Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gamete Collection, Oocyte Maturation, and Fertilization In Vitro
2.2. Light Microscopy and Transmission Electron Microscopy (TEM)
2.3. Chemicals and Reagents
2.4. Microinjection, Ca2+ Imaging, Fluorescent Labeling of F-Actin, and Jelly Coat
2.5. Visualization of Sperm inside Treated Oocytes before and after Maturation
2.6. Statistical Analysis
3. Results
3.1. The Effect of the Disulfide-Reducing Agent DTT on the Fertilization Response of A. aranciacus Immature Oocytes
3.2. DTT Treatment of Immature Starfish Oocytes Affects the Distribution of the Cortical F-Actin and Its Dynamics upon Insemination
3.3. DTT Treatment Does Not Induce Germinal Vesicle Breakdown (GVBD) and Maturation in A. aranciacus Starfish Oocytes
3.4. DTT Treatment Affects the F-Actin Rearrangement during Oocyte Maturation and Fertilization
3.5. Ultrastructural Changes in the Vitelline Layer and Microvillar Morphology Following DTT Treatment
3.6. Altered Sperm-Induced Ca2+ Response in the DTT-Treated Oocytes of Starfish
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanatani, H. Maturation-Inducing Substance in Starfishes. Int. Rev. Cytol. 1973, 35, 253–298. [Google Scholar] [CrossRef] [PubMed]
- Meijer, L.; Guerrier, P. Maturation and Fertilization in Starfish Oocytes. Int. Rev. Cytol. 1984, 86, 129–196. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. Proc. Jpn. Acad. Ser. B 2018, 94, 180–203. [Google Scholar] [CrossRef] [PubMed]
- Chiba, K. Oocyte Maturation in Starfish. Cells 2020, 9, 476. [Google Scholar] [CrossRef]
- Dale, B.; de Santis, A.; Hoshi, M. Membrane response to 1-methyladenine requires the presence of the nucleus. Nature 1979, 282, 89–90. [Google Scholar] [CrossRef]
- Miyazaki, S.-I.; Hirai, S. Fast polyspermy block and activation potential: Correlated changes during oocyte maturation of a starfish. Dev. Biol. 1979, 70, 327–340. [Google Scholar] [CrossRef]
- Dale, B.; Dan-Sohkawa, M.; De Santis, A.; Hoshi, M. Fertilization of the starfish Astropecten aurantiacus. Exp. Cell Res. 1981, 132, 505–510. [Google Scholar] [CrossRef]
- Moody, W.J.; Bosma, M.M. Hormone-induced loss of surface membrane during maturation of starfish oocytes: Differential effects on potassium and calcium channels. Dev. Biol. 1985, 112, 396–404. [Google Scholar] [CrossRef]
- Schroeder, T.E.; Stricker, S.A. Morphological changes during maturation of starfish oocytes: Surface ultrastructure and cortical actin. Dev. Biol. 1983, 98, 373–384. [Google Scholar] [CrossRef]
- Longo, F.J.; Woerner, M.; Chiba, K.; Hoshi, M. Cortical changes in starfish (Asterina pectinifera) oocytes during 1-methyladenine-induced maturation and fertilisation/activation. Zygote 1995, 3, 225–239. [Google Scholar] [CrossRef]
- Barresi, M.J.F.; Gilbert, S.F. Beginning a New Organism. In Fertilization, 13th ed.; Oxford University Press: New York, NY, USA, 2024; pp. 211–246. [Google Scholar]
- Santella, L.; Chun, J.T. Structural actin dynamics during oocyte maturation and fertilization. Biochem. Biophys. Res. Commun. 2022, 633, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Santella, L.; Limatola, N.; Chun, J.T. Cellular and molecular aspects of oocyte maturation and fertilization: A perspective from the actin cytoskeleton. Zool. Lett. 2020, 6, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Santella, L.; Limatola, N.; Vasilev, F.; Chun, J.T. Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochem. Biophys. Res. Commun. 2018, 506, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Mohri, T.; Kyozuka, K. Starfish oocytes of A. pectinifera reveal marked differences in sperm-induced electrical and intracellular calcium changes during oocyte maturation and at fertilization. Mol. Reprod. Dev. 2022, 89, 3–22. [Google Scholar] [CrossRef]
- Limatola, N.; Chun, J.T.; Schneider, S.C.; Schmitt, J.-L.; Lehn, J.-M.; Santella, L. The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs. Cells 2023, 12, 740. [Google Scholar] [CrossRef]
- Just, E.E. The Production of Filaments by Echinoderm Ova as a Response to Insemination, with Special Reference to the Phenomenon as Exhibited by Ova of the Genus Asterias. Biol. Bull. 1929, 57, 311–325. [Google Scholar] [CrossRef]
- Dan, J.C. Studies on the acrosome. II Acrosome reaction in starfish spermatozoa. Biol. Bull. 1954, 107, 203–218. [Google Scholar] [CrossRef]
- Hoshi, M.; Moriyama, H.; Matsumoto, M. Structure of acrosome reaction-inducing substance in the jelly coat of starfish eggs: A mini review. Biochem. Biophys. Res. Commun. 2012, 425, 595–598. [Google Scholar] [CrossRef]
- Clark, J.M. An Experimental Study of Polyspermy. Biol. Bull. 1936, 70, 361–384. [Google Scholar] [CrossRef]
- Just, E.E. The Biology of the Cell Surface; P. Blakiston's Son & Co., Inc.: Philadelphia, PA, USA, 1939. [Google Scholar]
- Fujimori, T.; Hirai, S. Differences in starfish oocyte susceptibility to polyspermy during the course of maturation. Biol. Bull. 1979, 157, 249–257. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Chun, J.T. Actin Cytoskeleton and Fertilization in Starfish Eggs. In Sexual Reproduction in Animals and Plants—Part II: Gametogenesis, Gamete Recognition, Activation, and Evolution; Sawada, H., Inoue, N., Iwano, M., Eds.; Springer Open: Tokyo, Japan, 2014; pp. 141–155. [Google Scholar] [CrossRef]
- Mabuchi, I. Purification from starfish eggs of a protein that depolymerizes actin. J. Biochem. 1981, 89, 1341–1344. [Google Scholar] [CrossRef]
- Mabuchi, I. An actin-depolymerizing protein (Depactin) from starfish oocytes: Properties and interaction with actin. J. Cell Biol. 1983, 97, 1612–1621. [Google Scholar] [CrossRef]
- Otto, J.J.; Schroeder, T.E. Assembly-disassembly of actin bundles in starfish oocytes: An analysis of actin-associated proteins in the isolated cortex. Dev. Biol. 1984, 101, 263–273. [Google Scholar] [CrossRef]
- Chun, J.T.; Santella, L. Roles of the actin-binding proteins in intracellular Ca2+ signalling. Acta Physiol. 2009, 195, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Limatola, N.; Vasilev, F.; Chun, J.T.; Santella, L. Altered actin cytoskeleton in ageing eggs of starfish affects fertilization process. Exp. Cell Res. 2019, 381, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Kanatani, H. Induction of starfish oocyte maturation by disulfide-reducing agents. Exp. Cell Res. 1973, 82, 296–302. [Google Scholar] [CrossRef]
- Kishimoto, T.; Cayer, M.L.; Kanatani, H. Starfish oocyte maturation and reduction of disulfide-bond on oocyte surface. Exp. Cell Res. 1976, 101, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, S.-I. Nature of the 1-methyladenine-requiring phase in maturation of starfidh oocytes. Develop. Growth Differ. 1982, 24, 429–442. [Google Scholar] [CrossRef]
- Mita, M.; Ueta, N.; Nagahama, Y. In Vitro Induction of Starfish Oocyte Maturation by Cysteine Alkylesters: (oocyte maturation/starfish/1-MeAde/SH-group). Dev. Growth Differ. 1987, 29, 607–616. [Google Scholar] [CrossRef]
- Mita, M. Incapacity of Response to Disulfide-Reducing Agent in Triton X-100–Treated Oocytes of Starfish. Asterina Pectinifera Ann. N. Y. Acad. Sci. 2005, 1040, 413–416. [Google Scholar] [CrossRef]
- Epel, D.; Weaver, A.M.; Mazia, D. Methods for removal of the vitelline membrane of sea urchin eggs. Exp. Cell Res. 1970, 61, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Eddy, E.M.; Shapiro, B.M. Changes in the topography of the sea urchin egg after fertilization. J. Cell Biol. 1976, 71, 35–48. [Google Scholar] [CrossRef]
- Thaler, C.D.; Kuo, R.C.; Patton, C.; Preston, C.M.; Yagisawa, H.; Epel, D. Phosphoinositide metabolism at fertilization of sea urchin eggs measured with a GFP-probe. Dev. Growth Differ. 2004, 46, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Limatola, N.; Chun, J.T.; Cherraben, S.; Schmitt, J.-L.; Lehn, J.-M.; Santella, L. Effects of Dithiothreitol on Fertilization and Early Development in Sea Urchin. Cells 2021, 10, 3573. [Google Scholar] [CrossRef] [PubMed]
- Limatola, N.; Chun, J.T.; Santella, L. Species-Specific Gamete Interaction during Sea Urchin Fertilization: Roles of the Egg Jelly and Vitelline Layer. Cells 2022, 11, 2984. [Google Scholar] [CrossRef] [PubMed]
- Vacquier, V.D.; Moy, G.W. Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs. Proc. Natl. Acad. Sci. USA 1977, 74, 2456–2460. [Google Scholar] [CrossRef] [PubMed]
- Vacquier, V.D. The quest for the sea urchin egg receptor for sperm. Biochem. Biophys. Res. Commun. 2012, 425, 583–587. [Google Scholar] [CrossRef]
- Wessel, G.M.; Wada, Y.; Yajima, M.; Kiyomoto, M. Sperm lacking Bindin are infertile but are otherwise indistinguishable from wildtype sperm. Sci. Rep. 2021, 11, 21583. [Google Scholar] [CrossRef]
- Wessel, G.M.; Wada, Y.; Yajima, M.; Kiyomoto, M. Bindin is essential for fertilization in the sea urchin. Proc. Natl. Acad. Sci. USA 2021, 118, e2109636118. [Google Scholar] [CrossRef]
- Limatola, N.; Chun, J.T.; Santella, L. Regulation of the Actin Cytoskeleton-Linked Ca2+ Signaling by Intracellular pH in Fertilized Eggs of Sea Urchin. Cells 2022, 11, 1496. [Google Scholar] [CrossRef]
- Shen, S.S.; Steinhardt, R.A. Direct measurement of intracellular pH during metabolic depression of the sea urchin egg. Nature 1978, 272, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Begg, D.A.; Rebhun, L.I. pH regulates the polymerization of actin in the sea urchin egg cortex. J. Cell Biol. 1979, 83, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Tilney, L.G.; Jaffe, L.A. Actin, microvilli, and the fertilization cone of sea urchin eggs. J. Cell Biol. 1980, 87, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Carron, C.P.; Longo, F. Relation of cytoplasmic alkalinization to microvillar elongation and microfilament formation in the sea urchin egg. Dev. Biol. 1982, 89, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, I.; Hosoya, H.; Sakai, H. Actin in the cortical layer of the sea urchin egg. Changes in its content during and after fertilization. Biomed. Res. 1980, 1, 417–426. [Google Scholar] [CrossRef]
- Yonemura, S.; Mabuchi, I. Wave of cortical actin polymerization in the sea urchin egg. Cell Motil. Cytoskelet. 1987, 7, 46–53. [Google Scholar] [CrossRef]
- Chun, J.T.; Puppo, A.; Vasilev, F.; Gragnaniello, G.; Garante, E.; Santella, L. The Biphasic Increase of PIP2 in the Fertilized Eggs of Starfish: New Roles in Actin Polymerization and Ca2+ Signaling. PLoS ONE 2010, 5, e14100. [Google Scholar] [CrossRef]
- Santella, L.; Lim, D.; Moccia, F. Calcium and fertilization: The beginning of life. Trends Biochem. Sci. 2004, 29, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Santella, L.; Chun, J.T. Actin, more than just a housekeeping protein at the scene of fertilization. Sci. China Life Sci. 2011, 54, 733–743. [Google Scholar] [CrossRef]
- Santella, L.; Vasilev, F.; Chun, J.T. Fertilization in echinoderms. Biochem. Biophys. Res. Commun. 2012, 425, 588–594. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Chun, J.T. Calcium and actin in the saga of awakening oocytes. Biochem. Biophys. Res. Commun. 2015, 460, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.H.; Ohmori, H.; Sasaki, S. Action potential and non-linear current voltage relation in starfish oocytes. J. Physiol. 1975, 246, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Santella, L.; De Riso, L.; Gragnaniello, G.; Kyozuka, K. Cortical granule translocation during maturation of starfish oocytes requires cytoskeletal rearrangement triggered by InsP3-mediated Ca2+ release . Exp. Cell Res. 1999, 248, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Shôji, Y.; Hamaguchi, M.S.; Hiramoto, Y. Mechanical properties of the endoplasm in starfish oocytes. Exp. Cell Res. 1978, 117, 79–87. [Google Scholar] [CrossRef]
- Nemoto, S.-I.; Yoneda, M.; Uemura, I. Marked decrease in the rigidity of starfish oocytes induced by 1-methyladenine. Develop. Growth Differ. 1980, 22, 315–325. [Google Scholar] [CrossRef]
- Newman, S.A. Just’s “independent irritability” revisited: The activated egg as excitable soft matter. Mol. Reprod. Dev. 2009, 76, 966–974. [Google Scholar] [CrossRef]
- Byrnes, W.M.; Newman, S.A. Ernest Everett Just: Egg and Embryo as Excitable Systems. J. Exp. Zool. B Mol. Dev. Evol. 2014, 322, 191–201. [Google Scholar] [CrossRef]
- Lange, K. Microvillar Ca++ signaling: A new view of an old problem. J. Cell. Physiol. 1999, 180, 19–34. [Google Scholar] [CrossRef]
- Lange, K. Microvillar Ion Channels: Cytoskeletal Modulation of Ion Fluxes. J. Theor. Biol. 2000, 206, 561–584. [Google Scholar] [CrossRef]
- Gartzke, J.; Lange, K. Cellular target of weak magnetic fields: Ionic conduction along actin filaments of microvilli. Am. J. Physiol.-Cell Physiol. 2002, 283, C1333–C1565. [Google Scholar] [CrossRef]
- Vasilev, F.; Limatola, N.; Chun, J.T.; Santella, L. Contributions of suboolemmal acidic vesicles and microvilli to the intracellular Ca2+ increase in the sea urchin eggs at fertilization. Int. J. Biol. Sci. 2019, 15, 757–775. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, S. Freezing of actin. Reversible oxidation of a sulfhydryl group and structural change. J. Biochem. 1976, 80, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.X.; Janmey, P.A.; Stosselm, T.P.; Ito, T. Thiol Oxidation of Actin Produces Dimers That Enhance the Elasticity of the F-Actin Network. Biophys. J. 1999, 76, 2208–2215. [Google Scholar] [CrossRef]
- Hosoda, E.; Hiraoka, D.; Hirohashi, N.; Omi, S.; Kishimoto, T.; Chiba, K. SGK regulates pH increase and cyclin B–Cdk1 activation to resume meiosis in starfish ovarian oocytes. J. Cell Biol. 2019, 218, 3612–3629. [Google Scholar] [CrossRef]
- Chiba, K.; Kado, R.T.; Jaffe, L.A. Development of calcium release mechanisms during starfish oocyte maturation. Dev. Biol. 1990, 140, 300–306. [Google Scholar] [CrossRef]
- Spudich, A.; Wrenn, J.T.; Wessells, N.K. Unfertilized sea urchin eggs contain a discrete cortical shell of actin that is subdivided into two organizational states. Cell Motil. Cytoskelet. 1988, 9, 85–96. [Google Scholar] [CrossRef]
- Henson, J.H.; Begg, D.A. Filamentous actin organization in the unfertilized sea urchin egg cortex. Dev. Biol. 1988, 127, 338–348. [Google Scholar] [CrossRef]
- Gillot, I.; Ciapa, B.; Payan, P.; Sardet, C. The calcium content of cortical granules and the loss of calcium from sea urchin eggs at fertilization. Dev. Biol. 1991, 146, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.T.; Limatola, N.; Vasilev, F.; Santella, L. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules. Biochem. Biophys. Res. Commun. 2014, 450, 1166–1174. [Google Scholar] [CrossRef]
- Cline, D.J.; Redding, S.E.; Brohawn, S.G.; Psathas, J.N.; Schneider, J.P.; Thorpe, C. New water-soluble phosphines as reductants of peptide and protein disulfide bonds: Reactivity and membrane permeability. Biochemistry 2004, 43, 15195–15203. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, F.; Chun, J.T.; Gragnaniello, G.; Garante, E.; Santella, L. Effects of ionomycin on egg activation and early development in starfish. PLoS ONE 2012, 7, e39231. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Lange, K.; Santella, L. Activation of oocytes by latrunculin A. FASEB J. 2002, 16, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Just, E.E. Initiation of development in Arbacia. IV. Some cortical reactions as criteria for optimum fertilization capacity and their significance for the physiology of development. Protoplasma 1928, 5, 97–126. [Google Scholar] [CrossRef]
GV-Stage Oocytes (N = 3) | SW 10 min | DTT 10 min | DTT 10 min, Wash |
---|---|---|---|
Ca2+ response | 16 out of 16 | 13 out of 16 | 11 out of 13 |
CF | 12 out of 16 | 12 out of 16 | 10 out of 13 |
CF (RFU) | 0.166 ± 0.010 | 0.047 ± 0.07 | 0.103 ± 0.04 |
Ca2+ wave (RFU) | 0.59 ± 0.011 | 0.31 ± 0.09 * | 0.26 ± 0.04 * |
Traverse time (s) | 134.04 ± 3.87 | 125.44 ± 7.1 | 132.68 ± 6.75 |
Time of activation (s) | 19.6 ± 4.6 | 16.43 ± 2.4 | 19.9 ± 5.6 |
N spots | 4.56 ± 0.87 | 3.07 ± 0.6 * | 2.63 ± 0.75 * |
Maturing Oocytes (N = 5) | 1-MA 70 min | DTT 70 min | 1-MA 60 min + DTT 10 min | 1-MA 60 min + DTT 10 min, Wash |
---|---|---|---|---|
Ca2+ response | 38 out of 38 | 9 out of 18 | 24 out of 25 | 17 out of 18 |
CF | 32 out of 38 | 1 out of 18 | 18 out of 25 | 8 out of 18 |
CF (RFU) | 0.095 ± 0.03 | 0.036 | 0.031 ± 0.01 * | 0.063 ± 0.02 # |
Ca2+ wave (RFU) | 1.19 ± 0.13 | 0.89 ± 0.25 * | 0.55 ± 0.19 * | 0.70 ± 0.09 * |
Traverse time (s) | 129.9 ± 12.05 | 134.2 ± 16.23 | 117.7 ± 9.8 | 129.4 ± 5.6 |
Time of activation (s) | 34.15 ± 8.9 | 203.45 ± 97.6 * | 61.91 ± 35.03 | 35.62 ± 11.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limatola, N.; Chun, J.T.; Chiba, K.; Santella, L. Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes. Biomolecules 2023, 13, 1659. https://doi.org/10.3390/biom13111659
Limatola N, Chun JT, Chiba K, Santella L. Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes. Biomolecules. 2023; 13(11):1659. https://doi.org/10.3390/biom13111659
Chicago/Turabian StyleLimatola, Nunzia, Jong Tai Chun, Kazuyoshi Chiba, and Luigia Santella. 2023. "Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes" Biomolecules 13, no. 11: 1659. https://doi.org/10.3390/biom13111659
APA StyleLimatola, N., Chun, J. T., Chiba, K., & Santella, L. (2023). Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes. Biomolecules, 13(11), 1659. https://doi.org/10.3390/biom13111659