Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (218)

Search Parameters:
Keywords = genetically engineered mouse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6395 KiB  
Article
Investigation of Novel Therapeutic Targets for Rheumatoid Arthritis Through Human Plasma Proteome
by Hong Wang, Chengyi Huang, Kangkang Huang, Tingkui Wu and Hao Liu
Biomedicines 2025, 13(8), 1841; https://doi.org/10.3390/biomedicines13081841 - 29 Jul 2025
Viewed by 216
Abstract
Background: Rheumatoid arthritis (RA) is an autoimmune disease that remains incurable. An increasing number of proteomic genome-wide association studies (GWASs) are emerging, offering immense potential for identifying novel therapeutic targets for diseases. This study aims to identify potential therapeutic targets for RA [...] Read more.
Background: Rheumatoid arthritis (RA) is an autoimmune disease that remains incurable. An increasing number of proteomic genome-wide association studies (GWASs) are emerging, offering immense potential for identifying novel therapeutic targets for diseases. This study aims to identify potential therapeutic targets for RA based on human plasma proteome. Methods: Protein quantitative trait loci were extracted and integrated from eight large-scale proteomic GWASs. Proteome-wide Mendelian randomization (Pro-MR) was performed to prioritize proteins causally associated with RA. Further validation of the reliability and stratification of prioritized proteins was performed using MR meta-analysis, colocalization, and transcriptome-wide summary-data-based MR. Subsequently, prioritized proteins were characterized through protein–protein interaction and enrichment analyses, pleiotropy assessment, genetically engineered mouse models, cell-type-specific expression analysis, and druggability evaluation. Phenotypic expansion analyses were also conducted to explore the effects of the prioritized proteins on phenotypes such as endocrine disorders, cardiovascular diseases, and other immune-related diseases. Results: Pro-MR prioritized 32 unique proteins associated with RA risk. After validation, prioritized proteins were stratified into four reliability tiers. Prioritized proteins showed interactions with established RA drug targets and were enriched in an immune-related functional profile. Four trans-associated proteins exhibited vertical or horizontal pleiotropy with specific genes or proteins. Genetically engineered mouse models for 18 prioritized protein-coding genes displayed abnormal immune phenotypes. Single-cell RNA sequencing data were used to validate the enriched expression of several prioritized proteins in specific synovial cell types. Nine prioritized proteins were identified as targets of existing drugs in clinical trials or were already approved. Further phenome-wide MR and mediation analyses revealed the effects and potential mediating roles of some prioritized proteins on other phenotypes. Conclusions: This study identified 32 plasma proteins as potential therapeutic targets for RA, expanding the prospects for drug discovery and deepening insights into RA pathogenesis. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

23 pages, 3633 KiB  
Article
Characterization of DNA Methylation Episignatures for Radon-Induced Lung Cancer
by Ziyan Yan, Huixi Chen, Yuhao Liu, Lin Zhou, Jiaojiao Zhu, Yifan Hou, Xinyu Zhang, Zhongmin Chen, Yilong Wang, Ping-Kun Zhou and Yongqing Gu
Int. J. Mol. Sci. 2025, 26(14), 6873; https://doi.org/10.3390/ijms26146873 - 17 Jul 2025
Viewed by 196
Abstract
Radon (Rn) exposure has a strong association with lung cancer risk and is influenced by epigenetic modifications. To investigate the characterization of DNA methylation (DNAm) episignatures for radon-induced lung cancer, we detected the specific changes in DNAm in blood and lung tissues using [...] Read more.
Radon (Rn) exposure has a strong association with lung cancer risk and is influenced by epigenetic modifications. To investigate the characterization of DNA methylation (DNAm) episignatures for radon-induced lung cancer, we detected the specific changes in DNAm in blood and lung tissues using reduced representation bisulfite sequencing (RRBS). We identified the differentially methylated regions (DMRs) induced by radon exposure. The bioinformatics analysis of the DMR-mapped genes revealed that pathways in cancer were affected by radon exposure. Among them, the DNAm episignatures of MAPK10, PLCG1, PLCβ3 and PIK3R2 were repeated between lung tissue and blood, and validated by the MassArray. In addition, radon exposure promoted lung cancer development in the genetic engineering mouse model (GEMM), accompanied by decreased MAPK10 and increased PLCG1, PLCβ3, and PIK3R2 with mRNA and protein levels. Conclusively, radon exposure significantly changes the genomic DNAm patterns in lung tissue and blood. The DNAm episignatures of MAPK10, PLCG1, PLCβ3 and PIK3R2 have a significant influence on radon-induced lung cancer. This brings a new perspective to understanding the pathways involved in radon-induced lung cancer and offers potential targets for developing blood-based biomarkers and epigenetic therapeutics. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Surface Display of Avian H5 and H9 Hemagglutinin Antigens on Non-Genetically Modified Lactobacillus Cells for Bivalent Oral AIV Vaccine Development
by Fuyi Liu, Jingbo Chang, Jingqi Huang, Yuping Liao, Xiaonan Deng, Tingting Guo, Jian Kong and Wentao Kong
Microorganisms 2025, 13(7), 1649; https://doi.org/10.3390/microorganisms13071649 - 11 Jul 2025
Viewed by 304
Abstract
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus [...] Read more.
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus K313, expressed in Escherichia coli, and purified. Wild-type Lactobacillus johnsonii H31, isolated from chicken intestine, served as a delivery vehicle by adsorbing and stably displaying the HA1 proteins on its surface. This approach eliminates the need for bacterial engineering while utilizing lactobacilli’s natural capacity to protect surface-displayed antigens, as evidenced by HA1’s protease resistance. Mouse immunization studies demonstrated induction of strong systemic IgG and mucosal IgA responses against both H5N1 and H9N2 HA1. The system offers several advantages, including safety through non-GMO probiotics, potential for multivalent vaccine expansion, and intrinsic antigen protection by lactobacilli. These findings suggest this platform could enable development of cost-effective, multivalent AIV vaccines. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

37 pages, 1459 KiB  
Review
Current Landscape of Preclinical Models for Pediatric Gliomas: Clinical Implications and Future Directions
by Syed M. Faisal, Monika Yadav, Garrett R. Gibson, Adora T. Klinestiver, Ryan M. Sorenson, Evan Cantor, Maria Ghishan, John R. Prensner, Andrea T. Franson, Kevin F. Ginn, Carl Koschmann and Viveka Nand Yadav
Cancers 2025, 17(13), 2221; https://doi.org/10.3390/cancers17132221 - 2 Jul 2025
Viewed by 1249
Abstract
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and [...] Read more.
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and TP53 inactivation, all of which contribute to tumor biology and therapeutic resistance. Developing physiologically relevant preclinical models that replicate both tumor biology and the tumor microenvironment (TME) is critical for advancing effective treatments. This review highlights recent progress in in vitro, ex vivo, and in vivo models, including patient-derived brain organoids, genetically engineered mouse models (GEMMs), and region-specific midline organoids incorporating SHH, BMP, and FGF2/8/19 signaling to model pontine gliomas. Key genetic alterations can now be introduced using lipofectamine-mediated transfection, PiggyBac plasmid systems, and CRISPR-Cas9, allowing the precise study of tumor initiation, progression, and therapy resistance. These models enable the investigation of TME interactions, including immune responses, neuronal infiltration, and therapeutic vulnerabilities. Future advancements involve developing immune-competent organoids, integrating vascularized networks, and applying multi-omics platforms like single-cell RNA sequencing and spatial transcriptomics to dissect tumor heterogeneity and lineage-specific vulnerabilities. These innovative approaches aim to enhance drug screening, identify new therapeutic targets, and accelerate personalized treatments for pediatric gliomas. Full article
Show Figures

Figure 1

51 pages, 2325 KiB  
Review
Beyond Transgenic Mice: Emerging Models and Translational Strategies in Alzheimer’s Disease
by Paula Alexandra Lopes and José L. Guil-Guerrero
Int. J. Mol. Sci. 2025, 26(12), 5541; https://doi.org/10.3390/ijms26125541 - 10 Jun 2025
Viewed by 893
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia and a growing public health concern worldwide. Despite decades of research, effective disease-modifying treatments remain elusive, partly due to limitations in current experimental models. The purpose of this review is to critically assess and [...] Read more.
Alzheimer’s disease (AD) is a leading cause of dementia and a growing public health concern worldwide. Despite decades of research, effective disease-modifying treatments remain elusive, partly due to limitations in current experimental models. The purpose of this review is to critically assess and compare existing murine and alternative models of AD to identify key strengths, limitations, and future directions for model development that can enhance translational relevance and therapeutic discovery. Traditional transgenic mouse models have advanced the understanding of amyloid-beta and tau pathologies, but often fail to capture the complexity of sporadic, late-onset AD. In response, alternative models—including zebrafish, Drosophila melanogaster, Caenorhabditis elegans, non-human primates, and human brain organoids—are gaining traction due to their complementary insights and diverse experimental advantages. This review also discusses innovations in genetic engineering, neuroimaging, computational modelling, and drug repurposing that are reshaping the landscape of AD research. By integrating these diverse approaches, the review advocates for a multi-model, multidisciplinary strategy to improve the predictive power, accelerate clinical translation, and inform personalised therapeutic interventions. Ethical considerations and equitable access to diagnostics and emerging treatments are also emphasised. Ultimately, this work aims to support the development of more accurate, effective, and human-relevant models to combat AD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

24 pages, 1699 KiB  
Review
From Genes to Environment: Elucidating Pancreatic Carcinogenesis Through Genetically Engineered and Risk Factor-Integrated Mouse Models
by Bin Yan, Anne-Kristin Fritsche, Erik Haußner, Tanvi Vikrant Inamdar, Helmut Laumen, Michael Boettcher, Martin Gericke, Patrick Michl and Jonas Rosendahl
Cancers 2025, 17(10), 1676; https://doi.org/10.3390/cancers17101676 - 15 May 2025
Viewed by 904
Abstract
Pancreatic cancer is characterized by late diagnosis, therapy resistance, and poor prognosis, necessitating the exploration of early carcinogenesis and prevention methods. Preclinical mouse models have evolved from cell line-based to human tumor tissue- or organoid-derived xenografts, now to humanized mouse models and genetically [...] Read more.
Pancreatic cancer is characterized by late diagnosis, therapy resistance, and poor prognosis, necessitating the exploration of early carcinogenesis and prevention methods. Preclinical mouse models have evolved from cell line-based to human tumor tissue- or organoid-derived xenografts, now to humanized mouse models and genetically engineered mouse models (GEMMs). GEMMs, primarily driven by oncogenic Kras mutations and tumor suppressor gene alterations, offer a realistic platform for investigating pancreatic cancer initiation, progression, and metastasis. The incorporation of inducible somatic mutations and CRISPR-Cas9 screening methods has expanded their utility. To better recapitulate tumor initiation triggered by inflammatory cues, common pancreatic risk factors are being integrated into model designs. This approach aims to decipher the role of environmental factors as secondary or parallel triggers of tumor initiation alongside oncogenic burdens. Emerging models exploring pancreatitis, obesity, diabetes, and other risk factors offer significant translational potential. This review describes current mouse models for studying pancreatic carcinogenesis, their combination with inflammatory factors, and their utility in evaluating pathogenesis, providing guidance for selecting the most suitable models for pancreatic cancer research. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Figure 1

27 pages, 1566 KiB  
Review
Facing the Challenge to Mimic Breast Cancer Heterogeneity: Established and Emerging Experimental Preclinical Models Integrated with Omics Technologies
by Alessia Ciringione and Federica Rizzi
Int. J. Mol. Sci. 2025, 26(10), 4572; https://doi.org/10.3390/ijms26104572 - 10 May 2025
Viewed by 1209
Abstract
Breast cancer (BC) is among the most common neoplasms globally and is the leading cause of cancer-related mortality in women. Despite significant advancements in prevention, early diagnosis, and treatment strategies made over the past two decades, breast cancer continues to pose a significant [...] Read more.
Breast cancer (BC) is among the most common neoplasms globally and is the leading cause of cancer-related mortality in women. Despite significant advancements in prevention, early diagnosis, and treatment strategies made over the past two decades, breast cancer continues to pose a significant global health challenge. One of the major obstacles in the clinical management of breast cancer patients is the high intertumoral and intratumoral heterogeneity that influences disease progression and therapeutic outcomes. The inability of preclinical experimental models to replicate this diversity has hindered the comprehensive understanding of BC pathogenesis and the development of new therapeutic strategies. An ideal experimental model must recapitulate every aspect of human BC to maintain the highest predictive validity. Therefore, a thorough understanding of each model’s inherent characteristics and limitations is essential to bridging the gap between basic research and translational medicine. In this context, omics technologies serve as powerful tools for establishing comparisons between experimental models and human tumors, which may help address BC heterogeneity and vulnerabilities. This review examines the BC models currently used in preclinical research, including cell lines, patient-derived organoids (PDOs), organ-on-chip technologies, carcinogen-induced mouse models, genetically engineered mouse models (GEMMs), and xenograft mouse models. We emphasize the advantages and disadvantages of each model and outline the most important applications of omics techniques to aid researchers in selecting the most relevant model to address their specific research questions. Full article
(This article belongs to the Special Issue Breast Cancer: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

20 pages, 3962 KiB  
Article
Genetic Analysis of Choroideremia-Related Rab Escort Proteins
by Zhuo Xing, Fuguo Wu, Eduardo Cortes-Gomez, Annie Pao, Lingqiu Gao, Avrium Douglas, Yichen Li, Joseph A. Spernyak, G. William Wong, Prashant K. Singh, Jianmin Wang, Song Liu, Yasmin Thanavala, Ian M. MacDonald, Xiuqian Mu and Y. Eugene Yu
Int. J. Mol. Sci. 2025, 26(8), 3636; https://doi.org/10.3390/ijms26083636 - 11 Apr 2025
Viewed by 696
Abstract
Choroideremia is a rare X-linked recessive retinal disorder characterized by progressive vision loss caused by retinal degeneration resulting from mutations in the CHM gene, which encodes Rab escort protein 1 (REP-1). In humans and mice, the Rab escort protein (REP) family consists of [...] Read more.
Choroideremia is a rare X-linked recessive retinal disorder characterized by progressive vision loss caused by retinal degeneration resulting from mutations in the CHM gene, which encodes Rab escort protein 1 (REP-1). In humans and mice, the Rab escort protein (REP) family consists of two members, REP-1 and REP-2, with REP-2 hypothesized to compensate for REP-1 deficiency in tissues outside the eye in choroideremia. In this study, we conducted a systematic mutational analysis of the mouse orthologs of REP-1 and REP-2. Blood analyses revealed metabolic abnormalities in the mutant mice deficient for REP-1, resembling the systemic metabolic disturbances observed in individuals with choroideremia, such as altered lipid and hemoglobin metabolism. We also observed an elevation in systemic inflammatory biomarkers in these mutant mice. Interestingly, these systemic abnormalities emerged before retinal degeneration became detectable in REP-1-deficient mice. Transcriptomic analysis of retinas isolated from REP-1 deficient mice revealed enrichment of proinflammatory signaling pathways. These results suggest important similarities between choroideremia and some forms of retinitis pigmentosa. While engineered loss of REP-2 alone caused no detectable phenotypic changes, dual deficiency in REP-1 and REP-2 resulted in lethality under both in vivo and in vitro conditions. Our findings offer novel insights into REPs and deepen our understanding of choroideremia, which may contribute to the development of new treatments for this genetic condition. Full article
(This article belongs to the Special Issue Exploring Rare Diseases: Genetic, Genomic and Metabolomic Advances)
Show Figures

Figure 1

16 pages, 4524 KiB  
Article
Targeting the TLK1-MK5 Axis Suppresses Prostate Cancer Metastasis
by Damilola Olatunde, Omar Coronel Franco, Matthias Gaestel and Arrigo De Benedetti
Cancers 2025, 17(7), 1187; https://doi.org/10.3390/cancers17071187 - 31 Mar 2025
Viewed by 629
Abstract
Background: The spread of metastatic prostate cancer (PCa) is responsible for the majority of PCa-related deaths, yet the precise mechanisms driving this process remain unclear. We have identified a novel interaction between two distinct promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein [...] Read more.
Background: The spread of metastatic prostate cancer (PCa) is responsible for the majority of PCa-related deaths, yet the precise mechanisms driving this process remain unclear. We have identified a novel interaction between two distinct promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), which triggers a signaling cascade that promotes metastasis. In PCa, the TLK1-MK5 pathway may play a critical role, as androgen deprivation therapy (ADT) has been linked to increased expression of both TLK1 and MK5 in metastatic patients linked with poor survival. Objectives: In this study, we directly examined the effects of disrupting the TLK1>MK5 axis on the motility, invasiveness, and metastatic potential of PCa cells. Methods: To establish this, we used both pharmacologic and systemic approaches with genetically engineered mouse models and the use of IVIS. Results: The results of targeting the TLK1>MK5 axis support the notion that this axis is essential for the spread of metastatic cells and the development of age-related metastases. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

18 pages, 2327 KiB  
Article
Combined Omipalisib and MAPK Inhibition Suppress PDAC Growth
by Bailey A. Bye, Jarrid L. Jack, Alexandra Pierce, Richard McKinnon Walsh, Austin E. Eades, Prabhakar Chalise, Appolinaire Olou and Michael N. VanSaun
Cancers 2025, 17(7), 1152; https://doi.org/10.3390/cancers17071152 - 29 Mar 2025
Viewed by 789
Abstract
Background: Oncogenic KRAS mutations are nearly ubiquitous in pancreatic ductal adenocarcinoma (PDAC), yet therapeutic attempts to target KRAS, as well as downstream MAPK pathway effectors, have shown limited clinical success. While KRAS canonically drives MAPK signaling via RAF-MEK-ERK, it is also known [...] Read more.
Background: Oncogenic KRAS mutations are nearly ubiquitous in pancreatic ductal adenocarcinoma (PDAC), yet therapeutic attempts to target KRAS, as well as downstream MAPK pathway effectors, have shown limited clinical success. While KRAS canonically drives MAPK signaling via RAF-MEK-ERK, it is also known to play a role in PI3K-AKT signaling. Methods: Our therapeutic study targeted the PI3K pathway with the drug Omipalisib (p110α/β/δ/γ and mTORC1/2 inhibitor) in combination with two different MAPK pathway inhibitors: Trametinib (MEK1/2 inhibitor) or SHP099-HCL (SHP099; SHP2 inhibitor). Western blot analysis demonstrated that the application of Trametinib or SHP099 alone selectively blocked ERK phosphorylation (pERK) but failed to suppress phosphorylated AKT (pAKT). Conversely, Omipalisib alone successfully inhibited pAKT but failed to suppress pERK. Therefore, we hypothesized that a combination therapeutic comprised of Omipalisib with either Trametinib or SHP099 would inhibit two prominent mitogenic pathways, MAPK and PI3K-AKT, and effectively suppress PDAC growth. Results: In vitro studies demonstrated that, in several cell lines, both Omipalisib/Trametinib and Omipalisib/SHP099 combination therapeutic strategies were more effective than treatment with each drug individually at reducing proliferation, colony formation, and cell migration compared to vehicle controls. In vivo oral administration of combined Omipalisib/Trametinib treatment was significantly more effective than Omipalisib/SHP099 in reducing implanted tumor growth, and the Omipalisib/Trametinib treatment more effectively reduced tumor progression and prolonged survival in an aggressive genetically engineered mouse model of PDAC than either Omipalisib or Trametinib alone. Conclusions: Altogether, our data support a rationale for a dual treatment strategy targeting both PI3K and MAPK pathways in pancreatic cancers. Full article
Show Figures

Figure 1

13 pages, 4445 KiB  
Article
Granulocyte-Macrophage Colony Stimulating Factor Receptor Contributes to Plexiform Neurofibroma Initiation
by Jay Pundavela, Ashley Hall, Samantha Anne Dinglasan, Kwangmin Choi, Tilat A. Rizvi, Bruce C. Trapnell, Jianqiang Wu and Nancy Ratner
Cancers 2025, 17(5), 905; https://doi.org/10.3390/cancers17050905 - 6 Mar 2025
Viewed by 807
Abstract
Plexiform neurofibroma (PNF) is an immune cell-rich peripheral nerve sheath tumor that develops primarily in individuals with Neurofibromatosis Type 1 (NF1). Granulocyte-macrophage colony stimulating factor receptor-β (GM-CSFR-βc) is a shared component of receptors for the cytokines GM-CSF, IL-3, and IL-5, ligands [...] Read more.
Plexiform neurofibroma (PNF) is an immune cell-rich peripheral nerve sheath tumor that develops primarily in individuals with Neurofibromatosis Type 1 (NF1). Granulocyte-macrophage colony stimulating factor receptor-β (GM-CSFR-βc) is a shared component of receptors for the cytokines GM-CSF, IL-3, and IL-5, ligands with immunomodulatory and tumor promoting roles. In the present study, we use genetically engineered mouse model of neurofibroma. We identified the expression of GM-CSFR-βc and GM-CSFR-α on PNF cells and on macrophages and dendritic cells in the PNF, using the Nf1f/f; DhhCre mouse model of neurofibroma formation. Genetic deletion of GM-CSFR-βc in this model reduced the number of PNFs, which was associated with decreased numbers of tumor-associated Iba1+ macrophages and CD11c+ dendritic cells (DC), while loss of GM-CSFR-α had no effect. Deletion of GM-CSFR-α or GM-CSFR-βc did not improve mouse survival or the structure of Remak bundles in peripheral nerves. Proteome analysis of tumor lysates showed altered levels of numerous cytokines after receptor loss, suggesting that the compensatory effects of other cyto/chemokines maintain a proinflammatory environment promoting neurofibroma. Thus, GM-CSFR-βc signaling contributes modestly to neurofibroma formation, apparently independently of its ligand GM-CSF. Full article
(This article belongs to the Special Issue Neurofibromatosis Type 1 (NF1) Related Tumors)
Show Figures

Figure 1

16 pages, 3530 KiB  
Article
Attenuation of Chikungunya Virus by a Single Amino Acid Substitution in the nsP1 Component of a Non-Structural Polyprotein
by John Chamberlain, Stuart D. Dowall, Jack Smith, Geoff Pearson, Victoria Graham, John Raynes and Roger Hewson
Viruses 2025, 17(2), 281; https://doi.org/10.3390/v17020281 - 18 Feb 2025
Viewed by 770
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that, since its re-emergence in 2004, has become recognised as a major public health concern throughout many tropical and sub-tropical regions of the world. Amongst the insights gained from studies on other alphaviruses, several key determinants [...] Read more.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that, since its re-emergence in 2004, has become recognised as a major public health concern throughout many tropical and sub-tropical regions of the world. Amongst the insights gained from studies on other alphaviruses, several key determinants of virulence have been identified, including one present at the P3 position in the nsP1/nsP2 cleavage domain of the S.A.AR86 Sindbis (SINV) strain. This strain is associated with neurovirulence in adult mice; however, when a threonine-to-isoleucine substitution is engineered at this P3 position, an attenuated phenotype results. A reverse genetics system was developed to evaluate the phenotype that resulted from the substitution of alanine, present at the P3 position in the wild-type CHIKV clone, with valine. The A533V-mutant CHIKV induced milder disease symptoms in the C57BL/6 mouse model than the wild-type virus, in terms of severity of inflammation, length of viraemic period, and histological changes. Furthermore, the induction of type I IFN occurred more rapidly in both CHIKV-infected cell cultures and the mouse model with the mutant CHIKV. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research, 2nd Edition)
Show Figures

Figure 1

31 pages, 1209 KiB  
Review
Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs
by Elena Bigliardi, Anala V. Shetty, Walter C. Low and Clifford J. Steer
Genes 2025, 16(2), 215; https://doi.org/10.3390/genes16020215 - 12 Feb 2025
Viewed by 2342
Abstract
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in [...] Read more.
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in the donor animal has been investigated as a possible option. However, the use of exogenous tissue presents another host of obstacles, particularly regarding organ rejection. Given these limitations, interspecies blastocyst complementation in combination with precise gene knockouts presents a unique, promising pathway for the transplant organ shortage. In recent years, great advancements have been made in the field, with encouraging results in producing a donor-derived organ in a chimeric host. That said, one of the major barriers to successful interspecies chimerism is the mismatch in the developmental stages of the donor and the host cells in the chimeric embryo. Another major barrier to successful chimerism is the mismatch in the developmental speeds between the donor and host cells in the chimeric embryos. This review outlines 19 studies in which blastocyst complementation was used to generate solid organs. In particular, the genesis of the liver, lung, kidney, pancreas, heart, thyroid, thymus and parathyroids was investigated. Of the 19 studies, 7 included an interspecies model. Of the 7, one was completed using human donor cells in a pig host, and all others were rat–mouse chimeras. While very promising results have been demonstrated, with great advancements in the field, several challenges continue to persist. In particular, successful chimerism, organ generation and donor contribution, synchronized donor–host development, as well as ethical concerns regarding human–animal chimeras remain important aspects that will need to be addressed in future research. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2281 KiB  
Article
CD40 Ligand Potentiates Immunogenecity of Mycoplasma pneumoniae Subunit Vaccine Candidate in a Murine Model
by Jinqi Shu, Gaojian Li, Jianhong Shu, Huapeng Feng and Yulong He
Curr. Issues Mol. Biol. 2025, 47(1), 37; https://doi.org/10.3390/cimb47010037 - 9 Jan 2025
Viewed by 1076
Abstract
Mycoplasma hyopneumoniae (Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the [...] Read more.
Mycoplasma hyopneumoniae (Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the cellular and humoral immune responses to vaccines. In this study, the CD40L peptide was fused to the C-terminus of the chimeric P97R1P46P42 protein by genetic engineering using the pFastBac Dual vector. The recombinant chimeric protein P97R1P46P42 and its fusion P97R1P46P42-CD40L were expressed in Sf9 cells and purified. Mice were immunized with P97R1P46P42 or its fusion protein. Seppic ISA 201 emulsified protein, conventional Mhp vaccine and PBS control groups were included. Immunogenecity was assessed by specific IgG antibody response, splenic lymphocyte proliferation, and cytokine IL-4 and IFN-γ levels. We found that CD40L fusion significantly enhanced specific antibody response, lymphocyte proliferation and IL-4 level in the immunized mouse sera as compared to the P97R1P46P42 or conventional vaccine group. This study provides clear evidence that CD40L potentiates the humoral and cellular immune responses to the Mhp chimeric protein P97R1P46P42 in the mouse model. This CD40L-fused chimeric protein could be a MPS subunit vaccine candidate to be tested for its efficacy in pigs in response to challenges with pathogenic Mycoplasma hyopneumoniae strain(s). Full article
Show Figures

Figure 1

30 pages, 1346 KiB  
Review
Preclinical Models for Functional Precision Lung Cancer Research
by Jie-Zeng Yu, Zsofia Kiss, Weijie Ma, Ruqiang Liang and Tianhong Li
Cancers 2025, 17(1), 22; https://doi.org/10.3390/cancers17010022 - 25 Dec 2024
Cited by 1 | Viewed by 3347
Abstract
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted [...] Read more.
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody–drug conjugates, and emerging investigational treatments. While traditional human lung cancer cell lines offer a basic framework for cancer research, they often lack the tumor heterogeneity and intricate tumor–stromal interactions necessary to accurately predict patient-specific clinical outcomes. Patient-derived xenografts (PDXs), however, retain the original tumor’s histopathology and genetic features, providing a more reliable model for predicting responses to systemic therapeutics, especially molecularly targeted therapies. For studying immunotherapies and antibody–drug conjugates, humanized PDX mouse models, syngeneic mouse models, and genetically engineered mouse models (GEMMs) are increasingly utilized. Despite their value, these in vivo models are costly, labor-intensive, and time-consuming. Recently, patient-derived lung cancer organoids (LCOs) have emerged as a promising in vitro tool for functional precision oncology studies. These LCOs demonstrate high success rates in growth and maintenance, accurately represent the histology and genomics of the original tumors and exhibit strong correlations with clinical treatment responses. Further supported by advancements in imaging, spatial and single-cell transcriptomics, proteomics, and artificial intelligence, these preclinical models are reshaping the landscape of drug development and functional precision lung cancer research. This integrated approach holds the potential to deliver increasingly accurate, personalized treatment strategies, ultimately enhancing patient outcomes in lung cancer. Full article
Show Figures

Figure 1

Back to TopTop