Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = genomic sequence arrangement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11501 KiB  
Article
Comparative Chloroplast Genomics, Phylogenomics, and Divergence Times of Sassafras (Lauraceae)
by Zhiyuan Li, Yunyan Zhang, David Y. P. Tng, Qixun Chen, Yahong Wang, Yongjing Tian, Jingbo Zhou and Zhongsheng Wang
Int. J. Mol. Sci. 2025, 26(15), 7357; https://doi.org/10.3390/ijms26157357 - 30 Jul 2025
Viewed by 318
Abstract
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled [...] Read more.
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled the complete cp genomes of Sassafras, and conducted the comparative cp genomics, phylogenomics, and divergence time estimation of this ecological and economic important genus. The whole length of cp genomes of the 10 Sassafras ranged from 151,970 bp to 154,011 bp with typical quadripartite structure, conserved gene arrangements and contents. Variations in length of cp were observed in the inverted repeat regions (IRs) and a relatively high usage frequency of codons ending with T/A was detected. Four hypervariable intergenic regions (ccsA-ndhD, trnH-psbA, rps15-ycf1, and petA-psbJ) and 672 cp microsatellites were identified for Sassafras. Phylogenetic analysis based on 106 cp genomes from 30 genera within the Lauraceae family demonstrated that Sassafras constituted a monophyletic clade and grouped a sister branch with the Cinnamomum sect. Camphora within the tribe Cinnamomeae. Divergence time between S. albidum and its East Asian siblings was estimated at the Middle Miocene (16.98 Mya), S. tzumu diverged from S. randaiense at the Pleistocene epoch (3.63 Mya). Combined with fossil evidence, our results further revealed the crucial role of the Bering Land Bridge and glacial refugia in the speciation and differentiation of Sassafras. Overall, our study clarified the evolution pattern of Sassafras cp genomes and elucidated the phylogenetic position and divergence time framework of Sassafras. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 12948 KiB  
Article
Phylogenetic Analyses and Plastome Comparison to Confirm the Taxonomic Position of Ligusticum multivittatum (Apiaceae, Apioideae)
by Changkun Liu, Boni Song, Feng Yong, Chengdong Xu, Quanying Dong, Xiaoyi Wang, Chao Sun and Zhenji Wang
Genes 2025, 16(7), 823; https://doi.org/10.3390/genes16070823 - 14 Jul 2025
Viewed by 351
Abstract
Background: Ligusticum L. plants exhibit significant morphological variation in leaves, flowers, bracteoles and mericarps, thus the classifications of members for the genus have always been controversial. Among them, the taxonomic problem of Ligusticum multivittatum Franch. is the most prominent, which has not been [...] Read more.
Background: Ligusticum L. plants exhibit significant morphological variation in leaves, flowers, bracteoles and mericarps, thus the classifications of members for the genus have always been controversial. Among them, the taxonomic problem of Ligusticum multivittatum Franch. is the most prominent, which has not been sufficiently resolved so far. Methods: to clarify the taxonomic position of Ligusticum multivittatum, we performed phylogenetic analyses based on plastome data and ITS sequences. Meanwhile, we conducted comprehensively comparative plastome analyses between Ligusticum multivittatum and fifteen Ligusticopsis species. Results: Both analyses robustly supported that Ligusticum multivittatum nested in genus Ligusticopsis Leute and formed a clade with fifteen Ligusticopsis species, belonged to the Selineae tribe, which was distant from the type species of Ligusticum (Ligusticum scoticum), located in the Acronema clade.The comparative results showed that sixteen plastomes were highly similar and conservative in genome structure, size, gene content and arrangement, codon bias, SSRs and SC/IR. These findings imply that Ligusticum multivittatum is a member of Ligusticopsis, which was further verified by their shared morphological characters: stem base clothed in fibrous remnant sheaths, white petals, pinnate bracteoles, dorsally compressed mericarps with slightly prominent dorsal ribs, winged lateral ribs and numerous vittae in the commissure and in each furrow. Therefore, combining with the evidences of phylogenetic analyses, plastome comparison and morphological features, we affirmed that Ligusticum multivittatum indeed belonged to Ligusticopsis and transformed it into Ligusticopsis conducted by Pimenov was reasonable. Conclusions: Our study not only confirms the classification of Ligusticum multivittatum by integrating evidences, but also provides a reference for resolving taxonomy of contentious taxa. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 745 KiB  
Review
How Structural Variations Influence Crop Improvement
by Xiaomei Wang, Changyuan Liu, Xiaohuan Sun, Guohong Sun, Chunmei Zong, Yuxin Qi, Yanfeng Bai, Wen Li, Fanjiang Kong, Haiyang Li and Yanping Wang
Int. J. Mol. Sci. 2025, 26(14), 6635; https://doi.org/10.3390/ijms26146635 - 10 Jul 2025
Viewed by 416
Abstract
Research on structural variations in the field of crop genetics has expanded with the rapid development of genome sequencing technologies. As an important aspect of genomic variations, structural variations have a profound impact on the genetic characteristics of crops and significantly affect their [...] Read more.
Research on structural variations in the field of crop genetics has expanded with the rapid development of genome sequencing technologies. As an important aspect of genomic variations, structural variations have a profound impact on the genetic characteristics of crops and significantly affect their key agronomic traits, such as yield, quality, and disease and stress resistance—by changing the gene arrangement order, copy number, and the positions of regulatory elements. Compared with single-nucleotide polymorphisms, structural variations present a diverse range of types, including deletions, duplications, inversions, and translocations, and their impacts are more extensive and profound. However, research on structural variations in crops still faces many challenges, for example those relating to different ploidy levels, genome repetitiveness, and their associations with phenotypes. Nevertheless, breakthroughs in long-read sequencing technologies and the integration of multi-omics data offer hope for solving these problems. A deep understanding of the impact of structural variations on crops is of great significance for accurately analyzing the evolutionary history of crops and guiding modern crop breeding, and is expected to provide strong support for global food security and the sustainable development of agriculture. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 6590 KiB  
Article
Comparative Analysis of the Complete Chloroplast Genomes of Eight Salvia Medicinal Species: Insights into the Deep Phylogeny of Salvia in East Asia
by Yan Du, Yang Luo, Yuanyuan Wang, Jiaxin Li, Chunlei Xiang and Meiqing Yang
Curr. Issues Mol. Biol. 2025, 47(7), 493; https://doi.org/10.3390/cimb47070493 - 27 Jun 2025
Viewed by 439
Abstract
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, [...] Read more.
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, annotated, and analyzed for gene content, codon usage, and repetitive sequences. Phylogenetic relationships were reconstructed using Maximum Likelihood, Maximum Parsimony and Bayesian inference. The genomes exhibited a conserved quadripartite structure (151,081–152,678 bp, GC content 37.9–38.1%), containing 114 unique genes with consistent arrangement. Codon usage favored A/T endings, with leucine (Leu) most frequent and cysteine (Cys) least. We identified 281 long sequence repeats (LSRs) and 345 simple sequence repeats (SSRs), mostly in non-coding regions. Comparative analysis revealed five hypervariable regions (trnH-psbA, rbcL-accD, petA-psbJ, rpl32-trnL, ycf1) as potential molecular markers. Phylogenetic analysis confirmed the monophyly of East Asian Salvia, dividing them into five clades, with Sect. Sonchifoliae basal. While G1, G3, and G8 were monophyletic, G5 and G6 were paraphyletic, and the G7-G8 relationship challenged traditional classifications. The genomic evidence provides crucial insights for resolving long-standing taxonomic uncertainties and refining the classification system of Salvia. These findings suggest a complex evolutionary history involving hybridization and incomplete lineage sorting, providing valuable genomic insights for Salvia phylogeny, taxonomy, and conservation. Full article
Show Figures

Figure 1

10 pages, 1404 KiB  
Article
Codon Usage Bias in Mitochondrial Genomes Across Three Species of Siphonaria (Mollusca: Gastropoda)
by Jingjing Gu, Xuan Zhou, Chao Song, Yiyi Wang, Haobo Jin, Teng Lei and Xin Qi
Genes 2025, 16(7), 747; https://doi.org/10.3390/genes16070747 - 26 Jun 2025
Viewed by 471
Abstract
Background: Siphonaria is a genus of false limpets belonging to the Gastropoda class. Only two species of this genus have been described with mitochondrial genomes. Moreover, the codon usage patterns and factors influencing them have not been studied. This study aims to expand [...] Read more.
Background: Siphonaria is a genus of false limpets belonging to the Gastropoda class. Only two species of this genus have been described with mitochondrial genomes. Moreover, the codon usage patterns and factors influencing them have not been studied. This study aims to expand the mitochondrial genome data of this genus and clarify the codon usage patterns. Methods: The complete mitochondrial genome of Siphonaria japonica was sequenced using next-generation sequencing. The gene arrangement and phylogenetic status were compared with Siphonaria gigas and Siphonaria pectinata. The codon usage bias of the three mitochondrial genomes was analyzed based on the relative synonymous codon usage (RSCU), the effective number of codons (ENC) plot, the parity rule 2 (PR2)-bias plot, and neutrality plot analyses. Results: The gene arrangement and maximum-likelihood phylogenetic tree support a close relationship between S. japonica and S. pectinata. The codon usage bias analysis indicated that the codon usage bias of mitochondrial PCGs in the three species was primarily influenced by natural selection. Conclusions: This study offers significant evolutionary insights into the phylogenetic relationships and molecular adaptation strategies among Siphonaria species. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Graphical abstract

18 pages, 2910 KiB  
Article
Repeatome Dynamics and Sex Chromosome Differentiation in the XY and XY1Y2 Systems of the Fish Hoplias malabaricus (Teleostei; Characiformes)
by Mariannah Pravatti Barcellos de Oliveira, Geize Aparecida Deon, Francisco de Menezes Cavalcante Sassi, Fernando Henrique Santos de Souza, Caio Augusto Gomes Goes, Ricardo Utsunomia, Fábio Porto-Foresti, Jhon Alex Dziechciarz Vidal, Amanda Bueno da Silva, Tariq Ezaz, Thomas Liehr and Marcelo de Bello Cioffi
Int. J. Mol. Sci. 2025, 26(13), 6039; https://doi.org/10.3390/ijms26136039 - 24 Jun 2025
Viewed by 542
Abstract
The wolf fish Hoplias malabaricus is a Neotropical species characterized by remarkable karyotypic diversity, including seven karyomorphs (KarA-G) with distinct sex chromosome systems. This study investigated the homologous XY (KarF) and XY1Y2 (KarG) sex chromosome systems present in this species [...] Read more.
The wolf fish Hoplias malabaricus is a Neotropical species characterized by remarkable karyotypic diversity, including seven karyomorphs (KarA-G) with distinct sex chromosome systems. This study investigated the homologous XY (KarF) and XY1Y2 (KarG) sex chromosome systems present in this species by integrating cytogenetics and genomics to examine sex chromosomes’ composition through characterization of repeatome (satellite DNA and transposable elements) and sex-linked markers. Our analysis indicated that both karyomorphs are little differentiated in their sex chromosomes content revealed by satDNA mapping and putative sex-linked markers. Both repeatomes were mostly composed of transposable elements, but neither intra- (male versus female) nor interspecific (KarF x KarG) variations were found. In both systems, we demonstrated the occurrence of sex-specific sequences probably located on the non-recombining region of the Y chromosome supported by the accumulation of sex-specific haplotypes of HmfSat10-28/HmgSat31-28. This investigation offered valuable insights by highlighting the composition of homologous XY and XY1Y2 multiple sex chromosomes. Although homologous, the large Y chromosome in KarF corresponds to two separate linkage groups (Y1 and Y2) in KarG implying a specific meiotic arrangement involving the X chromosome in a meiotic trivalent chain. This scenario likely influenced recombination rates and, as a result, the genomic composition of these chromosomes. Full article
(This article belongs to the Special Issue Repetitive DNA)
Show Figures

Figure 1

14 pages, 1541 KiB  
Article
First Report in the Americas of S. enterica Var. Enteritidis Carrying blaNDM-1 in a Putatively New Sub-Lineage of IncC2 Plasmids
by Nicolás F. Cordeiro, Romina Papa-Ezdra, Germán Traglia, Inés Bado, Virginia García-Fulgueiras, María N. Cortinas, Leticia Caiata, Mariana López-Vega, Ana Otero, Martín López, Patricia Hitateguy, Cristina Mogdasy and Rafael Vignoli
Antibiotics 2025, 14(6), 620; https://doi.org/10.3390/antibiotics14060620 - 18 Jun 2025
Viewed by 620
Abstract
Background: Infections caused by carbapenem-resistant Enterobacterales have steadily multiplied over time, becoming a major threat to healthcare systems due to limited therapeutic options and high case-fatality rates. Case report: We studied a patient who, after being discharged from an ICU, developed salmonellosis caused [...] Read more.
Background: Infections caused by carbapenem-resistant Enterobacterales have steadily multiplied over time, becoming a major threat to healthcare systems due to limited therapeutic options and high case-fatality rates. Case report: We studied a patient who, after being discharged from an ICU, developed salmonellosis caused by an antibiotic-susceptible S. enteritidis. After undergoing treatment with ciprofloxacin, the patient presented an episode of asymptomatic bacteriuria originated by a carbapenem and ciprofloxacin-resistant S. enteritidis. Results: Whole genome sequencing analysis revealed that both Salmonella isolates belonged to the same strain, and that isolate SEn_T2 acquired a plasmid carrying both blaNDM-1 and qnrA1 genes (pIncCSEn) which was previously present in the patient’s gut in at least one Enterobacter cloacae isolate. Additionally, pIncCSEN was identified as a putatively new sub-lineage of IncC2 plasmids which lacked the first copy of the methyltransferase gene dcm and the rhs gene. The resistance genes blaNDM-1 and qnrA1 were incorporated into a Tn21-derived transposon that included a complex class 1 integron whose genetic arrangement was: intI1- dfrA12- orfF- aadA2- qacEΔ1-sul1-ISCR1- trpF- ble- blaNDM-1 (in reverse direction)- ISAba125-ISCR1- qnrA- cmlA1- qacEΔ1-sul1. Conclusions: Antimicrobial persistence and co-selection of antibiotic resistance play an important role in the dissemination of antimicrobial resistance genes; in this regard, a joint effort involving the infection control team, effective antibiotic stewardship, and genomic surveillance could help mitigate the spread of these multidrug resistant microorganisms. Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Show Figures

Figure 1

14 pages, 1609 KiB  
Article
Comparative Analysis of Microtendipes Mitogenomes (Diptera: Chironomidae) and Their Phylogenetic Implications
by Chao Song, Yiyi Wang, Wenji Wang, Teng Lei, Xin Qi and Luxian Li
Diversity 2025, 17(6), 424; https://doi.org/10.3390/d17060424 - 16 Jun 2025
Viewed by 703
Abstract
Insect mitochondrial genomes are vital to understanding evolutionary relationships and identifying species. This study focused on Microtendipes (Chironomidae), a genus with unresolved phylogenetic positioning and cryptic species challenges. We sequenced and analyzed eight mitogenomes from five Microtendipes species, integrating 23 published [...] Read more.
Insect mitochondrial genomes are vital to understanding evolutionary relationships and identifying species. This study focused on Microtendipes (Chironomidae), a genus with unresolved phylogenetic positioning and cryptic species challenges. We sequenced and analyzed eight mitogenomes from five Microtendipes species, integrating 23 published Chironominae mitogenomes to reconstruct phylogenies using Maximum Likelihood and Bayesian Inference. The mitogenomes exhibited conserved gene arrangements but variable control region lengths (338–1266 bp) and high AT content (94.14–96.42% in control regions). Our results show that Microtendipes species may be a separate group within the subfamily, while also supporting the monophyly of the Harnischia, Polypedilum, and Chironomus complexes. The monophyly of Microtendipes bimaculus was weakly supported, which may demonstrate the presence of two potential cryptic species. Notably, larval morphology-based species groupings conflicted with the molecular data, suggesting that classifications derived from larval morphological traits may be unreliable. This study advances the evolutionary understanding of Chironomidae and underscores the limitations of single-gene barcodes in species-rich genera. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 1408 KiB  
Article
Chromosomal Inversions in Chromosome U of Drosophila subobscura: A Story from Population Studies to Molecular Level
by Mercè Merayo, Kenia M. Delgado, David Salguero and Dorcas J. Orengo
Insects 2025, 16(6), 586; https://doi.org/10.3390/insects16060586 - 1 Jun 2025
Viewed by 1134
Abstract
Drosophila subobscura is a Palearctic species that colonized the west coast of South and North America in the last quarter of the 20th century. This species stands out for its large chromosomal inversion polymorphism that affects its five long chromosomes. Studies of natural [...] Read more.
Drosophila subobscura is a Palearctic species that colonized the west coast of South and North America in the last quarter of the 20th century. This species stands out for its large chromosomal inversion polymorphism that affects its five long chromosomes. Studies of natural populations revealed that the inversion polymorphism has an adaptive character and while the arrangement Ust was classified as adapted to cold, other arrangements, such as U1+2+6 and U1+8+2, were considered warm adapted. Characterization of the inversion breakpoints will allow a first approach to the genes included in the inversions and to find candidates to be affected by selection. In this work, we take advantage of the existence of a reference genomic sequence carrying the U1+2 arrangement to locate the breakpoints of the U6 and U8 inversions, mapping paired-end Illumina reads from two homokaryotypic strains to U1+2+6 and U1+8+2, respectively. To date, most of the characterized inversion breakpoints in D. subobscura have been generated by non-homologous end-joining. In contrast, the U6 and U8 inversions seem to have originated by transposons, and, at the distal breakpoint of inversion U8, we describe a new fold-back-like element characteristic of the suboscura species group that we have named Ziga-Zaga. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

18 pages, 3747 KiB  
Article
The Complete Chloroplast Genome of Idesia polycarpa and Comparative Analysis of Related Species
by Xueqian Fu, Jie Luo, Yuan Guo, Dalan Feng, Yifei Deng, Mi Kuang, Houlin Zhou, Xia Liu and Chong Sun
Genes 2025, 16(5), 611; https://doi.org/10.3390/genes16050611 - 21 May 2025
Viewed by 647
Abstract
Background/Objectives: The oil grape (Idesia polycarpa), often called the “golden tree”, is an essential woody plant valued for its edible oil. Although its economic significance is recognized, the specifics of its chloroplast genome and evolutionary connections remain unclear. This study sequenced [...] Read more.
Background/Objectives: The oil grape (Idesia polycarpa), often called the “golden tree”, is an essential woody plant valued for its edible oil. Although its economic significance is recognized, the specifics of its chloroplast genome and evolutionary connections remain unclear. This study sequenced the chloroplast genome of I. polycarpa and performed a comparative analysis of its genome structure, genetic diversity, and phylogenetics using chloroplast data from related species. Methods: In this study, we sequenced and annotated the whole chloroplast genome of I. polycarpa via GISEQ-500 sequencing and de novo assembly. Results: The chloroplast genome of I. polycarpa exhibits a typical tetrad structure, with a length of 155,899 bp and a GC content of 36.78%. It comprises 130 unique genes, including 85 coding genes, 37 tRNAs, and eight rRNAs, showing notable conservation in gene composition and arrangement compared to closely related species. However, the inverted repeat region boundaries are narrower. Phylogenetic analysis showed strong relationships among I. polycarpa, Bennettiodendron brevipes, Poliothyrsis sinensis, Itoa orientalis, and Carrierea calycina within the Salicaceae family. Additionally, positive selection analysis revealed that rpl16, ycf1, rps18, and rpl22 are under significant selective pressure in related species, likely linked to adaptations for photosynthesis and environmental responses. Conclusions: This research provides vital molecular foundations for the conservation, classification, and enhancement of I. polycarpa germplasm resources, advancing the study of adaptive evolutionary mechanisms and broadening the genomic database for I. polycarpa. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3057 KiB  
Article
Complete Mitochondrial Genome Characterization and Phylogenomics of the Stingless Bee, Heterotrigona itama (Apidae: Meliponini)
by Orawan Duangphakdee, Pisit Poolprasert and Atsalek Rattanawannee
Insects 2025, 16(5), 535; https://doi.org/10.3390/insects16050535 - 19 May 2025
Viewed by 926
Abstract
With increasing demand for stingless bee honey, meliponiculture has gained widespread attention. Heterotrigona itama is one of the most economically important species. However, excessive exploitation for commercial purposes has led to population declines, and the species is now considered vulnerable in Thailand. Despite [...] Read more.
With increasing demand for stingless bee honey, meliponiculture has gained widespread attention. Heterotrigona itama is one of the most economically important species. However, excessive exploitation for commercial purposes has led to population declines, and the species is now considered vulnerable in Thailand. Despite its ecological and economic significance, genomic and taxonomic information on H. itama remains limited. In this study, we sequenced and characterized the complete mitochondrial genome (mitogenome) of H. itama to explore its genome structure and phylogenetic position. The circular mitogenome is 15,318 bp in length and consists of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes. The genome exhibits a strong A+T bias (75.41%), which affects codon usage and amino acid composition. Isoleucine, methionine, and phenylalanine were the most commonly encoded amino acids. Gene arrangement was highly conserved and closely resembled that of Tetragonula species. Phylogenetic analyses confirmed that H. itama clusters with other stingless bees and is more closely related to bumblebees than to honeybees. Several gene rearrangements suggest a high degree of mitogenomic plasticity. This study provides essential genomic resources for future studies in systematics, phylogenetics, population genetics, and conservation of stingless bees in the Meliponini tribe. Full article
(This article belongs to the Special Issue Insect Mitogenome, Phylogeny, and Mitochondrial Genome Expression)
Show Figures

Graphical abstract

18 pages, 5016 KiB  
Article
Characterization of the Complete Mitochondrial Genome of Angulyagra polyzonata and Its Phylogenetic Status in Viviparidae
by Shengjie Zhang, Kangqi Zhou, Xianhui Pan, Yong Lin, Jinxia Peng, Junqi Qin, Zhenlin Ke, Yaoquan Han, Zhong Chen, Xuesong Du, Wenhong Li, Pinyuan Wei and Dapeng Wang
Animals 2025, 15(9), 1284; https://doi.org/10.3390/ani15091284 - 30 Apr 2025
Viewed by 363
Abstract
Angulyagra polyzonata is an economically important mollusk in China, but detailed insights into its mitochondrial genome remain scarce. In this study, we sequenced and comprehensively analyzed the structural features and selection pressures of the A. polyzonata mitochondrial genome. The maximum likelihood method and [...] Read more.
Angulyagra polyzonata is an economically important mollusk in China, but detailed insights into its mitochondrial genome remain scarce. In this study, we sequenced and comprehensively analyzed the structural features and selection pressures of the A. polyzonata mitochondrial genome. The maximum likelihood method and Bayesian phylogenetic inference method were used to construct a phylogenetic tree of A. polyzonata with 21 other species, including gastropods and bivalves. The full-length mitochondrial genome of 17,379 bp was found to include 22 transfer RNA genes, 2 ribosomal RNA genes, and 13 protein-coding genes, exhibiting similarity to the composition and arrangement of mitochondrial genes in other gastropod species. Notably, the Ka/Ks ratios of mitochondrial protein-coding genes (nad5, cox3, nad3, nad2, cox1, cox2, atp8, atp6, nadl, nad6, cob, nad4l, and nad4) were <1, which indicates that the snail genes of the three genera of the family may have been subjected to strong natural selection pressure during the evolutionary process, so that the number of synonymous mutations (ks) in genes was much more than that of nonsynonymous mutations (ka). Comparative genomic analysis indicated that, apart from the absence of trnW and trnQ, the gene composition of A. polyzonata shares a high degree of homology with other members of the conical snail family. Phylogenetic analysis demonstrated that the selected species could be classified into two primary clades in which A. polyzonata clustered with the Viviparidae family. This study bridges the knowledge gap regarding the mitochondrial genome of A. polyzonata and offers valuable insights into the systematic relationships within the Viviparidae family. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

16 pages, 4042 KiB  
Article
Unraveling the Mitochondrial Blueprint: Genome Characterization and Phylogenetic Insights of the Endemic Fish Onychostoma virgulatum (Teleostei: Cyprinidae)
by Yuting Hu, Guoqing Duan, Huaxing Zhou, Huan Wang and Amei Liu
Genes 2025, 16(5), 541; https://doi.org/10.3390/genes16050541 - 30 Apr 2025
Viewed by 502
Abstract
Background: Onychostoma virgulatum is an endemic freshwater fish in South China, first described as a new species in 2009. However, little is known about this species and no complete mitochondrial genomes of O. virgulatum has been reported to date. This study seeks [...] Read more.
Background: Onychostoma virgulatum is an endemic freshwater fish in South China, first described as a new species in 2009. However, little is known about this species and no complete mitochondrial genomes of O. virgulatum has been reported to date. This study seeks to elucidate the characteristics of the mitochondrial genome of O. virgulatum and investigate the phylogenetic relationships within the Acrossocheilinae subfamily, particularly among the genera Onychostoma, Acrossocheilus, and Folifer. Methods: The mitochondrial genome of O. virgulatum was sequenced and assembled. We analyzed its sequence length, nucleotide composition, and evolutionary relationships within the Acrossocheilinae by incorporate data from 58 previously published mitochondrial genomes. Results: The complete circular sequence is 16,606 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a typical control region (D-loop), all arranged in a typical order. The genomic base composition is biased toward A+T content (56.5%), with 31.4% A, 25.1% T, 27.4% C, and 16.1% G. Among about 30 Acrossocheilina species, the nonsynonymous (Ka) to synonymous substitutions (Ks) for all 13 protein-coding genes (PCGs) are significantly less than 1, suggesting strong negative or purifying selection in these species. The phylogenetic trees inferred from the mitogenome and 13 PCGs of 58 Acrossocheilinae sequences consistently indicate that: (1) O. virgulatum shares the closest genetic relationship with Onychostoma barbatulum; (2) Acrossocheilinae species are clustered into three major clades, with neither Acrossocheilus nor Onychostoma forming monophyletic groups. Conclusions: This study provides new insights into the taxonomy and phylogenetic relationships of Acrossocheilinae, particularly O. virgulatum, contributing to a better understanding of the systematics, origin, and evolution of this subfamily. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3163 KiB  
Article
Bacillus multifaciens sp. nov., a Crucial and Highly-Active Flavor and Protease Producer Isolated from the qu-Starter of Chinese Wuliangye Baijiu
by Qingchun Luo, Xinrui Zhao, Xi Li, Yuzhu Li, Pengju Zhao, Yanping Lu, Duotao Liu, Jian Su, Jian Chen, Dong Zhao, Jianghua Li and Jia Zheng
Microorganisms 2025, 13(5), 993; https://doi.org/10.3390/microorganisms13050993 - 25 Apr 2025
Viewed by 555
Abstract
In the study presented herein, an aerobic, Gram-stain-positive, spore-forming bacterium, designated as WLY-B-L8T, was isolated from a qu-starter (baobaoqu) cultivation facility used for the production of Wuliangye baijiu in Yibin city (Sichuan province, China). The strain comprised short, [...] Read more.
In the study presented herein, an aerobic, Gram-stain-positive, spore-forming bacterium, designated as WLY-B-L8T, was isolated from a qu-starter (baobaoqu) cultivation facility used for the production of Wuliangye baijiu in Yibin city (Sichuan province, China). The strain comprised short, rod-shape cells of 1.2–1.9 μm in width and 1.7–4.8 μm in length, arranged singly or in pairs. The isolate was able to grow at temperatures of 20–42 °C (optimum growth at 40 °C), pH 5.0–10.0 (optimum growth at pH 8.0), and in the presence of 0–2% (w/v) NaCl (optimum growth with 1% NaCl). Ribose, xylose, arabinose, mannose, glucose, and galactose constituted the major cell-wall sugars. Moreover, meso-diaminopimelic acid (meso-DAP) constituted the diagnostic amino acid. The main polar lipids of WLY-B-L8T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), unidentified aminolipids (UAL 1–2), an unidentified aminophospholipid (UAPL), an unidentified aminoglycolipid (UAGL), and an unidentified lipid (UL). MK-7 was the predominant menaquinone and iso-C15:0 (23.00%) was the major fatty acid. Comparisons of the 16S rRNA gene sequence indicated that WLY-B-L8T was most closely related to Bacillus rhizoplanae JJ-63 DSM 12442T (98.71%), Bacillus pseudomycoides DSM 12442T (98.21%), and Bacillus cytotoxicus NVH 391–98T (98.14%). The average nucleotide identity (ANI) values of strain WLY-B-L8T and the three type strains mentioned above were 88.24%, 80.57%, and 78.70%. The average amino identity (AAI) values between them were 89.84%, 79.51%, and 80.41%. In addition, the digital DNA–DNA hybridization (dDDH) values between them were 36.70%, 26.10%, and 23.90%. The genomic DNA G+C content was 35.97%. Based on the evidence presented herein, WLY-B-L8T (CICC 25210T = JCM 36284T) exhibits promise as the type strain of a novel species, designated as Bacillus multifaciens sp. nov., that can produce protease (119.38 ± 7.44 U/mL) and volatile flavor components when cultured on raw wheat, such as 2-pipendinone (21.95 ± 1.56 mg/L), phenylethyl alcohol (19.08 ± 0.82 mg/L), hydrocinnamic acid (18.60 ± 0.53 mg/L), and acetoin (7.58 ± 0.11 mg/L). Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

14 pages, 2726 KiB  
Article
Pancreatic MicroRNAs in Ictidomys tridecemlineatus Associated with Metabolic Diseases: Nature’s Insights into Important Biomarkers
by Olawale O. Taiwo, Saif Rehman and Kenneth B. Storey
Biomolecules 2025, 15(5), 616; https://doi.org/10.3390/biom15050616 - 23 Apr 2025
Cited by 1 | Viewed by 554
Abstract
Hibernation involves a profound metabolic rate depression (MRD) that enables certain species to survive prolonged periods of low energy availability. The thirteen-lined ground squirrel uses MRD to arrange cellular and biochemical pathways which suppress nonvital genetic and cellular pathways to conserve internal energy [...] Read more.
Hibernation involves a profound metabolic rate depression (MRD) that enables certain species to survive prolonged periods of low energy availability. The thirteen-lined ground squirrel uses MRD to arrange cellular and biochemical pathways which suppress nonvital genetic and cellular pathways to conserve internal energy while preserving all essential processes. This study investigates the role of microRNAs (miRNAs) in controlling key signaling pathways and cellular processes in pancreatic tissue during hibernation. Using next-generation sequencing and broad genomic analysis, we analyzed and identified seven differentially expressed miRNAs (miR-29a-3p, miR-22-3p, miR-125-5p, miR-200a-3p, miR-328-3p, miR-21-5p, and miR-148-3p) in the pancreas of hibernating 13-lined ground squirrels (Ictidomys tridecemlineatus). Our findings reveal that these miRNAs regulate pathways involved in glucose homeostasis, including insulin secretion and metabolic regulation, contributing to the unique adaptations of hibernation. These insights advance our understanding of the molecular adaptations underlying hibernation and may have implications for therapeutic strategies targeting metabolic disorders such as diabetes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop