First Report in the Americas of S. enterica Var. Enteritidis Carrying blaNDM-1 in a Putatively New Sub-Lineage of IncC2 Plasmids
Abstract
1. Introduction
2. Results
2.1. Case Report
2.2. Susceptibility Testing and Antibiotic Resistance Genes
2.3. Plasmid Transfer Assays
2.4. In Silico Analysis
2.5. Comparative Genomics
2.6. Description of Plasmid pIncCSEn
2.7. Resistance Region
3. Discussion
4. Materials and Methods
4.1. Patient
4.2. Strains, Identification, and Antibiotic Susceptibility
4.3. Plasmid Transfer
4.4. Whole Genome Sequencing
4.5. Genome Assembly
4.6. In Silico Analysis
4.7. Phylogenetic Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andino, A.; Hanning, I. Salmonella Enterica: Survival, Colonization, and Virulence Differences among Serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Mody, R.K.; Crump, J.A.; Tarr, P.I.; Steiner, T.S.; Kotloff, K.; Langley, J.M.; Wanke, C.; Warren, C.A.; Cheng, A.C.; et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017, 65, e45–e80. [Google Scholar] [CrossRef] [PubMed]
- Medalla, F.; Gu, W.; Mahon, B.E.; Judd, M.; Folster, J.; Griffin, P.M.; Hoekstra, R.M. Estimated Incidence of Antimicrobial Drug–Resistant Nontyphoidal Salmonella Infections, United States, 2004–2012. Emerg. Infect. Dis. 2016, 23, 29–37. [Google Scholar] [CrossRef]
- Coppola, N.; Freire, B.; Umpiérrez, A.; Cordeiro, N.F.; Ávila, P.; Trenchi, G.; Castro, G.; Casaux, M.L.; Fraga, M.; Zunino, P.; et al. Transferable Resistance to Highest Priority Critically Important Antibiotics for Human Health in Escherichia Coli Strains Obtained From Livestock Feces in Uruguay. Front. Vet. Sci. 2020, 7, 588919. [Google Scholar] [CrossRef]
- Cordeiro, N.F.; Nabón, A.; García-Fulgueiras, V.; Álvez, M.; Sirok, A.; Camou, T.; Vignoli, R. Analysis of Plasmid-Mediated Quinolone and Oxyimino-Cephalosporin Resistance Mechanisms in Uruguayan Salmonella Enterica Isolates from 2011–2013. J. Glob. Antimicrob. Resist. 2016, 6, 165–171. [Google Scholar] [CrossRef]
- Casaux, M.L.; D’Alessandro, B.; Vignoli, R.; Fraga, M. Phenotypic and Genotypic Survey of Antibiotic Resistance in Salmonella Enterica Isolates from Dairy Farms in Uruguay. Front. Vet. Sci. 2023, 10, 1055432. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Eighth Annual Report on Antimicrobial Agents Intended for Use in Animals; World Organisation for Animal Health: Paris, France, 2024. [Google Scholar]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals 2021, 11, 872. [Google Scholar] [CrossRef]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide Dissemination of the NDM-Type Carbapenemases in Gram-Negative Bacteria. BioMed Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115–e00118. [Google Scholar] [CrossRef]
- Papa-Ezdra, R.; Caiata, L.; Palacio, R.; Outeda, M.; Cabezas, L.; Bálsamo, A.; Vignoli, R.; Bado, I.; Seija, V. Prevalence and Molecular Characterisation of Carbapenemase-Producing Enterobacterales in an Outbreak-Free Setting in a Single Hospital in Uruguay. J. Glob. Antimicrob. Resist. 2021, 24, 58–62. [Google Scholar] [CrossRef]
- Sekizuka, T.; Inamine, Y.; Segawa, T.; Kuroda, M. Characterization of NDM-5- and CTX-M-55-Coproducing Escherichia coli GSH8M-2 Isolated from the Effluent of a Wastewater Treatment Plant in Tokyo Bay. Infect. Drug Resist. 2019, 12, 2243–2249. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 Positive Bacteria in the New Delhi Environment and Its Implications for Human Health: An Environmental Point Prevalence Study. Lancet Infect. Dis. 2011, 11, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Lincopan, N.; Fuentes-Castillo, D.; Espinoza-Muñoz, M.; Gonzales-Zubiate, F.; Gonzales-Escalante, E.; Maturrano, L.; Vignoli, R.; Di Conza, J.; Gutkind, G. WHO Critical Priority Escherichia Coli in Latin America: A One Health Challenge for a Post-Pandemic World. In Trending Topics in Escherichia coli Research; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–32. [Google Scholar]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-Resistant Enterobacteriaceae in Wildlife, Food-Producing, and Companion Animals: A Systematic Review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Geng, S.; Chan, E.W.-C.; Chen, S. Increased Prevalence of Escherichia Coli Strains from Food Carrying BlaNDM and Mcr-1-Bearing Plasmids That Structurally Resemble Those of Clinical Strains, China, 2015 to 2017. Eurosurveillance 2019, 24, 1800113. [Google Scholar] [CrossRef]
- Briet, A.; Helsens, N.; Delannoy, S.; Debuiche, S.; Brisabois, A.; Midelet, G.; Granier, S.A. NDM-1-Producing Vibrio Parahaemolyticus Isolated from Imported Seafood. J. Antimicrob. Chemother. 2018, 73, 2578–2579. [Google Scholar] [CrossRef]
- Zeng, Z.; Lei, L.; Li, L.; Hua, S.; Li, W.; Zhang, L.; Lin, Q.; Zheng, Z.; Yang, J.; Dou, X.; et al. In Silico Characterization of BlaNDM-Harboring Plasmids in Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 1008905. [Google Scholar] [CrossRef]
- Ambrose, S.J.; Harmer, C.J.; Hall, R.M. Evolution and Typing of IncC Plasmids Contributing to Antibiotic Resistance in Gram-Negative Bacteria. Plasmid 2018, 99, 40–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, C.-W.; Chen, X.; Yao, T.-G.; Yu, J.-W.; Hu, W.-L.; Mao, X.; Wang, H.-N. Characterization of IncC Plasmids in Enterobacterales of Food-Producing Animals Originating from China. Front. Microbiol. 2020, 11, 580960. [Google Scholar] [CrossRef]
- Romina, P.-E.; Lucía, A.; Leticia, C.; Federica, F.; Pablo, Á.; Verónica, S.; Antonio, G.; Inés, B.; Rafael, V. In Vitro Effectiveness of Ceftazidime-Avibactam in Combination with Aztreonam on Carbapenemase-Producing Enterobacterales. J. Glob. Antimicrob. Resist. 2023, 35, 62–66. [Google Scholar] [CrossRef]
- Schürch, A.C.; Arredondo-Alonso, S.; Willems, R.J.L.; Goering, R.V. Whole Genome Sequencing Options for Bacterial Strain Typing and Epidemiologic Analysis Based on Single Nucleotide Polymorphism versus Gene-by-Gene–Based Approaches. Clin. Microbiol. Infect. 2018, 24, 350–354. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Liebert, C.A.; Hall, R.M.; Summers, A.O. Transposon Tn21, Flagship of the Floating Genome. Microbiol. Mol. Biol. Rev. 1999, 63, 507–522. [Google Scholar] [CrossRef] [PubMed]
- González, L.J.; Bahr, G.; Nakashige, T.G.; Nolan, E.M.; Bonomo, R.A.; Vila, A.J. Membrane Anchoring Stabilizes and Favors Secretion of New Delhi Metallo-β-Lactamase. Nat. Chem. Biol. 2016, 12, 516–522. [Google Scholar] [CrossRef] [PubMed]
- López, C.; Ayala, J.A.; Bonomo, R.A.; González, L.J.; Vila, A.J. Protein Determinants of Dissemination and Host Specificity of Metallo-β-Lactamases. Nat. Commun. 2019, 10, 3617. [Google Scholar] [CrossRef]
- Pasteran, F.; Gonzalez, L.J.; Albornoz, E.; Bahr, G.; Vila, A.J.; Corso, A. Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Carbapenemase Producers. J. Clin. Microbiol. 2016, 54, 640–649. [Google Scholar] [CrossRef]
- Yoon, H. Bacterial Outer Membrane Vesicles as a Delivery System for Virulence Regulation. J. Microbiol. Biotechnol. 2016, 26, 1343–1347. [Google Scholar] [CrossRef]
- Cordeiro, N.F.; Chabalgoity, J.A.; Yim, L.; Vignoli, R. Synthesis of Metallo-β-Lactamase VIM-2 Is Associated with a Fitness Reduction in Salmonella Enterica Serovar Typhimurium. Antimicrob. Agents Chemother. 2014, 58, 6528–6535. [Google Scholar] [CrossRef]
- Paul, D.; Bhattacharjee, A.; Bhattacharjee, D.; Dhar, D.; Maurya, A.P.; Chakravarty, A. Transcriptional Analysis of Bla NDM-1 and Copy Number Alteration under Carbapenem Stress. Antimicrob. Resist. Infect. Control 2017, 6, 26. [Google Scholar] [CrossRef]
- Hadziabdic, S.; Fischer, J.; Borowiak, M.; Malorny, B.; Juraschek, K.; Kaesbohrer, A.; Guerra, B.; Deneke, C.; Gonzalez-Zorn, B.; Szabo, I. The BlaNDM-1-Carrying IncA/C2 Plasmid Underlies Structural Alterations and Cointegrate Formation In Vivo. Antimicrob. Agents Chemother. 2019, 63, e00380-19. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Mei, C.-Y.; Wang, Z.-Y.; Zhong, F.-G.; Zhang, X.-X.; Lv, L.-C.; Lu, M.-J.; Wu, H.; Jiao, X. Characterization of an Extensively Drug-Resistant Salmonella enterica Serovar Indiana Strain Harboring Chromosomal BlaNDM-9 in China. Infect. Drug Resist. 2022, 15, 2015–2019. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, X.; Zeng, S.; Fu, L.; Xu, H.; Li, X. Emergence of a Salmonella Rissen ST469 Clinical Isolate Carrying BlaNDM-13 in China. Front. Cell. Infect. Microbiol. 2022, 12, 936649. [Google Scholar] [CrossRef] [PubMed]
- Beukers, A.G.; John, M.A.; Davis, R.; Lee, A.; van Hal, S.J. Hospital Outbreak of New Delhi Metallo-β-Lactamase Type-1 (NDM-1) in Salmonella Enterica with Inter-Species Plasmid Transmission. J. Hosp. Infect. 2021, 117, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Harmer, C.J.; Hall, R.M. The A to Z of A/C Plasmids. Plasmid 2015, 80, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Pazhani, G.P.; Chowdhury, G.; Ghosh, A.; Ramamurthy, T. Attributes of Carbapenemase Encoding Conjugative Plasmid PNDM-SAL from an Extensively Drug-Resistant Salmonella Enterica Serovar Senftenberg. Front. Microbiol. 2015, 6, 969. [Google Scholar] [CrossRef]
- Papa-Ezdra, R.; Cordeiro, N.F.; Di Pilato, V.; Chiarelli, A.; Pallecchi, L.; Garcia-Fulgueiras, V.; Vignoli, R. Description of Novel Resistance Islands Harbouring BlaCTX-M-2 in IncC Type 2 Plasmids. J. Glob. Antimicrob. Resist. 2021, 26, 37–41. [Google Scholar] [CrossRef]
- Harmer, C.J.; Hall, R.M. PRMH760, a Precursor of A/C2 Plasmids Carrying BlaCMY and BlaNDM Genes. Microb. Drug Resist. 2014, 20, 416–423. [Google Scholar] [CrossRef]
- Acman, M.; Wang, R.; van Dorp, L.; Shaw, L.P.; Wang, Q.; Luhmann, N.; Yin, Y.; Sun, S.; Chen, H.; Wang, H.; et al. Role of Mobile Genetic Elements in the Global Dissemination of the Carbapenem Resistance Gene BlaNDM. Nat. Commun. 2022, 13, 1131. [Google Scholar] [CrossRef]
- Hajra, D.; Nair, A.V.; Chakravortty, D. Decoding the Invasive Nature of a Tropical Pathogen of Concern: The Invasive Non-Typhoidal Salmonella Strains Causing Host-Restricted Extraintestinal Infections Worldwide. Microbiol. Res. 2023, 277, 127488. [Google Scholar] [CrossRef]
- Partridge, S.R.; Hall, R.M. The IS1111 Family Members IS4321 and IS5075 Have Subterminal Inverted Repeats and Target the Terminal Inverted Repeats of Tn21 Family Transposons. J. Bacteriol. 2003, 185, 6371–6384. [Google Scholar] [CrossRef]
- Tijet, N.; Andres, P.; Chung, C.; Lucero, C.; Low, D.E.; Galas, M.; Corso, A.; Petroni, A.; Melano, R.G. RmtD2, a New Allele of a 16S RRNA Methylase Gene, Has Been Present in Enterobacteriaceae Isolates from Argentina for More than a Decade. Antimicrob. Agents Chemother. 2011, 55, 904–909. [Google Scholar] [CrossRef]
- Thomas, G.R.; Corso, A.; Pasterán, F.; Shal, J.; Sosa, A.; Pillonetto, M.; de Souza Peral, R.T.; Hormazábal, J.C.; Araya, P.; Saavedra, S.Y.; et al. Increased Detection of Carbapenemase-Producing Enterobacterales Bacteria in Latin America and the Caribbean during the COVID-19 Pandemic. Emerg. Infect. Dis. 2022, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, L.; Cantón Spain, R.; Stefani, S.; Skov, R.; Glupczynski, Y.; Nordmann, P.; Wootton, M.; Miriagou, V.; Skov Simonsen, G. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance; EUCAST: Växjö, Sweden, 2017. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2023; Volume 33, ISBN 0956-4624. [Google Scholar]
- Shin, S.Y.; Kwon, K.C.; Park, J.W.; Song, J.H.; Ko, Y.H.; Sung, J.Y.; Shin, H.W.; Koo, S.H. Characteristics of Aac(6′)-Ib-Cr Gene in Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Chungnam Area. Ann. Lab. Med. 2009, 29, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Rozwandowicz, M.; Brouwer, M.S.M.; Mughini-Gras, L.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Mevius, D.J.; Hordijk, J. Successful Host Adaptation of IncK2 Plasmids. Front. Microbiol. 2019, 10, 2384. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Cerdeira, L.T.; Hawkey, J.; Méric, G.; Vezina, B.; Wyres, K.L.; Holt, K.E. Trycycler: Consensus Long-Read Assemblies for Bacterial Genomes. Genome Biol. 2021, 22, 266. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Vaser, R.; Šikić, M. Time- and Memory-Efficient Genome Assembly with Raven. Nat. Comput. Sci. 2021, 1, 332–336. [Google Scholar] [CrossRef]
- Wick, R.R.; Holt, K.E. Polypolish: Short-Read Polishing of Long-Read Bacterial Genome Assemblies. PLoS Comput. Biol. 2022, 18, e1009802. [Google Scholar] [CrossRef]
- Zhang, S.; den Bakker, H.C.; Li, S.; Chen, J.; Dinsmore, B.A.; Lane, C.; Lauer, A.C.; Fields, P.I.; Deng, X. SeqSero2: Rapid and Improved Salmonella Serotype Determination Using Whole-Genome Sequencing Data. Appl. Env. Microbiol. 2019, 85, e01746-19. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An Integrated Platform for Visualization and Analysis of High-Throughput Sequence-Based Experimental Data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Deatherage, D.E.; Barrick, J.E. Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using Breseq. Methods Mol. Biol. 2014, 1151, 165–188. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for Inferring Very Large Phylogenies by Using the Neighbor-Joining Method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
E. cloacae Eclo_NDM | S. enteritidis SEn_1 | S. enteritidis SEn_2 | E. coli TcEclo_NDM | E. coli TcSEn_2 | E. coli J53-2 | |
---|---|---|---|---|---|---|
Ampicillin-Sulbactam | - | ≤2 (S) | ≥32 (R) | ≥32 (R) | ≥32 (R) | ≤2 (S) |
Piperacillin-Tazobactam | ≥128 (R) | ≤4 (S) | 64 (R) | ≥128 (R) | ≥128 (R) | ≤4 (S) |
Ceftazidime | ≥64 (R) | 0.25 (S) | ≥64 (R) | ≥64 (R) | ≥64 (R) | 0.5 (S) |
Ceftazidime-Tazobactam | ≥16 (R) | ≤0.12 (S) | ≥16 (R) | ≥16 (R) | ≥16 (R) | ≤0.12 (S) |
Ceftolozane-Tazobactam | ≥32 (R) | ≤0.25 (S) | 16 (R) | ≥32 (R) | ≥32 (R) | ≤0.25 (S) |
Cefepime | ≥32 (R) | ≤0.12 (S) | 16 (R) | 0.5 (S) | 0.5 (S) | ≤0.12 (S) |
Aztreonam | ≥64 (R) | ≤1 (S) | ≤1 (S) | ≤1 (S) | ≤1 (S) | ≤1 (S) |
Ertapenem | ≥8 (R) | ≤0.12 (S) | ≥8 (R) | ≥8 (R) | ≥8 (R) | ≤0.12 (S) |
Imipenem | 8 (R) | ≤0.25 (S) | 8 (R) | 8 (R) | 4 (R) | ≤0.25 (S) |
Meropenem | ≥16 (R) | ≤0.25 (S) | ≥16 (R) | 8 (R) | 8 (R) | ≤0.25 (S) |
Amikacin | ≤1 (S) | ≤1 (S) | ≤1 (S) | ≤1 (S) | ≤1 (S) | ≤1 (S) |
Ciprofloxacin | ≥4 (R) | ≤0.06 (S) | 0.25 (I) | 0.5 (I) | 0.5 (I) | ≤0.06 (S) |
Eclo_NDM | SEn_T1 | SEn_T2 | |
---|---|---|---|
AMR genes | aadA2, aph(3’)-Ia, sul1, sul2, dfrA12, qnrA1, qacE∆1, catA1, cmlA1, blaNDM-1fosA, blaACT-7, | aac(6’)-Iaa | aadA2, aph(3’)-Ia, sul1, sul2, dfrA12, qnrA1, qacE∆1, catA1, cmlA1, blaNDM-1aac(6’)-Iaa, |
Plasmid incompatibility groups | IncC, IncFIB, IncR | IncFIB | IncC, IncFIB |
MLST | ST146 | ST11 | ST11 |
wgMLST | NA | ST733989 | ST733988 |
pMLST | IncFIB:ST NT IncC: ST3,9 * | IncFIB: ST_22 | IncFIB: ST_22 IncC: ST3,9 * |
Serovar | NA | Enteritidis | Enteritidis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordeiro, N.F.; Papa-Ezdra, R.; Traglia, G.; Bado, I.; García-Fulgueiras, V.; Cortinas, M.N.; Caiata, L.; López-Vega, M.; Otero, A.; López, M.; et al. First Report in the Americas of S. enterica Var. Enteritidis Carrying blaNDM-1 in a Putatively New Sub-Lineage of IncC2 Plasmids. Antibiotics 2025, 14, 620. https://doi.org/10.3390/antibiotics14060620
Cordeiro NF, Papa-Ezdra R, Traglia G, Bado I, García-Fulgueiras V, Cortinas MN, Caiata L, López-Vega M, Otero A, López M, et al. First Report in the Americas of S. enterica Var. Enteritidis Carrying blaNDM-1 in a Putatively New Sub-Lineage of IncC2 Plasmids. Antibiotics. 2025; 14(6):620. https://doi.org/10.3390/antibiotics14060620
Chicago/Turabian StyleCordeiro, Nicolás F., Romina Papa-Ezdra, Germán Traglia, Inés Bado, Virginia García-Fulgueiras, María N. Cortinas, Leticia Caiata, Mariana López-Vega, Ana Otero, Martín López, and et al. 2025. "First Report in the Americas of S. enterica Var. Enteritidis Carrying blaNDM-1 in a Putatively New Sub-Lineage of IncC2 Plasmids" Antibiotics 14, no. 6: 620. https://doi.org/10.3390/antibiotics14060620
APA StyleCordeiro, N. F., Papa-Ezdra, R., Traglia, G., Bado, I., García-Fulgueiras, V., Cortinas, M. N., Caiata, L., López-Vega, M., Otero, A., López, M., Hitateguy, P., Mogdasy, C., & Vignoli, R. (2025). First Report in the Americas of S. enterica Var. Enteritidis Carrying blaNDM-1 in a Putatively New Sub-Lineage of IncC2 Plasmids. Antibiotics, 14(6), 620. https://doi.org/10.3390/antibiotics14060620