Owen, T. NOTE: Neptune’s Cloud Structure and Activity: Ground-Based Monitoring with Adaptive Optics. Icarus 1998, 136, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Roddier, F.; Roddier, C.; Brahic, A.; Dumas, C.; Graves, J.E.; Northcott, M.J.; Owen, T. First ground-based adaptive optics observations of Neptune and Proteus. Planet. Space Sci. 1997, 45, 1031–1036. [Google Scholar] [CrossRef]
- Roe, H.G.; Gavel, D.; Max, C.; de Pater, I.; Gibbard, S.; Macintosh, B.; Baines, K.H. Near-Infrared Observations of Neptune’s Tropospheric Cloud Layer with the Lick Observatory Adaptive Optics System. Astron. J. 2001, 122, 1636–1643. [Google Scholar] [CrossRef]
- Glenar, D.A.; Hillman, J.J.; Lelouarn, M.; Fugate, R.; Drummond, J.D. Multispectral Imagery of Jupiter and Saturn Using Adaptive Optics and Acousto-Optic Tuning. Pub. Astron. Soc. Pac. 1997, 109, 326–337. [Google Scholar] [CrossRef]
- Sromovsky, L.A. Latitudinal and Longitudinal Oscillations of Cloud Features on Neptune. Science 1991, 254, 684–686. [Google Scholar] [CrossRef]
- Trigo-Rodriguez, J.; Sánchez-Lavega, A.; Gómez, J.; Lecacheux, J.; Colas, F.; Miyazaki, I. The 90-day oscillations of Jupiter’s Great Red Spot revisited. Planet. Space Sci. 2000, 48, 331–339. [Google Scholar] [CrossRef]
- Simon, A.A.; Tabataba-Vakili, F.; Cosentino, R.; Beebe, R.F.; Wong, M.H.; Orton, G.S. Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter’s Great Red Spot. Astron. J. 2018, 155, 151. [Google Scholar] [CrossRef]
- Morales-Juberías, R.; Simon, A.A.; Cosentino, R.G. Analysis of the long-term drift rates and oscillations of Jupiter’s largest vortices. Icarus 2022, 372, 114732. [Google Scholar] [CrossRef]
- Wong, M.H.; Marcus, P.S.; Simon, A.A.; de Pater, I.; Tollefson, J.W.; Asay-Davis, X. Evolution of the Horizontal Winds in Jupiter’s Great Red Spot From One Jovian Year of HST/WFC3 Maps. Geophys. Res. Lett. 2021, 48, e2021GL093982. [Google Scholar] [CrossRef]
- Hammel, H.B.; Wong, M.H.; Clarke, J.T.; de Pater, I.; Fletcher, L.N.; Hueso, R.; Noll, K.; Orton, G.S.; Pérez-Hoyos, S.; Sánchez-Lavega, A.; et al. Jupiter after the 2009 Impact: Hubble Space Telescope Imaging of the Impact-Generated Debris and its Temporal Evolution. Astrophys. J. 2010, 715, L150–L154. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.I.; Wong, M.H.; Simon, A.A. Lifetimes and Occurrence Rates of Dark Vortices on Neptune from 25 Years of Hubble Space Telescope Images. Astron. J. 2019, 157, 152. [Google Scholar] [CrossRef]
- Hammel, H.B.; Lockwood, G.W.; Mills, J.R.; Barnet, C.D. Hubble Space Telescope Imaging of Neptune’s Cloud Structure in 1994. Science 1995, 268, 1740–1742. [Google Scholar] [CrossRef]
- Sromovsky, L.; Hammel, H.; de Pater, I.; Fry, P.; Rages, K.; Showalter, M.; Merline, W.; Tamblyn, P.; Neyman, C.; Margot, J.L.; et al. Episodic bright and dark spots on Uranus. Icarus 2012, 220, 6–22. [Google Scholar] [CrossRef] [Green Version]
- Sromovsky, L.; Fry, P.; Dowling, T.; Baines, K.; Limaye, S. Neptune’s Atmospheric Circulation and Cloud Morphology: Changes Revealed by 1998 HST Imaging. Icarus 2001, 150, 244–260. [Google Scholar] [CrossRef]
- Atreya, S.K.; Romani, P.N. Photochemistry and clouds of Jupiter, Saturn and Uranus. In Recent Advances in Planetary Meteorology; Hunt, G.E., Ed.; Cambridge University Press: Cambridge, UK, 1985; pp. 17–68. [Google Scholar]
- West, R.A.; Strobel, D.F.; Tomasko, M.G. Clouds, aerosols, and photochemistry in the Jovian atmosphere. Icarus 1986, 65, 161–217. [Google Scholar] [CrossRef]
- Lindal, G.F. The Atmosphere of Neptune: An Analysis of Radio Occultation Data Acquired with Voyager 2. Astron. J. 1992, 103, 967. [Google Scholar] [CrossRef]
- Schaller, E.L.; Roe, H.G.; Schneider, T.; Brown, M.E. Storms in the tropics of Titan. Nature 2009, 460, 873–875. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.; Rogers, J.; Giles, R.; Payne, A.; Irwin, P.; Vedovato, M. Moist convection and the 2010–2011 revival of Jupiter’s South Equatorial Belt. Icarus 2017, 286, 94–117. [Google Scholar] [CrossRef]
- Simon, A.A.; Sanchez-Lavega, A.; Legarreta, J.; Sanz-Requena, J.F.; Perez-Hoyos, S.; Garcia-Melendo, E.; Carlson, R.W. Spectral comparison and stability of red regions on Jupiter. J. Geophys. Res. Planets 2015, 120, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, M.J.; Hudson, R.L.; Chanover, N.J.; Simon, A.A. The spectrum of Jupiter’s Great Red Spot: The case for ammonium hydrosulfide (NH4SH). Icarus 2016, 271, 265–268. [Google Scholar] [CrossRef]
- Carlson, R.; Baines, K.; Anderson, M.; Filacchione, G.; Simon, A. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter’s Great Red Spot. Icarus 2016, 274, 106–115. [Google Scholar] [CrossRef]
- Sromovsky, L.; Baines, K.; Fry, P.; Carlson, R. A possibly universal red chromophore for modeling color variations on Jupiter. Icarus 2017, 291, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Weidenschilling, S.; Lewis, J. Atmospheric and cloud structures of the Jovian planets. Icarus 1973, 20, 465–476. [Google Scholar] [CrossRef]
- Atreya, S.K. Atmospheres and Ionospheres of the Outer Planets and Their Satellites; Springer: London, UK, 1986; p. 90. [Google Scholar]
- Baines, K.H.; Carlson, R.W.; Kamp, L.W. Fresh Ammonia Ice Clouds in Jupiter. I. Spectroscopic Identification, Spatial Distribution, and Dynamical Implications. Icarus 2002, 159, 74–94. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Conrath, B.; Gierasch, P.J.; Beebe, R.F. A Detection of Water Ice on Jupiter with Voyager IRIS. Icarus 2000, 145, 454–461. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Gierasch, P.J.; Beebe, R.F.; Conrath, B.; Flasar, F.; Achterberg, R.K. New Observational Results Concerning Jupiter’s Great Red Spot. Icarus 2002, 158, 249–266. [Google Scholar] [CrossRef]
- Beebe, R. Jupiter The Giant Planet; Smithsonian: Washington, DC, USA, 1994. [Google Scholar]
- Sánchez-Lavega, A.; Anguiano-Arteaga, A.; Iñurrigarro, P.; Garcia-Melendo, E.; Legarreta, J.; Hueso, R.; Sanz-Requena, J.F.; Pérez-Hoyos, S.; Mendikoa, I.; Soria, M.; et al. Jupiter’s Great Red Spot: Strong Interactions With Incoming Anticyclones in 2019. J. Geophys. Res. Planets 2021, 126, e2020JE006686. [Google Scholar] [CrossRef]
- Sanchez-Lavega, A.; Orton, G.; Morales, R.; Lecacheux, J.; Colas, F.; Fisher, B.; Fukumura-Sawada, P.; Golisch, W.; Griep, D.; Kaminski, C.; et al. The Merger of Two Giant Anticyclones in the Atmosphere of Jupiter. Icarus 2001, 149, 491–495. [Google Scholar] [CrossRef]
- Youssef, A.; Marcus, P.S. The dynamics of jovian white ovals from formation to merger. Icarus 2003, 162, 74–93. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Chanover, N.J.; Orton, G.S.; Sussman, M.; Tsavaris, I.G.; Karkoschka, E. Jupiter’s White Oval turns red. Icarus 2006, 185, 558–562. [Google Scholar] [CrossRef]
- DelGenio, A.D.; Achterberg, R.K.; Baines, K.H.; Flasar, F.M.; Read, P.L.; Sánchez-Lavega, A.; Showman, A.P. Saturn Atmospheric Structure and Dynamics. In Saturn from Cassini-Huygens; Dougherty, M.K., Esposito, L.W., Krimigis, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 113–159. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Greathouse, T.K.; Guerlet, S.; Moses, J.I.; West, R.A. Saturn’s Seasonally Changing Atmosphere: Thermal Structure, Composition and Aerosols. In Saturn in the 21st Century; Baines, K.H., Flasar, F.M., Krupp, N., Stallard, T., Eds.; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 251–294. [Google Scholar] [CrossRef]
- Sromovsky, L.; Baines, K.; Fry, P. Evolution of Saturn’s north polar color and cloud structure between 2012 and 2017 inferred from Cassini VIMS and ISS observations. Icarus 2021, 362, 114409. [Google Scholar] [CrossRef]
- Gunnarson, J.L.; Sayanagi, K.M.; Blalock, J.J.; Fletcher, L.N.; Ingersoll, A.P.; Dyudina, U.A.; Ewald, S.P.; Draham, R.L. Saturn’s New Ribbons: Cassini Observations of Planetary Waves in Saturn’s 42N Atmospheric Jet. Geophys. Res. Lett. 2018, 45, 7399–7408. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Hueso, R.; Sanchez-Lavega, A.; Wong, M.H. Midsummer Atmospheric Changes in Saturn’s Northern Hemisphere from the Hubble OPAL Program. Planet. Sci. J. 2021, 2, 47. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.; Delcroix, M.; Legarreta, J.J.; Gómez-Forrellad, J.M.; Hueso, R.; García-Melendo, E.; Pérez-Hoyos, S.; Barrado-Navascués, D.; Lillo, J.; et al. Ground-based observations of the long-term evolution and death of Saturn’s 2010 Great White Spot. Icarus 2012, 220, 561–576. [Google Scholar] [CrossRef]
- del Río-Gaztelurrutia, T.; Sánchez-Lavega, A.; Antuñano, A.; Legarreta, J.; García-Melendo, E.; Sayanagi, K.M.; Hueso, R.; Wong, M.H.; Pérez-Hoyos, S.; Rojas, J.F.; et al. A planetary-scale disturbance in a long living three vortex coupled system in Saturn’s atmosphere. Icarus 2018, 302, 499–513. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, D. A Hexagonal feature around Saturn’s north pole. Icarus 1988, 76, 335–356. [Google Scholar] [CrossRef]
- Barbosa Aguiar, A.; Read, P.; Wordsworth, R.; Salter, T.; Yamazaki, Y. A laboratory model of Saturn’s North Polar Hexagon. Icarus 2010, 206, 755–763. [Google Scholar] [CrossRef]
- Morales-Juberias, R.; Sayanagi, K.; Simon, A.; Fletcher, L.; Cosentino, R. Meandering Shallow Atmospheric Jet as a Model of Saturn’ North-Polar Hexagon. Astrophys. J. Lett. 2015, 806, L18. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Orton, G.S.; Sinclair, J.A.; Guerlet, S.; Read, P.L.; Antuñano, A.; Achterberg, R.K.; Flasar, F.M.; Irwin, P.G.J.; Bjoraker, G.L.; et al. A hexagon in Saturn’s northern stratosphere surrounding the emerging summertime polar vortex. Nat. Commun. 2018, 9, 3564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sromovsky, L.A.; Revercomb, H.E.; Krauss, R.J.; Suomi, V.E. Voyager 2 Observations of Saturn’s Northern Mid-Latitude Cloud Features: Morphology, Motions, and Evolution. J. Geophys. Res. 1983, 88, 8650–8666. [Google Scholar] [CrossRef]
- Sayanagi, K.M.; Morales-Juberías, R.; Ingersoll, A.P. Saturn’s Northern Hemisphere Ribbon: Simulations and Comparison with the Meandering Gulf Stream. J. Atmos. Sci. 2010. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, R.G.; Simon, A.; Morales-Juberias, R.; Sayanagi, K.M. Observations and Numerical Modeling of the Jovian Ribbon. Astrophys. J. 2015, 810, L10. [Google Scholar] [CrossRef]
- Karkoschka, E. Clouds of High Contrast on Uranus. Science 1998, 280, 570. [Google Scholar] [CrossRef]
- Karkoschka, E. Uranus’ southern circulation revealed by Voyager 2: Unique characteristics. Icarus 2015, 250, 294–307. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Karkoschka, E.; Fry, P.M.; de Pater, I.; Hammel, H.B. The methane distribution and polar brightening on Uranus based on HST/STIS, Keck/NIRC2, and IRTF/SpeX observations through 2015. Icarus 2019, 317, 266–306. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N. The Atmosphere of Uranus. arXiv 2021, arXiv:2105.06377. [Google Scholar]
- Sromovsky, L.A.; Karkoschka, E.; Fry, P.M.; Hammel, H.B.; de Pater, I.; Rages, K. Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations. Icarus 2014, 238, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Karkoschka, E.; Tomasko, M. The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus 2009, 202, 287–309. [Google Scholar] [CrossRef]
- Toledo, D.; Irwin, P.G.; Rannou, P.; Teanby, N.A.; Simon, A.A.; Wong, M.H.; Orton, G.S. Constraints on Uranus’s haze structure, formation and transport. Icarus 2019, 333, 1–11. [Google Scholar] [CrossRef]
- Hammel, H.; Sromovsky, L.; Fry, P.; Rages, K.; Showalter, M.; de Pater, I.; van Dam, M.; LeBeau, R.; Deng, X. The Dark Spot in the atmosphere of Uranus in 2006: Discovery, description, and dynamical simulations. Icarus 2009, 201, 257–271. [Google Scholar] [CrossRef]
- de Pater, I.; Sromovsky, L.; Hammel, H.B.; Fry, P.; Le Beau, R.; Rages, K.; Showalter, M.; Matthews, K. Post-equinox observations of Uranus: Berg’s evolution, vertical structure, and track towards the equator. Icarus 2011, 215, 332–345. [Google Scholar] [CrossRef]
- Hueso, R.; Sanchez-Lavega, A. Atmospheric Dynamics and Vertical Structure of Uranus and Neptune’s Weather Layers. Space Sci. Rev. 2019, 215, 52. [Google Scholar] [CrossRef]
- Hueso, R.; Guillot, T.; Sánchez-Lavega, A. Convective storms and atmospheric vertical structure in Uranus and Neptune. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2020, 378, 20190476. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Teanby, N.A.; Fletcher, L.N.; Toledo, D.; Orton, G.S.; Wong, M.H.; Roman, M.T.; Perez-Hoyos, S.; James, A.; Dobinson, J. Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including Dark Spots. arXiv 2022, arXiv:2201.04516. [Google Scholar]
- Sromovsky, L.; Fry, P.; Hammel, H.; Ahue, W.; de Pater, I.; Rages, K.; Showalter, M.; van Dam, M. Uranus at equinox: Cloud morphology and dynamics. Icarus 2009, 203, 265–286. [Google Scholar] [CrossRef] [Green Version]
- Moses, J.I.; Cavalié, T.; Fletcher, L.N.; Roman, M.T. Atmospheric chemistry on Uranus and Neptune. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190477. [Google Scholar] [CrossRef]
- Molter, E.; de Pater, I.; Luszcz-Cook, S.; Hueso, R.; Tollefson, J.; Alvarez, C.; Sánchez-Lavega, A.; Wong, M.H.; Hsu, A.I.; Sromovsky, L.A.; et al. Analysis of Neptune’s 2017 bright equatorial storm. Icarus 2019, 321, 324–345. [Google Scholar] [CrossRef] [Green Version]
- Sromovsky, L.; Fry, P.; Dowling, T.; Baines, K.; Limaye, S. Coordinated 1996 HST and IRTF Imaging of Neptune and Triton: III. Neptune’s Atmospheric Circulation and Cloud Structure. Icarus 2001, 149, 459–488. [Google Scholar] [CrossRef]
- Hammel, H.; Lockwood, G. Atmospheric Structure of Neptune in 1994, 1995, and 1996: HST Imaging at Multiple Wavelengths. Icarus 1997, 129, 466–481. [Google Scholar] [CrossRef]
- Wong, M.H.; Tollefson, J.; Hsu, A.I.; de Pater, I.; Simon, A.A.; Hueso, R.; Sánchez-Lavega, A.; Sromovsky, L.; Fry, P.; Luszcz-Cook, S.; et al. A New Dark Vortex on Neptune. Astron. J. 2018, 155, 117. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.A.; Wong, M.H.; Hsu, A.I. Formation of a New Great Dark Spot on Neptune in 2018. Geophys. Res. Lett. 2019, 46, 3108–3113. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Limaye, S.S.; Fry, P.M. Dynamics of Neptune’s Major Cloud Features. Icarus 1993, 105, 110–141. [Google Scholar] [CrossRef]
- Luszcz-Cook, S.; de Pater, I.; Ádámkovics, M.; Hammel, H. Seeing double at Neptune’s south pole. Icarus 2010, 208, 938–944. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.A. The Structure and Temporal Stability of Jupiter’s Zonal Winds: A Study of the North Tropical Region. Icarus 1999, 141, 29–39. [Google Scholar] [CrossRef]
- Tollefson, J.; Wong, M.H.; de Pater, I.; Simon, A.A.; Orton, G.S.; Rogers, J.H.; Atreya, S.K.; Cosentino, R.G.; Januszewski, W.; Morales-Juberías, R.; et al. Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission. Icarus 2017, 296, 163–178. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Sromovsky, L.A.; Showman, A.P.; Del Genio, A.D.; Young, R.M.B.; Hueso, R.; Garcia-Melendo, E.; Kaspi, Y.; Orton, G.S.; Barrado-Izagirre, N.; et al. Zonal Jets: Phenomenology, Genesis, and Physics; Galperin, B., Read, P.L., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 72–103. [Google Scholar] [CrossRef]
- Johnson, P.E.; Morales-Juberías, R.; Simon, A.; Gaulme, P.; Wong, M.H.; Cosentino, R.G. Longitudinal variability in Jupiter’s zonal winds derived from multi-wavelength HST observations. Planet. Space Sci. 2018, 155, 2–11. [Google Scholar] [CrossRef]
- Banfield, D.; Gierasch, P.J.; Squyres, S.W.; Nicholson, P.D.; Conrath, B.J.; Matthews, K. 2 micron Spectrophotometry of Jovian Stratospheric Aerosols—Scattering Opacities, Vertical Distributions, and Wind Speeds. Icarus 1996, 121, 389–410. [Google Scholar] [CrossRef]
- García-Melendo, E.; Sánchez-Lavega, A. A Study of the Stability of Jovian Zonal Winds from HST Images: 1995–2000. Icarus 2001, 152, 316–330. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; McEwen, A.; Del Genio, A.D.; Ingersoll, A.P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C.D.; Johnson, T.V.; et al. Cassini Imaging of Jupiter’s Atmosphere, Satellites, and Rings. Science 2003, 299, 1541–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, P.; Dowling, T.; Schubert, G. Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature 2009, 460, 608–610. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; García-Melendo, E.; Pérez-Hoyos, S.; Hueso, R.; Wong, M.H.; Simon, A.; Sanz-Requena, J.F.; Antuñano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; et al. An enduring rapidly moving storm as a guide to Saturn’s Equatorial jet’s complex structure. Nat. Commun. 2016, 7, 13262. [Google Scholar] [CrossRef] [Green Version]
- Conrath, B.J.; Gierasch, P.J.; Ustinov, E.A. Thermal Structure and Para Hydrogen Fraction on the Outer Planets from Voyager IRIS Measurements. Icarus 1998, 135, 501–517. [Google Scholar] [CrossRef]
- Fletcher, L.N.; de Pater, I.; Orton, G.S.; Hofstadter, M.D.; Irwin, P.G.J.; Roman, M.T.; Toledo, D. Ice Giant Circulation Patterns: Implications for Atmospheric Probes. Space Sci. Rev. 2020, 216, 21. [Google Scholar] [CrossRef] [Green Version]
- Limaye, S.S.; Sromovsky, L.A. Winds of Neptune: Voyager observations of cloud motions. J. Geophys. Res. 1991, 96, 18941–18960. [Google Scholar] [CrossRef]
- Liu, J.; Schneider, T. Mechanisms of Jet Formation on the Giant Planets. J. Atmos. Sci. 2010, 67, 3652–3672. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Schneider, T. Convective Generation of Equatorial Superrotation in Planetary Atmospheres. J. Atmos. Sci. 2011, 68, 2742–2756. [Google Scholar] [CrossRef] [Green Version]
- Simon-Miller, A.A.; Rogers, J.H.; Gierasch, P.J.; Choi, D.; Allison, M.D.; Adamoli, G.; Mettig, H.J. Longitudinal variation and waves in Jupiter’s south equatorial wind jet. Icarus 2012, 218, 817–830. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Hueso, R.; Iñurrigarro, P.; Sánchez-Lavega, A.; Morales-Juberías, R.; Cosentino, R.; Fletcher, L.; Wong, M.; Hsu, A.; de Pater, I.; et al. A New, Long-lived, Jupiter Mesoscale Wave Observed at Visible Wavelengths. Astron. J. 2018, 156, 79. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.N.; Melin, H.; Adriani, A.; Simon, A.A.; Sanchez-Lavega, A.; Donnelly, P.T.; Antuñano, A.; Orton, G.S.; Hueso, R.; Kraaikamp, E.; et al. Jupiter’s Mesoscale Waves Observed at 5 microns by Ground-based Observations and Juno JIRAM. Astron. J. 2018, 156, 67. [Google Scholar] [CrossRef] [PubMed]
- Beebe, R.; Barnet, C.; Sada, P.; Murrell, A. The onset and growth of the 1990 equatorial disturbance on Saturn. Icarus 1992, 95, 163–172. [Google Scholar] [CrossRef]
- Barnet, C.; Westphal, J.; Beebe, R.; Huber, L. Hubble space telescope observations of the 1990 equatorial disturbance on Saturn: Zonal winds and central meridian albedos. Icarus 1992, 100, 499–511. [Google Scholar] [CrossRef]
- Sanchez-Lavega, A.; Lecacheux, J.; Gomez, J.M.; Colas, F.; Laques, P.; Noll, K.; Gilmore, D.; Miyazaki, I.; Parker, D. Large-Scale Storms in Saturn’s Atmosphere During 1994. Science 1996, 271, 631–634. [Google Scholar] [CrossRef]
- García-Melendo, E.; Sánchez-Lavega, A. Shallow water simulations of Saturn’s giant storms at different latitudes. Icarus 2017, 286, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lavega, A.; Fischer, G.; Fletcher, L.N.; García-Melendo, E.; Hesman, B.; Pérez-Hoyos, S.; Sayanagi, K.M.; Sromovsky, L.A. The Great Saturn Storm of 2010–2011. In Saturn in the 21st Century; Baines, K., Flasar, F., Krupp, N., Stallard, T., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 377–416. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef] [Green Version]
- Mousis, O.; Atkinson, D.H.; Ambrosi, R.; Atreya, S.; Banfield, D.; Barabash, S.; Blanc, M.; Cavalié, T.; Coustenis, A.; Deleuil, M.; et al. In Situ exploration of the giant planets. Exp. Astron. 2021. [Google Scholar] [CrossRef]
- Atreya, S.K.; Hofstadter, M.H.; In, J.H.; Mousis, O.; Reh, K.; Wong, M.H. Deep Atmosphere Composition, Structure, Origin, and Exploration, with Particular Focus on Critical in situ Science at the Icy Giants. Space Sci. Rev. 2020, 216, 18. [Google Scholar] [CrossRef]
- Wong, M.H.; Atreya, S.K.; Kuhn, W.R.; Romani, P.N.; Mihalka, K.M. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models. Icarus 2015, 245, 273–281. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Baines, K.H.; Fry, P.M. Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus 2013, 226, 402–418. [Google Scholar] [CrossRef] [Green Version]
- Guillot, T.; Stevenson, D.J.; Atreya, S.K.; Bolton, S.J.; Becker, H.N. Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”. J. Geophys. Res. (Planets) 2020, 125, e06403. [Google Scholar] [CrossRef]
- Ragent, B.; Colburn, D.S.; Rages, K.A.; Knight, T.C.D.; Avrin, P.; Orton, G.S.; Yanamandra-Fisher, P.A.; Grams, G.W. The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment. J. Geophys. Res. 1998, 103, 22891–22910. [Google Scholar] [CrossRef]
- Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527–610. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Banfield, D.; Gierasch, P.J. Color and the Vertical Structure in Jupiter’s Belts, Zones, and Weather Systems. Icarus 2001, 154, 459–474. [Google Scholar] [CrossRef]
- Pérez-Hoyos, S.; Sanz-Requena, J.; Barrado-Izagirre, N.; Rojas, J.; Sánchez-Lavega, A. The 2009–2010 fade of Jupiter’s South Equatorial Belt: Vertical cloud structure models and zonal winds from visible imaging. Icarus 2012, 217, 256–271. [Google Scholar] [CrossRef]
- Wong, M.H.; de Pater, I.; Asay-Davis, X.; Marcus, P.S.; Go, C.Y. Vertical structure of Jupiter’s Oval BA before and after it reddened: What changed? Icarus 2011, 215, 211–225. [Google Scholar] [CrossRef]
- Pérez-Hoyos, S.; Sánchez-Lavega, A.; Sanz-Requena, J.; Barrado-Izagirre, N.; Carrión-González, O.; Anguiano-Arteaga, A.; Irwin, P.; Braude, A. Color and aerosol changes in Jupiter after a North Temperate Belt disturbance. Icarus 2020, 352, 114031. [Google Scholar] [CrossRef]
- Lii, P.S.; Wong, M.H.; de Pater, I. Temporal variation of the tropospheric cloud and haze in the jovian equatorial zone. Icarus 2010, 209, 591–601. [Google Scholar] [CrossRef]
- Pérez-Hoyos, S.; Sánchez-Lavega, A.; French, R.; Rojas, J. Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus 2005, 176, 155–174. [Google Scholar] [CrossRef]
- Sanz-Requena, J.; Pérez-Hoyos, S.; Sánchez-Lavega, A.; del Rio-Gaztelurrutia, T.; Irwin, P.G. Hazes and clouds in a singular triple vortex in Saturn’s atmosphere from HST/WFC3 multispectral imaging. Icarus 2019, 333, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Luszcz-Cook, S.; de Kleer, K.; de Pater, I.; Adamkovics, M.; Hammel, H. Retrieving Neptune’s aerosol properties from Keck OSIRIS observations. I. Dark regions. Icarus 2016, 276, 52–87. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.; Lellouch, E.; de Bergh, C.; Courtin, R.; Bézard, B.; Fletcher, L.; Orton, G.; Teanby, N.; Calcutt, S.; Tice, D.; et al. Line-by-line analysis of Neptune’s near-IR spectrum observed with Gemini/NIFS and VLT/CRIRES. Icarus 2014, 227, 37–48. [Google Scholar] [CrossRef]
- Lockwood, G.; Thompson, D. Photometric Variability of Neptune, 1972–2000. Icarus 2002, 156, 37–51. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Gierasch, P.J. On the long-term variability of Jupiter’s winds and brightness as observed from Hubble. Icarus 2010, 210, 258–269. [Google Scholar] [CrossRef]
- Antuñano, A.; Fletcher, L.N.; Orton, G.S.; Melin, H.; Rogers, J.H.; Harrington, J.; Donnelly, P.T.; Rowe-Gurney, N.; Blake, J.S.D. Infrared Characterization of Jupiter’s Equatorial Disturbance Cycle. Geophys. Res. Lett. 2018, 45, 10987–10995. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Orton, G.S.; Sinclair, J.A.; Donnelly, P.; Melin, H.; Rogers, J.H.; Greathouse, T.K.; Kasaba, Y.; Fujiyoshi, T.; Sato, T.M.; et al. Jupiter’s North Equatorial Belt expansion and thermal wave activity ahead of Juno’s arrival. Geophys. Res. Lett. 2017, 44, 7140–7148. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lavega, A.; Orton, G.S.; Hueso, R.; García-Melendo, E.; Pérez-Hoyos, S.; Simon-Miller, A.; Rojas, J.F.; Gómez, J.M.; Yanamandra-Fisher, P.; Fletcher, L.; et al. Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature 2008, 451, 1022. [Google Scholar] [CrossRef]
- Antuñano, A.; Fletcher, L.N.; Orton, G.S.; Melin, H.; Milan, S.; Rogers, J.; Greathouse, T.; Harrington, J.; Donnelly, P.T.; Giles, R. Jupiter’s Atmospheric Variability from Long-term Ground-based Observations at 5 micron. Astron. J. 2019, 158, 130. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lavega, A.; Colas, F.; Lecacheux, J.; Laques, P.; Miyazaki, I.; Parker, D. The Great White Spot and disturbances in Saturn’s equatorial atmosphere during 1990. Nature 1991, 353, 397–401. [Google Scholar] [CrossRef]
- Pérez-Hoyos, S.; Sánchez-Lavega, A. Solar flux in Saturn’s atmosphere: Penetration and heating rates in the aerosol and cloud layers. Icarus 2006, 180, 368–378. [Google Scholar] [CrossRef]
- Li, C.; Le, T.; Zhang, X.; Yung, Y.L. A high-performance atmospheric radiation package: With applications to the radiative energy budgets of giant planets. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Conrath, B.J.; Gierasch, P.J.; Leroy, S.S. Temperature and circulation in the stratosphere of the outer planets. Iarus 1990, 83, 255–281. [Google Scholar] [CrossRef]
- Lockwood, G.; Jerzykiewicz, M. Photometric variability of Uranus and Neptune, 1950–2004. Icarus 2006, 180, 442–452. [Google Scholar] [CrossRef]
- Hammel, H.; Lockwood, G. Long-term atmospheric variability on Uranus and Neptune. Icarus 2007, 186, 291–301. [Google Scholar] [CrossRef]
- Sromovsky, L.; Fry, P.; Limaye, S.; Baines, K. The nature of Neptune’s increasing brightness: Evidence for a seasonal response. Icarus 2003, 163, 256–261. [Google Scholar] [CrossRef]
- Aplin, K.L.; Harrison, R.G. Determining solar effects in Neptune’s atmosphere. Nat. Commun. 2016, 7, 11976. [Google Scholar] [CrossRef] [Green Version]
- Moses, J.I.; Fletcher, L.N.; Greathouse, T.K.; Orton, G.S.; Hue, V. Seasonal stratospheric photochemistry on Uranus and Neptune. Icarus 2018, 307, 124–145. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Young, C.; Wong, M.H.; Sayanagi, K.M.; Curry, S.; Jessup, K.L.; Becker, T.; Hendrix, A.; Chanover, N.; Milam, S.; Holler, B.J.; et al. The science enabled by a dedicated solar system space telescope. Bull. Am. Astron. Soc. 2021, 53, 232. [Google Scholar] [CrossRef]
Planet | Year | Mission |
---|---|---|
Jupiter | 1973 | Pioneer 10 Flyby |
1974 | Pioneer 11 Flyby | |
1979 | Voyager 1 Flyby | |
1979 | Voyager 2 Flyby | |
1993–1995 | Hubble Shoemaker-Levy 9 Campaign | |
1995–2003 | Galileo Mission | |
2000–2001 | Cassini Flyby | |
2007 | New Horizons Flyby | |
2015–present | Hubble OPAL Program | |
2016–present | Juno Mission | |
Saturn | 1979 | Pioneer 11 Flyby |
1981 | Voyager 1 Flyby | |
1981 | Voyager 2 Flyby | |
2004–2017 | Cassini Mission | |
2018–present | Hubble OPAL Program | |
Uranus | 1986 | Voyager 2 Flyby |
2006–2010 | Hubble Uranus Equinox Campaigns | |
2014–present | Hubble OPAL Program | |
Neptune | 1989 | Voyager 2 Flyby |
2015–present | Hubble OPAL Program |
Observatory (Aperture) | Angular Diffraction Limit (”) | Targets | AO System(s) | Imaging Instrument(s) |
---|---|---|---|---|
Keck (10 m) | 0.04 | Jupiter, Uranus, Neptune | Shack-Hartmann: NGS-AO, LGS-AO | NIRC2, NIRSPEC, KCAM [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41] |
Subaru (8.2 m) | 0.05 | Jupiter | Curvature sensor: AO188 | IRCS [42,43,44] |
VLT (8.2 m) | 0.05 | Jupiter, Saturn, Uranus, Neptune | Shack-Hartmann and curvature sensors: MACAO, MAD, AOF/GALACSI | CAMCAO, CRIRES, SINFONI, MUSE [45,46,47,48,49,50,51] |
Gemini-N (8.1 m) | 0.05 | Jupiter, Uranus, Neptune | Shack-Hartmann: ALTAIR | NIRI, NIFS [24,47,52,53,54,55] |
Palomar (5.1 m) | 0.08 | Uranus, Neptune | Shack-Hartmann: PALM-241, PALM-3000 | P1640, PHARO [22,56] |
CFHT (3.6 m) | 0.11 | Neptune | Curvature sensor: Hokupa’a | QUIRC [57,58] |
Lick (3 m) | 0.13 | Neptune | Shack-Hartmann | ShARCS, LIRC2 [22,59] |
Starfire (1.5) | 0.27 | Jupiter, Saturn | Shack-Hartmann | AOTF camera [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, A.A.; Wong, M.H.; Sromovsky, L.A.; Fletcher, L.N.; Fry, P.M. Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sens. 2022, 14, 1518. https://doi.org/10.3390/rs14061518
Simon AA, Wong MH, Sromovsky LA, Fletcher LN, Fry PM. Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sensing. 2022; 14(6):1518. https://doi.org/10.3390/rs14061518
Chicago/Turabian StyleSimon, Amy A., Michael H. Wong, Lawrence A. Sromovsky, Leigh N. Fletcher, and Patrick M. Fry. 2022. "Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging" Remote Sensing 14, no. 6: 1518. https://doi.org/10.3390/rs14061518
APA StyleSimon, A. A., Wong, M. H., Sromovsky, L. A., Fletcher, L. N., & Fry, P. M. (2022). Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sensing, 14(6), 1518. https://doi.org/10.3390/rs14061518