Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = germinal vesicle oocyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 960 KiB  
Article
Impact of Chronic Fluoxetine Exposure on Oocyte Development and Reproductive Outcomes in a Mouse Model
by Maria D. Tkachenko, Nina M. Alyoshina, Yulia O. Nikishina, Veronika S. Frolova and Denis A. Nikishin
Int. J. Mol. Sci. 2025, 26(10), 4858; https://doi.org/10.3390/ijms26104858 - 19 May 2025
Viewed by 738
Abstract
Selective serotonin reuptake inhibitors (SSRIs), like fluoxetine, are increasingly used by women of a reproductive age, raising concerns about their impact on oocyte quality and early embryonic development. This study investigated the effects of chronic fluoxetine exposure on oocyte maturation, ovulation, and embryonic [...] Read more.
Selective serotonin reuptake inhibitors (SSRIs), like fluoxetine, are increasingly used by women of a reproductive age, raising concerns about their impact on oocyte quality and early embryonic development. This study investigated the effects of chronic fluoxetine exposure on oocyte maturation, ovulation, and embryonic development in a mouse model. Female mice were administered fluoxetine via drinking water, and their reproductive outcomes were compared to those of control mice. Oocyte quantity and quality were assessed following superovulation, including the analysis of spindle morphology, chromatin configuration, and maturation markers. In vitro maturation assays were conducted to evaluate the developmental competence of oocytes exposed to fluoxetine. Finally, the impact of fluoxetine on blastocyst formation, litter size, offspring growth, and ovarian reserve was examined. The results show that fluoxetine treatment reduced the number of ovulated oocytes but did not significantly affect oocyte quality or meiotic spindle formation. Fluoxetine exposure impaired cytoplasmic maturation at the germinal vesicle stage, resulting in a lower proportion of fully mature oocytes and reduced in vitro maturation efficiency. While blastocyst numbers were modestly reduced in fluoxetine-treated mice, litter size and offspring ovarian reserve were unaffected. Unexpectedly, offspring of fluoxetine-treated mothers exhibited increased body weight. These findings suggest that while fluoxetine may impair oocyte developmental competence through disruptions in cytoplasmic maturation, it does not severely compromise overall reproductive outcomes or offspring fertility. Full article
Show Figures

Figure 1

10 pages, 6640 KiB  
Article
Involvement of Orotic Acid in Mitochondrial Activity of Ovarian Granulosa Cells and Oocyte Meiotic Maturation
by Weronika Marynowicz, Aleksandra Tatarczuch, Zuzanna Flis, Edyta Molik and Anna Ptak
Int. J. Mol. Sci. 2025, 26(10), 4479; https://doi.org/10.3390/ijms26104479 - 8 May 2025
Viewed by 670
Abstract
Orotic acid (OA) is a natural component of milk and is found in many biological fluids such as human ovarian follicular fluid. However, its effect on ovarian cells is unknown. Some studies suggest that OA may alter lipid metabolism and energy production in [...] Read more.
Orotic acid (OA) is a natural component of milk and is found in many biological fluids such as human ovarian follicular fluid. However, its effect on ovarian cells is unknown. Some studies suggest that OA may alter lipid metabolism and energy production in cells. In the present study, we determine the effect of OA on mitochondrial function and lipid droplet content in the human granulosa cell line. The effect of OA on in vitro mouse oocyte maturation and mitochondrial activity was also investigated. We found that repeated exposure to OA (0.01–1000 µM) did not alter the viability of human epithelial (HOSEpiC) and granulosa (HGrC1) ovarian cells. HGrC1 cells treated with a high dose of OA (500 µM) showed a more aerobic and energetic phenotype than control cells, whereas this effect was not observed after treatment with lower doses (0.01 and 100 µM) of OA. In addition, OA at a high dose (500 µM) reduced lipid droplet (LD) content without altering glucose (GLUT1, GLUT4) and fatty acid transporter (SLC27A1) gene expression in HGrC1 cells. At the same time, OA at 100 µM did not disrupt mouse in vitro oocyte maturation, whereas OA at 500 µM inhibited this process by arresting oocytes at the germinal vesicle (GV) stage with a reduction in mitochondrial activity. Our results show that OA at high doses can disrupt female reproduction, but normal dietary orotate intake does not have a negative effect on ovarian function. Full article
Show Figures

Figure 1

26 pages, 10303 KiB  
Article
Integrated Multi-Omics Analysis Reveals Key Regulators of Bovine Oocyte Maturation
by Yassin Kassim, Hao Sheng, Guangjun Xu, Hao Jin, Tariq Iqbal, Mostafa Elashry and Kun Zhang
Int. J. Mol. Sci. 2025, 26(9), 3973; https://doi.org/10.3390/ijms26093973 - 23 Apr 2025
Cited by 1 | Viewed by 815
Abstract
A well-regulated metabolism is crucial for optimal oocyte development and embryonic health. However, the metabolic framework governing oocyte maturation remains poorly understood. Using bovine oocytes as a model, we examined metabolomic and transcriptomic alterations during the transition from the germinal vesicle (GV) to [...] Read more.
A well-regulated metabolism is crucial for optimal oocyte development and embryonic health. However, the metabolic framework governing oocyte maturation remains poorly understood. Using bovine oocytes as a model, we examined metabolomic and transcriptomic alterations during the transition from the germinal vesicle (GV) to the metaphase II (MII) stage. Our findings reveal distinct metabolic shifts, including suppressed β-oxidation combined with the accumulation of long-chain fatty acids (LCFAs). Notably, progesterone emerged as a key regulator of meiotic resumption through its influence on cAMP levels. We also observed enhanced glycolysis, moderate activation of the citric acid cycle (TCA cycle), and suppression of oxidative phosphorylation (OXPHOS), alongside reduced urea cycle flux and shifts in amino acid metabolism favoring glutamate synthesis. Intriguingly, discrepancies between metabolic and transcriptional activities in pathways such as the TCA cycle and nucleotide metabolism suggest asynchronous regulation. These findings provide a comprehensive multi-omics resource, advancing our understanding of the dynamic metabolic and transcriptional landscape during bovine oocyte maturation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

12 pages, 3350 KiB  
Article
Rac1 Temporarily Suppresses Fertilization Envelope Formation Immediately After 1-Methyladenine Stimulation
by Sakurako Aida, Takako Matsumoto, Yuna Yamazaki, Nunzia Limatola, Luigia Santella and Kazuyoshi Chiba
Cells 2025, 14(6), 405; https://doi.org/10.3390/cells14060405 - 10 Mar 2025
Viewed by 656
Abstract
In starfish oocytes, the hormone 1-methyladenine (1-MA) induces germinal vesicle breakdown (GVBD) through a signaling cascade involving PI3K, SGK, Cdc25, and Cdk1/cyclin via G-proteinβγ subunit. Following GVBD, fertilization triggers an intracellular calcium increase, leading to the formation of the fertilization envelope (FE) via [...] Read more.
In starfish oocytes, the hormone 1-methyladenine (1-MA) induces germinal vesicle breakdown (GVBD) through a signaling cascade involving PI3K, SGK, Cdc25, and Cdk1/cyclin via G-proteinβγ subunit. Following GVBD, fertilization triggers an intracellular calcium increase, leading to the formation of the fertilization envelope (FE) via cortical granule exocytosis. While transient calcium elevations are known to occur after 1-MA stimulation even without fertilization, the inability of these calcium elevations to induce cortical granule exocytosis and FE formation remained unexplained. In this study, we found that co-treatment with 1-MA and calcium ionophore A23187 prevents FE formation, revealing a transient period termed the “no FE phase” persisting for several minutes. After no FE phase, the oocytes regain full competence to form the FE. Furthermore, we identified that the GEF/Rac1 signaling cascade is activated during the no FE phase. Notably, constitutively active Rac1 expressed in oocytes reproduces this inhibition even in the absence of 1-MA stimulation. These findings suggest that the GEF/Rac1 cascade, triggered by 1-MA, initiates the no FE phase and plays a critical role in coordinating the progression of subsequent fertilization events. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Graphical abstract

25 pages, 3023 KiB  
Article
A Step Toward Understanding Direct Impacts of a Higher Estrus-Associated Temperature (HEAT): Transcript Level Changes in Cumulus–Oocyte Complexes Directly Exposed to Acute Elevated Temperature
by Jessica L. Klabnik, Jonathan E. Beever, Rebecca R. Payton, Kurt H. Lamour, F. Neal Schrick and J. Lannett Edwards
Animals 2025, 15(4), 517; https://doi.org/10.3390/ani15040517 - 12 Feb 2025
Viewed by 1232
Abstract
Elevated body temperature (HEAT) in sexually receptive females is a normal part of the periovulatory microenvironment. The objective was to identify direct (first 6 h) and delayed (4 h or 18 h of recovery) effects at 41 °C exposure during in vitro maturation [...] Read more.
Elevated body temperature (HEAT) in sexually receptive females is a normal part of the periovulatory microenvironment. The objective was to identify direct (first 6 h) and delayed (4 h or 18 h of recovery) effects at 41 °C exposure during in vitro maturation (IVM) on transcripts involved in steroidogenesis, oocyte maturation, or previously impacted by elevated temperature using targeted RNA-sequencing. Most transcripts (72.3%) were impacted in the first 2 to 4 hIVM. Twelve of the fifteen transcripts first impacted at 4 hIVM had a higher abundance and three had a lower abundance. Direct exposure to 41 °C impacted the transcripts related to progesterone production and signaling, germinal vesicle breakdown, oocyte meiotic progression, transcriptional activity and/or alternative splicing, cell cycle, cumulus expansion, and/or ovulation. Three transcripts demonstrated a delayed impact; changes were not seen until the COCs recovered for 4 h. The use of multidimensional scaling plots to ‘visualize’ samples highlights that oocytes exposed to an acute elevation in temperature are more advanced at the molecular level during the initial stages of maturation. Described efforts represent important steps towards providing a novel insight into the dynamic physiology of the COC in the estrual female bovid, during HEAT and after body temperature returns to baseline. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

11 pages, 3550 KiB  
Article
Comparison of Nucleosome Landscapes Between Porcine Embryonic Fibroblasts and GV Oocytes
by Minjun Zhao, Shunran Zhao, Zhaoqi Pang, Chunhui Jia and Chenyu Tao
Animals 2024, 14(23), 3392; https://doi.org/10.3390/ani14233392 - 25 Nov 2024
Viewed by 754
Abstract
(1) Background: Nucleosomes represent the essential structural units of chromatin and serve as key regulators of cell function and gene expression. Oocytes in the germinal vesicle (GV) stage will later undergo meiosis and become haploid cells ready for fertilization, while somatic cells undergo [...] Read more.
(1) Background: Nucleosomes represent the essential structural units of chromatin and serve as key regulators of cell function and gene expression. Oocytes in the germinal vesicle (GV) stage will later undergo meiosis and become haploid cells ready for fertilization, while somatic cells undergo mitosis after DNA replication. (2) Purpose: To furnish theoretical insights and data that support the process of cell reprogramming after nuclear transplantation. (3) Methods: We compared the nucleosome occupancy, distribution, and transcription of genes between two types of cells: fully grown GV oocytes from big follicles (BF) and somatic cells (porcine embryonic fibroblast, PEF). (4) Results: The nucleosome occupancy in the promoter of BF was 4.85%, which was significantly higher than that of 3.3% in PEF (p < 0.05), and the nucleosome distribution showed a noticeable increase surrounding transcriptional start sites (TSSs) in BF. Next, we reanalyzed the currently published transcriptome of fully grown GV oocytes and PEF, and a total of 51 genes in BF and 80 genes in PEF were identified as being uniquely expressed. The nucleosome distribution around gene TSSs correlated with expression levels in somatic cells, yet the results in BF differed from those in PEF. (5) Conclusion: This study uncovers the dynamic nature and significance of nucleosome positioning and chromatin organization across various cell types, providing a basis for nuclear transplantation. Full article
(This article belongs to the Special Issue Cutting-Edge Breakthroughs in Animal Reproductive Endocrinology)
Show Figures

Figure 1

15 pages, 40327 KiB  
Review
How the Oocyte Nucleolus Is Turned into a Karyosphere: The Role of Heterochromatin and Structural Proteins
by Venera Nikolova, Maya Markova, Ralitsa Zhivkova, Irina Chakarova, Valentina Hadzhinesheva and Stefka Delimitreva
J. Dev. Biol. 2024, 12(4), 28; https://doi.org/10.3390/jdb12040028 - 18 Oct 2024
Viewed by 2189
Abstract
Oocyte meiotic maturation includes large-scale chromatin remodeling as well as cytoskeleton and nuclear envelope rearrangements. This review addresses the dynamics of key cytoskeletal proteins (tubulin, actin, vimentin, and cytokeratins) and nuclear envelope proteins (lamin A/C, lamin B, and the nucleoporin Nup160) in parallel [...] Read more.
Oocyte meiotic maturation includes large-scale chromatin remodeling as well as cytoskeleton and nuclear envelope rearrangements. This review addresses the dynamics of key cytoskeletal proteins (tubulin, actin, vimentin, and cytokeratins) and nuclear envelope proteins (lamin A/C, lamin B, and the nucleoporin Nup160) in parallel with chromatin reorganization in maturing mouse oocytes. A major feature of this reorganization is the concentration of heterochromatin into a spherical perinucleolar rim called surrounded nucleolus or karyosphere. In early germinal vesicle (GV) oocytes with non-surrounded nucleolus (without karyosphere), lamins and Nup160 are at the nuclear envelope while cytoplasmic cytoskeletal proteins are outside the nucleus. At the beginning of karyosphere formation, lamins and Nup160 follow the heterochromatin relocation assembling a new spherical structure in the GV. In late GV oocytes with surrounded nucleolus (fully formed karyosphere), the nuclear envelope gradually loses its integrity and cytoplasmic cytoskeletal proteins enter the nucleus. At germinal vesicle breakdown, lamin B occupies the karyosphere interior while all the other proteins stay at the karyosphere border or connect to chromatin. In metaphase oocytes, lamin A/C surrounds the spindle, Nup160 localizes to its poles, actin and lamin B are attached to the spindle fibers, and cytoplasmic intermediate filaments associate with both the spindle fibers and the metaphase chromosomes. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

15 pages, 3023 KiB  
Article
Developmental and Molecular Effects of C-Type Natriuretic Peptide Supplementation in In Vitro Culture of Bovine Embryos
by Camila Bortoliero Costa, Nathália Covre da Silva, Amanda Nespolo Silva, Elisa Mariano Pioltine, Thaisy Tino Dellaqua, Amanda Fonseca Zangirolamo, Flávio Vieira Meirelles, Marcelo Marcondes Seneda and Marcelo Fábio Gouveia Nogueira
Int. J. Mol. Sci. 2024, 25(20), 10938; https://doi.org/10.3390/ijms252010938 - 11 Oct 2024
Cited by 1 | Viewed by 1359
Abstract
The use of C-type natriuretic peptide (CNP) in the interaction with the oocyte and in the temporary postponement of spontaneous meiosis resumption has already been well described. However, its action in pre-implantation developmental-stage embryos is yet to be understood. Thus, our study aimed [...] Read more.
The use of C-type natriuretic peptide (CNP) in the interaction with the oocyte and in the temporary postponement of spontaneous meiosis resumption has already been well described. However, its action in pre-implantation developmental-stage embryos is yet to be understood. Thus, our study aimed to detect the presence of the canonical CNP receptor (natriuretic peptide receptor, NPR2) in germinal vesicle (GV)-, metaphase II (MII)-, presumptive zygote (PZ)-, morula (MO)-, and blastocyst (BL)-stage embryos and, later, to observe possible modulations on the embryos when co-cultured with CNP. In Experiment I, we detected and quantified NPR2 on the abovementioned embryo stages. Further, in Experiment II, we intended to test different concentrations (100, 200, or 400 nM of CNP) at different times of inclusion in the in vitro culture (IVC; inclusion from the beginning, i.e., day 1, or from day 5). In Experiment III, 400 nM of CNP was used on day 1 (D1) in the IVC, which was not demonstrated to be embryotoxic, and it showed potentially promising results in the blastocyst production rate when compared to the control. Thus, we analyzed the embryonic development rates of bovine embryos (D7) and hatching kinetics (D7, D8, and D9). Subsequently, morula and blastocyst were collected and evaluated for transcript abundance of their competence and quality (apoptosis, oxidative stress, proliferation, and differentiation) and lipid metabolism. Differences with probabilities less than p < 0.05, and/or fold change (FC) > 1.5, were considered significant. We demonstrate the presence of NPR2 until the blastocyst development stage, when there was a significant decrease in membrane receptors. There was no statistical difference in the production rate after co-culture with 400 nM CNP. However, when we evaluated the abundance of morula transcripts, there was an upregulated transcription in ADCY6 (p = 0.057) and downregulated transcripts in BMP15 (p = 0.013), ACAT1 (p = 0.040), and CASP3 (p = 0.082). In addition, there was a total of 12 transcriptions in morula that presented variation FC > 1.5. In blastocysts, the treatment with CNP induced upregulation in BID, CASP3, SOX2, and HSPA5 transcripts and downregulation in BDNF, NLRP5, ELOVL1, ELOVL4, IGFBP4, and FDX1 transcripts (FC > 1.5). Thus, our study identified and quantified the presence of NPR2 in bovine pre-implantation embryos. Furthermore, 400 nM of CNP in IVC, a concentration not previously described in the literature, modulated some transcripts related to embryonic metabolism, and this was not embryotoxic morphologically. Full article
(This article belongs to the Special Issue Molecular Research on Embryo Developmental Potential)
Show Figures

Figure 1

12 pages, 2361 KiB  
Article
D4Z4 Hypomethylation in Human Germ Cells
by Ramya Potabattula, Jana Durackova, Sarah Kießling, Alina Michler, Thomas Hahn, Martin Schorsch, Tom Trapphoff, Stefan Dieterle and Thomas Haaf
Cells 2024, 13(17), 1497; https://doi.org/10.3390/cells13171497 - 6 Sep 2024
Viewed by 1426
Abstract
Expression of the double homeobox 4 (DUX4) transcription factor is highly regulated in early embryogenesis and is subsequently epigenetically silenced. Ectopic expression of DUX4 due to hypomethylation of the D4Z4 repeat array on permissive chromosome 4q35 alleles is associated with facioscapulohumeral [...] Read more.
Expression of the double homeobox 4 (DUX4) transcription factor is highly regulated in early embryogenesis and is subsequently epigenetically silenced. Ectopic expression of DUX4 due to hypomethylation of the D4Z4 repeat array on permissive chromosome 4q35 alleles is associated with facioscapulohumeral muscular dystrophy (FSHD). In peripheral blood samples from 188 healthy individuals, D4Z4 methylation was highly variable, ranging from 19% to 76%, and was not affected by age. In 48 FSHD2 patients, D4Z4 methylation varied from 3% to 30%. Given that DUX4 is one of the earliest transcribed genes after fertilization, the D4Z4 array is expected to be unmethylated in mature germ cells. Deep bisulfite sequencing of 188 mainly normozoospermic sperm samples revealed an average methylation of 2.5% (range 0.3–22%). Overall, the vast majority (78%) of individual sperm cells displayed no methylation at all. In contrast, only 19 (17.5%) of 109 individual germinal vesicle (GV) oocytes displayed D4Z4 methylation <2.5%. However, it is not unexpected that immature GV oocytes which are not usable for assisted reproduction are endowed with D4Z4 (up to 74%) hypermethylation and/or abnormal (PEG3 and GTL2) imprints. Although not significant, it is interesting to note that the pregnancy rate after assisted reproduction was higher for donors of sperm samples and oocytes with <2.5% methylation. Full article
Show Figures

Graphical abstract

18 pages, 12347 KiB  
Article
In Vivo-Matured Oocyte Resists Post-Ovulatory Aging through the Hub Genes DDX18 and DNAJC7 in Pigs
by Cheng-Lin Zhan, Dongjie Zhou, Ming-Hong Sun, Wen-Jie Jiang, Song-Hee Lee, Xiao-Han Li, Qin-Yue Lu, Ji-Dam Kim, Gyu-Hyun Lee, Jae-Min Sim, Hak-Jae Chung, Eun-Seok Cho, Soo-Jin Sa and Xiang-Shun Cui
Antioxidants 2024, 13(7), 867; https://doi.org/10.3390/antiox13070867 - 19 Jul 2024
Viewed by 1869
Abstract
Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured [...] Read more.
Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that “organelles”, especially “mitochondria”, were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the “electron transport chain” and “cell redox homeostasis” pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait–module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in “RNA binding”, “mRNA metabolic process”, etc., as well as in GO terms, and “spliceosome” and “nucleotide excision repair” pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species. Full article
Show Figures

Figure 1

17 pages, 24599 KiB  
Article
Histone Lactylation Is Involved in Mouse Oocyte Maturation and Embryo Development
by Diqi Yang, Haoyi Zheng, Wenjie Lu, Xueqi Tian, Yanyu Sun and Hui Peng
Int. J. Mol. Sci. 2024, 25(9), 4821; https://doi.org/10.3390/ijms25094821 - 28 Apr 2024
Cited by 12 | Viewed by 3748
Abstract
Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, [...] Read more.
Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality. Full article
(This article belongs to the Special Issue Molecular Genetic Biology in Embryonic Development)
Show Figures

Figure 1

10 pages, 3052 KiB  
Article
Oocyte Competence of Prepubertal Sheep and Goat Oocytes: An Assessment of Large-Scale Chromatin Configuration and Epidermal Growth Factor Receptor Expression in Oocytes and Cumulus Cells
by Mònica Ferrer-Roda, Dolors Izquierdo, Ana Gil, Maria Emilia Franco Oliveira and Maria-Teresa Paramio
Int. J. Mol. Sci. 2024, 25(8), 4474; https://doi.org/10.3390/ijms25084474 - 18 Apr 2024
Cited by 3 | Viewed by 2036
Abstract
The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to [...] Read more.
The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to analyze GV chromatin configuration and EGFR expression in prepubertal goat and sheep oocytes obtained from small (<3 mm) and large (≥3 mm) follicles and compare them with those from adults. GV chromatin was classified from diffuse to condensed as GV1, GVn, and GVc for goats and NSN, SN, and SNE for sheep. EGFR was quantified in cumulus cells (CCs) by Western blotting and in oocytes by immunofluorescence. Oocytes from prepubertal large follicles and adults exhibited highly condensed chromatin in goats (71% and 69% in GVc, respectively) and sheep (59% and 75% in SNE, respectively). In both species, EGFR expression in CCs and oocytes was higher in prepubertal large follicles than in small ones. In adult females, EGFR expression in oocytes was higher than in prepubertal large follicles. In conclusion, GV configuration and EGFR expression in CCs and oocytes were higher in the large than small follicles of prepubertal females. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 8907 KiB  
Article
Overview of Gene Expression Dynamics during Human Oogenesis/Folliculogenesis
by Bastien Ducreux, Lucile Ferreux, Catherine Patrat and Patricia Fauque
Int. J. Mol. Sci. 2024, 25(1), 33; https://doi.org/10.3390/ijms25010033 - 19 Dec 2023
Cited by 8 | Viewed by 4482
Abstract
The oocyte transcriptome follows a tightly controlled dynamic that leads the oocyte to grow and mature. This succession of distinct transcriptional states determines embryonic development prior to embryonic genome activation. However, these oocyte maternal mRNA regulatory events have yet to be decoded in [...] Read more.
The oocyte transcriptome follows a tightly controlled dynamic that leads the oocyte to grow and mature. This succession of distinct transcriptional states determines embryonic development prior to embryonic genome activation. However, these oocyte maternal mRNA regulatory events have yet to be decoded in humans. We reanalyzed human single-oocyte RNA-seq datasets previously published in the literature to decrypt the transcriptomic reshuffles ensuring that the oocyte is fully competent. We applied trajectory analysis (pseudotime) and a meta-analysis and uncovered the fundamental transcriptomic requirements of the oocyte at any moment of oogenesis until reaching the metaphase II stage (MII). We identified a bunch of genes showing significant variation in expression from primordial-to-antral follicle oocyte development and characterized their temporal regulation and their biological relevance. We also revealed the selective regulation of specific transcripts during the germinal vesicle-to-MII transition. Transcripts associated with energy production and mitochondrial functions were extensively downregulated, while those associated with cytoplasmic translation, histone modification, meiotic processes, and RNA processes were conserved. From the genes identified in this study, some appeared as sensitive to environmental factors such as maternal age, polycystic ovary syndrome, cryoconservation, and in vitro maturation. In the future, the atlas of transcriptomic changes described in this study will enable more precise identification of the transcripts responsible for follicular growth and oocyte maturation failures. Full article
Show Figures

Figure 1

28 pages, 38808 KiB  
Article
Special Nuclear Structures in the Germinal Vesicle of the Common Frog with Emphasis on the So-Called Karyosphere Capsule
by Dmitry S. Bogolyubov, Sergey V. Shabelnikov, Alexandra O. Travina, Maksim I. Sulatsky and Irina O. Bogolyubova
J. Dev. Biol. 2023, 11(4), 44; https://doi.org/10.3390/jdb11040044 - 12 Dec 2023
Cited by 2 | Viewed by 2540
Abstract
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus—germinal vesicle (GV)—at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external [...] Read more.
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus—germinal vesicle (GV)—at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog Rana temporaria, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog’s KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners—LEMD2, an inner nuclear membrane protein—are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of R. temporaria late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures—the so-called annuli, very similar in ultrastructure to the nuclear pore complexes—do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the R. temporaria KC as a special structural compartment of the GV are to be revisited. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

24 pages, 38016 KiB  
Article
Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes
by Nunzia Limatola, Jong Tai Chun, Kazuyoshi Chiba and Luigia Santella
Biomolecules 2023, 13(11), 1659; https://doi.org/10.3390/biom13111659 - 17 Nov 2023
Cited by 1 | Viewed by 1961
Abstract
Immature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the [...] Read more.
Immature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the resumption of the meiotic cycle of the oocyte triggered by the hormone 1-methyladenine, the maturing oocyte reaches fertilizable conditions to be stimulated by only one sperm with a normal Ca2+ response and cortical reaction. This cytoplasmic ripening of the oocyte, resulting in normal fertilization and development, is due to the remodeling of the cortical actin cytoskeleton and germinal vesicle breakdown (GVBD). Since disulfide-reducing agents such as dithiothreitol (DTT) are known to induce the maturation and GVBD of oocytes in many species of starfish, we analyzed the pattern of the fertilization response displayed by Astropecten aranciacus oocytes pre-exposed to DTT with or without 1-MA stimulation. Short treatment of A. aranciacus immature oocytes with DTT reduced the rate of polyspermic fertilization and altered the sperm-induced Ca2+ response by changing the morphology of microvilli, cortical granules, and biochemical properties of the cortical F-actin. At variance with 1-MA, the DTT treatment of immature starfish oocytes for 70 min did not induce GVBD. On the other hand, the DTT treatment caused an alteration in microvilli morphology and a drastic depolymerization of the cortical F-actin, which impaired the sperm-induced Ca2+ response at fertilization and the subsequent embryonic development. Full article
(This article belongs to the Special Issue Gametogenesis and Gamete Interaction)
Show Figures

Figure 1

Back to TopTop