Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,856)

Search Parameters:
Keywords = gene reactivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5615 KB  
Article
The Difference in the Mechanisms of the TCA Cycle, Organic Acid Metabolism and Secretion of Rapeseed Roots Responding to Saline and Alkaline Stresses
by Chenhao Zhang, Lupeng Sun, Dianjun Chen, Xiaowei Zhu and Fenghua Zhang
Agronomy 2026, 16(2), 189; https://doi.org/10.3390/agronomy16020189 (registering DOI) - 13 Jan 2026
Abstract
Currently, the differences in the responses of the organic acid metabolism in rapeseed (Brassica napus L.) roots to saline and alkaline stresses are still unknown. To clarify the differences, different saline (100 (LS) and 200 (HS) mmol/L NaCl) and alkaline (20 (LA) [...] Read more.
Currently, the differences in the responses of the organic acid metabolism in rapeseed (Brassica napus L.) roots to saline and alkaline stresses are still unknown. To clarify the differences, different saline (100 (LS) and 200 (HS) mmol/L NaCl) and alkaline (20 (LA) and 40 (HA) mmol/L Na2CO3) treatments were applied to rapeseed. Then, targeted metabolomics was used to quantitatively analyze the changes in organic acid metabolism in the root system. The results showed that compared with the control group without stress (CK), 21, 18, 27, and 20 differentially accumulated organic acid metabolites were detected in the rapeseed roots under LS, HS, LA, and HA, respectively. In addition, 26, 6, 34, and 14 differentially accumulated organic acids were detected in the rapeseed root exudates under LS, HS, LA, and HA, respectively. Based on the activities of key enzymes related to the tricarboxylic acid cycle (TCA), antioxidant enzyme activities, organic acid metabolism, and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis in rapeseed roots, rapeseed mainly resisted saline and alkaline stresses by increasing organic acid synthesis and scavenging reactive oxygen species. Specifically, rapeseed resisted saline stress mainly by increasing the secretion of TCA cycle-related organic acids such as succinic acid, L-malic acid, fumaric acid, and cis-aconitic acid. In addition to secreting organic acids, rapeseed also resisted alkaline stress by increasing the secretion of phenolic acids such as 4-hydroxybenzoic acid, ferulic acid, and 4-coumaric acid. Notably, the number of secreted organic acid types and the increase in organic acid content under alkaline stress were higher than those under saline stress. The results of this study provide an important basis for the breeding of saline and alkaline stress-tolerant rapeseed varieties. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 2282 KB  
Article
Fisetin Suppresses the Proliferative and Migratory Behavior of HeLa Cells by Modulating Aberrant Epigenetic Marks (Writers and Erasers)
by Nazia Afroze, Reham I. Alagal, Lujain A. Almousa, Ritu Raina, Prathap Bava, Lizna Mohamed Ali, Tarique Noorul Hasan and Arif Hussain
Epigenomes 2026, 10(1), 3; https://doi.org/10.3390/epigenomes10010003 - 12 Jan 2026
Abstract
Purpose: The reversible deviant in epigenomic modulations is the highlight of developing new anti-cancer drugs, necessitating the use of fisetin as an epigenetic modifier in the study. Methods: In silico and molecular studies were performed to analyze the modulatory effect of fisetin on [...] Read more.
Purpose: The reversible deviant in epigenomic modulations is the highlight of developing new anti-cancer drugs, necessitating the use of fisetin as an epigenetic modifier in the study. Methods: In silico and molecular studies were performed to analyze the modulatory effect of fisetin on various writers and erasers. Further, whole genome DNA methylation sequencing and expression studies were performed. Global DNA methylation-LINE 1 kit was used to check global DNA methylation. Additionally, the effect of fisetin on migration was evaluated by colony, scratch, and invasion assays and qPCR and protein expression studies of migration-related genes were carried out on HeLa cells. Results: In silico studies have supported that fisetin interacts with writers and erasers in their catalytic site and the simulation studies showed minimum fluctuations in energy and temperature over a 10 ns timescale indicating that these complexes are likely to remain stable. Fisetin (20–50 µM) dose-dependently inhibited DNA methyltransferases (DNMT), histone deacetyl transferases (HDAC), histone acetyl transferases (HAT), and histone methyltransferases (HMT) activities at 48 h, with inhibition ranging from 24 to 72% compared to the control. The expression and enzymatic activity of these proteins, along with various H4 and H3 modification marks, were observed to be altered following fisetin treatment at 48 h. Fisetin treatment reduced promoter methylation in various tumor suppressor genes ranging from 15.29% to 76.23% and leading to the corresponding reactivation of important tumor suppressor genes; however, it did not lead to any alteration in the global DNA methylation compared to untreated controls linked with the anti-migratory properties of fisetin as the percentage of migrated cells dropped from ~40% to ~8%. Conclusions: This study gives a mechanistic insight of fisetin as a potential epigenetic modifier in HeLa cells. Full article
(This article belongs to the Collection Epigenetic Regulation of Cellular Differentiation)
Show Figures

Figure 1

25 pages, 737 KB  
Article
From Triplex to Quadruplex: Enhancing CDC’s Respiratory qPCR Assay with RSV Detection on Panther Fusion® Open Access™
by Andy Caballero Méndez, Mayeline N. Sosa Ortiz, Roberto A. Reynoso de la Rosa, Miguel E. Abreu Bencosme and Karla V. Montero Lebrón
Microorganisms 2026, 14(1), 167; https://doi.org/10.3390/microorganisms14010167 - 12 Jan 2026
Abstract
The overlapping circulation of influenza (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; SC2), and respiratory syncytial virus (RSV) continues to challenge clinical laboratories, particularly in settings with limited automation and fragmented healthcare coverage. This study expanded the CDC Flu-SC2 assay by incorporating [...] Read more.
The overlapping circulation of influenza (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; SC2), and respiratory syncytial virus (RSV) continues to challenge clinical laboratories, particularly in settings with limited automation and fragmented healthcare coverage. This study expanded the CDC Flu-SC2 assay by incorporating a laboratory-developed test (LDT) for RSV A/B detection into a fully automated quadruplex RT-qPCR (LDRA) on the Panther Fusion® Open Access™ system. The design, based on more than 8000 RSV genomic sequences targeting the conserved M gene, achieved optimal amplification efficiencies (97–105%) and full multiplex compatibility. Analytical assessment established limits of detection between 9.6 and 37.8 copies per reaction, absence of cross-reactivity with 30 respiratory pathogens, and inclusivity for 32 viral variants. Commutability and diagnostic performance among the LDRA, CE IVD-marked Allplex™ SARS-CoV-2/FluA/FluB/RSV, and US IVD-marked Panther Fusion® SARS-CoV-2/Flu A/B/RSV Assays were evaluated using 405 nasopharyngeal UTM-preserved swabs. The LDRA demonstrated excellent concordance (overall agreement ≥ 98%, κ > 0.95), strong diagnostic accuracy, and reliable detection of mixed infections. This quadruplex provides a fully automated, rapid, and accurate solution for the simultaneous detection of influenza A, influenza B, SARS-CoV-2, and RSV viruses, enhancing molecular diagnostic capacity and supporting equitable, timely clinical decision-making in middle-income healthcare systems such as that of the Dominican Republic. Full article
Show Figures

Figure 1

21 pages, 6977 KB  
Article
An Integrative Small RNA–Degradome–Transcriptome Analysis Reveals Mechanisms of Heat-Induced Anther Indehiscence in Pepper
by Gang Lei, Tao Li, Kunhua Zhou, Xinjie Yuan, Yueqin Huang, Gege Li, Yu Fang, Rong Fang and Xuejun Chen
Biology 2026, 15(2), 129; https://doi.org/10.3390/biology15020129 - 12 Jan 2026
Abstract
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. [...] Read more.
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. DL showed a collapse of anther dehiscence above 34–38 °C, whereas B021 retained normal dehiscence at 39 °C, and histology revealed tapetal enlargement, premature degeneration, and locule contraction only in DL. RNA-seq indicated genotype- and stage-dependent reprogramming, with DL suppressing phenylpropanoid/cell-wall, transport, and proteostasis pathways, while B021 maintained reproductive and stress-integration programs. Small-RNA profiling and degradome sequencing identified conserved miRNA families with in vivo target cleavage, and notably, miR397 targeting a laccase gene showed stronger evidence in B021, which is consistent with controlled lignification. Functional organization of differentially expressed miRNA targets highlighted modules in respiration/redox, hormone and terpenoid metabolism, vascular–cell-wall programs, and proteostasis/osmotic buffering. WGCNA modules correlated with heat-tolerance traits converged on the same processes. Enzyme assays corroborated multi-omics predictions, with SOD, CAT, and POD activities consistently induced in B021 and limited MDA accumulation. Together, the data supports a model in which tolerant anthers sustain dehiscence under heat by coordinating secondary-wall formation, auxin/jasmonate/gibberellin crosstalk, respiratory and reactive oxygen species buffering, and protein/membrane quality control, providing tractable targets for breeding heat-resilient peppers. Full article
(This article belongs to the Special Issue The Potential of Genetics and Plant Breeding in Crop Improvement)
Show Figures

Figure 1

17 pages, 3639 KB  
Article
The AP-1 Sigma Subunit Gene PsAP1 Acts as a Key Pathogenicity Factor by Regulating Metabolic Reprogramming in Puccinia striiformis f. sp. tritici
by Beibei Liu, Jianing Wu, Guoshuai Zhang, Jianghua Chen, Guangkuo Li, Xintong Wang, W. G. Dilantha Fernando, Haifeng Gao and Yue Li
J. Fungi 2026, 12(1), 57; https://doi.org/10.3390/jof12010057 - 12 Jan 2026
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a severe threat to global wheat production. The adaptor protein complex AP-1 plays a crucial role in vesicular trafficking, yet its function in rust fungi remains poorly understood. In this study, [...] Read more.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a severe threat to global wheat production. The adaptor protein complex AP-1 plays a crucial role in vesicular trafficking, yet its function in rust fungi remains poorly understood. In this study, a gene encoding an AP-1 σ subunit, designated PsAP1, was identified in Pst. The expression of PsAP1 was highly induced during the early infection stage. Heterologous expression of PsAP1 in a Fusarium graminearum mutant partially restored its pathogenic defects. Subcellular localization analysis revealed that PsAP1 localizes to the plasma membrane, cytoplasm, and nucleus. Silencing PsAP1 in wheat using Barley stripe mosaic virus-mediated host-induced gene silencing (BSMV-HIGS) significantly attenuated Pst pathogenicity, reducing hyphal growth by 6.7% (colony diameter), sporulation by 61.6% (lesion length), and pathogen biomass by 66%, along with enhanced accumulation of host reactive oxygen species. Transcriptomic analysis further demonstrated that silencing PsAP1 disrupted multiple pathways, including MAPK signaling, glutathione metabolism, and carbohydrate metabolism. These findings indicate that PsAP1 facilitates Pst infection by modulating vesicular trafficking, suppressing host immunity, and reprogramming host metabolism. This study provides novel insights into the pathogenic mechanisms of rust fungi and suggests a potential target for disease control. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

20 pages, 792 KB  
Article
Exploratory Analysis of TLR2, TLR4, Interleukin 6 and Interleukin 10 Gene Polymorphisms in Relation to Clinical Early-Onset Sepsis in Preterm Neonates: A Single-Center Study
by Melinda Baizat, Mihaela Iancu, Gabriela Zaharie, Monica Hășmășanu, Melinda Matyas, Ioana Cristina Rotar, Roxana Liana Lucaciu, Adriana Corina Hangan, Sidonia Gog Bogdan and Lucia Maria Procopciuc
Life 2026, 16(1), 103; https://doi.org/10.3390/life16010103 - 11 Jan 2026
Abstract
(1) Background: Neonatal sepsis continues to be one of the leading causes of mortality and morbidity, particularly in underdeveloped countries. We aimed to compare laboratory parameters between clinical early-onset sepsis (clinEOS) and NNNon-clinEOS groups and to evaluate the association between TLR2-Arg753Gln [...] Read more.
(1) Background: Neonatal sepsis continues to be one of the leading causes of mortality and morbidity, particularly in underdeveloped countries. We aimed to compare laboratory parameters between clinical early-onset sepsis (clinEOS) and NNNon-clinEOS groups and to evaluate the association between TLR2-Arg753Gln, TLR4-Asp299Gly, IL6-174G/C, and IL10-1082G/A gene single-nucleotide polymorphisms and clinical EOS susceptibility in preterm newborns. (2) Materials and Methods: Genotyping of the TLR2, TLR4, IL6, and IL10 polymorphisms was performed in 36 preterm neonates with polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP). Logistic regression analysis was used to test the associations between the studied gene polymorphisms and EOS susceptibility. (3) Results: Statistically significant differences in gestational age and birth weight were observed between the two groups, with preterm neonates with clinical EOS having a lower mean gestational age (mean (SD): 29.4 (2.8) weeks vs. 32.6 (1.1); p = 0.00002) and a lower mean birth weight (1342.1 (446.5) gr. Vs. 1984 (376.9)) than preterm neonates without clinical EOS. C-reactive protein (CRP) values measured on the first day significantly increased in the clinEOS group compared with the non-clinEOS group (median, 95% CI: 0.80 [0.40, 1.15] vs. 0.30 [0.02, 0.50]). The mean number of neutrophils significantly decreased in the preterm neonates with clinical EOS (mean difference: 17.3%; 95% CI: [4.0%, 30.5%]; p = 0.0126) and non-clinEOS group (mean difference: 20.8%; 95% CI: [1.8%, 39.9%]; p = 0.0354) between the first and seventh hospitalization days. In the dominant model, the A/G + A/A variant genotype of the IL10-1082G/A polymorphism significantly increased the odds of clinical EOS compared with the GG genotype (OR = 5.25; p = 0.0322), but the gestational-age-group adjusted model yielded p = 0.0752. (4) Conclusions: The results of the current study suggest that IL10-1082G/A gene polymorphism is a significant risk factor for clinical early-onset sepsis development in preterm neonates, but there was no evidence of a gestational age-group independent direct effect of IL10-1082G/A gene polymorphism on clinical EOS susceptibility. The results should be considered as exploratory. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

21 pages, 1664 KB  
Article
Aerobic Training Modulates the Expression of Components of the mPTP Through the Reduction of Oxidative Stress in the Soleus Muscle of Streptozotocin-Induced Diabetic Rats
by Luis Alberto Sánchez-Briones, Sarai Sánchez-Duarte, Sergio Márquez-Gamiño, Karla Susana Vera-Delgado, Montserrat Guadalupe Vera-Delgado, Rocío Montoya-Pérez, Cipriana Caudillo-Cisneros and Elizabeth Sánchez-Duarte
Diabetology 2026, 7(1), 18; https://doi.org/10.3390/diabetology7010018 - 9 Jan 2026
Viewed by 144
Abstract
Background/Objectives: In all types of diabetes, elevated blood glucose levels cause pathological changes in skeletal muscle, primarily due to oxidative stress, mitochondrial dysfunction, and excessive production of reactive oxygen species (ROS). Regular exercise can help mitigate these effects; however, the underlying mechanisms, particularly [...] Read more.
Background/Objectives: In all types of diabetes, elevated blood glucose levels cause pathological changes in skeletal muscle, primarily due to oxidative stress, mitochondrial dysfunction, and excessive production of reactive oxygen species (ROS). Regular exercise can help mitigate these effects; however, the underlying mechanisms, particularly those involving the mitochondrial permeability transition pore (mPTP), remain incompletely understood. This study aimed to explore the effects of aerobic exercise training (AET) on oxidative stress and the expression of mPTP components in the skeletal muscle of streptozotocin-induced diabetic rats. Methods: Male Wistar rats were randomly divided into three groups: Healthy Sedentary (H-SED), Diabetic Sedentary (D-SED), and Diabetic Exercise-trained (D-EXER); n = 6 per group. The D-EXER group performed AET (0° slope) 5 days/week for 8 weeks. After the intervention period, body weight and fasting blood glucose (FBG) levels were measured, and soleus muscles were collected and analyzed for oxidative stress biomarkers, Western blotting, and gene expression using qRT-PCR. Results: Following an 8-week intervention, AET reduced FBG concentrations. Accordingly, in the soleus muscles of the D-EXER group, ROS levels decreased, and redox balance was improved compared to the D-SED group. Exercise training reduced CypD and Casp9 mRNA expression and increased Bcl-2 mRNA expression, whereas Ant1 mRNA expression was only slightly altered. CypD protein expression was decreased in exercised diabetic rats, while VDAC1 protein and mRNA levels remained unchanged. In the D-EXER group, there were significant inverse correlations between CypD and Casp9 mRNA expression levels and glutathione redox state. Conclusions: The current study suggests that 8 weeks of AET, in addition to reducing hyperglycemia, may favorably influence oxidative balance and the expression of mPTP-related molecular components in diabetic skeletal muscle. Full article
Show Figures

Graphical abstract

21 pages, 4981 KB  
Article
Differential Activation of Their Cognate Receptors by NPFF and GnIH Peptides in the Half-Smooth Tongue Sole (Cynoglossus semilaevis)
by Hanlin Liu, Ruixue Li, Zhihua Yu, Huapu Chen and Bin Wang
Fishes 2026, 11(1), 40; https://doi.org/10.3390/fishes11010040 - 9 Jan 2026
Viewed by 61
Abstract
Neuropeptide FF (NPFF) belongs to the RF-amide peptide family and is homologous to gonadotropin-inhibitory hormone (GnIH). The NPFF precursor encodes two mature peptides, NPFF and NPAF (neuropeptide AF). Both peptides share the conserved C-terminal PQRFa motif. However, there is very limited information available [...] Read more.
Neuropeptide FF (NPFF) belongs to the RF-amide peptide family and is homologous to gonadotropin-inhibitory hormone (GnIH). The NPFF precursor encodes two mature peptides, NPFF and NPAF (neuropeptide AF). Both peptides share the conserved C-terminal PQRFa motif. However, there is very limited information available on receptor cross-reactivity for NPFF and GnIH peptides in teleosts. As a first step, we cloned two cognate receptor genes for NPFF, designated as NPFFR2-1 and NPFFR2-2, in the flatfish species half-smooth tongue sole. Tissue distribution analysis revealed that npffr2-1 and npffr2-2 transcripts were present at high levels in the brain and pituitary gland, and at lower levels in some peripheral tissues. In vitro functional analysis indicated that NPFF significantly stimulated CRE-luc and SRE-luc activity in COS-7 cells expressing either NPFFR2-1 or NPFFR2-2. However, NPAF increased CRE-luc and SRE-luc activity only via NPFFR2-1. Moreover, NPFF exerted an inhibitory effect on NFAT-RE-luc activity in COS-7 cells transfected with NPFFR2-1, whereas NPAF elicited an evident stimulatory effect via NPFFR2-2. Neither GnIH1 nor GnIH2 altered CRE-luc activity in COS-7 cells transfected with NPFFR2-1 or NPFFR2-2; however, forskolin-induced CRE-luc activity was significantly reduced by these two peptides. Furthermore, neither basal nor forskolin-stimulated CRE-luc activity was modified by NPFF or NPAF in COS-7 cells expressing the GnIH receptor (GnIHR). Both GnIH1 and GnIH2 significantly increased SRE-luc activity in COS-7 cells expressing NPFFR2-1 or NPFFR2-2, and vice versa. Taken together, our findings provide novel evidence that both NPFF and GnIH peptides could exert their functions via three different receptors, and that PKA, PKC, and Ca2+ signaling pathways are potential mediators. Full article
(This article belongs to the Special Issue Physiological Response Mechanisms of Aquatic Animals to Stress)
Show Figures

Figure 1

20 pages, 5401 KB  
Article
Transcriptome Analysis Reveals the Immunoregulatory Effect of Two Polysaccharides from Rhodomyrtus tomentosa
by Dingjin Li, Qiuxia Duan, Wan Zunairah Wan Ibadullah, Radhiah Shukri, Hui Nie, Aiqing Ren and Nor Afizah Mustapha
Foods 2026, 15(2), 235; https://doi.org/10.3390/foods15020235 - 9 Jan 2026
Viewed by 123
Abstract
The Rhodomyrtus tomentosa (Aiton.) Hassk. berry is rich in structurally diverse polysaccharides with potential biological activity. However, its immunomodulatory properties remain understudied, limiting our current understanding of its functional significance. Two structurally distinct polysaccharides from Rhodomyrtus tomentosa (RTP-1 and RTP-2) were evaluated for [...] Read more.
The Rhodomyrtus tomentosa (Aiton.) Hassk. berry is rich in structurally diverse polysaccharides with potential biological activity. However, its immunomodulatory properties remain understudied, limiting our current understanding of its functional significance. Two structurally distinct polysaccharides from Rhodomyrtus tomentosa (RTP-1 and RTP-2) were evaluated for immunostimulatory activity in RAW264.7 macrophages. Phagocytic function was assessed by neutral red assay, nitric oxide (NO) and reactive oxygen species were measured using the Griess assay and fluorescent probes, and cytokines (TNF-α, IL-6 and IL-1β) were quantified by enzyme-linked immunosorbent assay. Analysis of RNA-seq data using weighted gene co-expression network analysis revealed co-expression modules. The selected transcripts were independently validated by quantitative real-time PCR (RT-qPCR). The results showed that both polysaccharides enhanced phagocytosis, increased NO/ROS levels, and promoted cytokine secretion. Transcriptome results indicated that RTP-2 activated the MEturquoise co-expression module containing 222 hub genes, whereas RTP-1 was mainly associated with the MECyan module containing 49 hub genes. Module enrichment for RTP-2 revealed links with mitophagy–immune regulation, proteostasis/stress, and innate immune signaling. RT-qPCR further confirmed that in the RTP-2 group, Dram1 expression was upregulated approximately 121 times, Bmf1 expression was upregulated approximately 18 times, and Bnip3 was significantly downregulated, whereas Bnip3l expression remained unchanged. Overall, RTP-2 exhibited a more pronounced and coherent macrophage-stimulating profile in vitro, supporting its potential as a macrophage-targeted immunostimulatory ingredient. Full article
Show Figures

Figure 1

34 pages, 8505 KB  
Article
Complex I Modulator BI4500 Reduces MASH by Limiting Oxidative Stress and Reprogramming Lipid Metabolism via AMPK in MCD Rats
by Laura Giuseppina Di Pasqua, Sofia Lotti, Michelangelo Trucchi, Giuseppina Palladini, Anna Cleta Croce, Francesca Protopapa, Fausto Feletti, Stefan G. Kauschke, Peng Sun, Mariapia Vairetti and Andrea Ferrigno
Antioxidants 2026, 15(1), 82; https://doi.org/10.3390/antiox15010082 - 8 Jan 2026
Viewed by 243
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a multifactorial liver disease in which mitochondrial dysfunction, oxidative stress, and inflammation play key roles in driving the progression toward metabolic dysfunction-associated steatohepatitis (MASH) and hepatocellular carcinoma (HCC). Dysfunctional mitochondria generate excess reactive oxygen species (ROS), [...] Read more.
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a multifactorial liver disease in which mitochondrial dysfunction, oxidative stress, and inflammation play key roles in driving the progression toward metabolic dysfunction-associated steatohepatitis (MASH) and hepatocellular carcinoma (HCC). Dysfunctional mitochondria generate excess reactive oxygen species (ROS), impair antioxidant defenses, activate pro-inflammatory pathways and hepatic stellate cells, and perpetuate liver injury. Mitochondrial Complex I is a major ROS source, particularly under conditions of dysregulated energy metabolism. Since Complex I inhibition by metformin was shown to reduce ROS and activate the adenosine monophosphate-activated protein kinase (AMPK), this study aimed to evaluate whether a novel Complex I Modulator (CIM, BI4500) could attenuate oxidative stress, inflammation, and consequently reduce lipid accumulation and fibrosis in a methionine- and choline-deficient diet (MCD)-fed rat model of MASH. Methods: Rats were fed an MCD or an isocaloric control diet for six weeks. From week four, animals received daily oral treatment with CIM (10 mg/kg) or vehicle (Natrosol). At the endpoint, liver tissue was collected for histological, biochemical, and molecular analyses. Lipid droplet area, inflammatory infiltration, and collagen deposition were evaluated on tissue sections; total lipid content and oxidative stress markers were assessed in homogenates and isolated mitochondria. Molecular pathways related to oxidative stress, lipid metabolism, and fibrosis were assessed at protein and mRNA levels. Results: CIM treatment significantly reduced oxidative stress (ROS, lipid peroxidation, nitrogen species), promoting AMPK activation and metabolic reprogramming. This included increased expression of peroxisome proliferator-activated receptor alpha (PPAR-α) and its target genes, and decreased sterol regulatory element binding protein-1c (SREBP-1c)-driven lipogenesis. These changes halted fibrosis progression, as confirmed by Picro-Sirius Red staining and fibrosis markers. Conclusions: these findings indicate that Complex I modulation may represent a promising strategy to counteract MASLD progression toward MASH. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

18 pages, 4791 KB  
Article
LhSBP1 Gene of Liriodendron Hybrid Enhances the Cold Resistance of Plants by Regulating ROS Metabolism
by Tian Min, Yinyue Zuo, Teja Manda, Yuchen Li, Ye Lu, Haibin Xu, Jinhui Chen and Liming Yang
Plants 2026, 15(2), 196; https://doi.org/10.3390/plants15020196 - 8 Jan 2026
Viewed by 101
Abstract
Selenium-Binding Protein 1 (SBP1), involved in selenium metabolism, contributes to plant stress response. However, it is currently unknown whether the SBP1 protein from Liriodendron hybrid (LhSBP1) plays a role in response to cold stress. In this study, transgenic overexpression lines of LhSBP1 in [...] Read more.
Selenium-Binding Protein 1 (SBP1), involved in selenium metabolism, contributes to plant stress response. However, it is currently unknown whether the SBP1 protein from Liriodendron hybrid (LhSBP1) plays a role in response to cold stress. In this study, transgenic overexpression lines of LhSBP1 in Arabidopsis thaliana and Populus deltoides × P. euramericana cv. ‘Nanlin 895’, were used as materials to conduct phenotypic observations and physiological and biochemical determinations under cold stress. The results showed that the full-length CDS sequence of LhSBP1 gene was cloned, with a length of 1467 bp, encoding 488 amino acids. Under cold stress, physiological and biochemical indexes showed that the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) in transgenic Arabidopsis were lower, with the contents of hydrogen peroxide (H2O2) and superoxide anion (O2) being 0.72 and 0.71 times those of the wild type, respectively, and the MDA content was 0.53 times that of the wild type. Compared with the wild type, the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) increased by 1.2, 1.75, and 1.48 times respectively, and the soluble protein content increased by 1.41 times, which significantly improved the cold tolerance of Arabidopsis. The contents of H2O2, O2, and MDA in LhSBP1 transgenic ‘Nanlin 895’ poplar were 0.63 and 0.67 times and 0.6 times those of wild type, respectively. The activities of SOD, POD and CAT were increased by 1.37, 1.48, and 1.44 times, and the soluble protein was increased by 1.28 times, which significantly improved the cold tolerance of ‘Nanlin 895’ poplar. Taken together, this study utilized two model plant systems to demonstrate the positive and conserved functions of LhSBP1 in plant cold tolerance defense response, which provided valuable genetic resources for the breeding of cold-tolerance woody plants. Full article
(This article belongs to the Special Issue Genetic and Biological Diversity of Plants—2nd Edition)
Show Figures

Figure 1

17 pages, 20305 KB  
Article
Transcriptomic Analysis Identifies Acrolein Exposure-Related Pathways and Constructs a Prognostic Model in Oral Squamous Cell Carcinoma
by Yiting Feng, Lijuan Lou and Liangliang Ren
Int. J. Mol. Sci. 2026, 27(2), 632; https://doi.org/10.3390/ijms27020632 - 8 Jan 2026
Viewed by 71
Abstract
Acrolein, a highly reactive environmental toxicant widely present in urban air and tobacco smoke, has been implicated in the development of multiple malignancies. In oral tissues, chronic acrolein exposure induces oxidative stress, inflammation, and genetic mutations, all of which are closely linked to [...] Read more.
Acrolein, a highly reactive environmental toxicant widely present in urban air and tobacco smoke, has been implicated in the development of multiple malignancies. In oral tissues, chronic acrolein exposure induces oxidative stress, inflammation, and genetic mutations, all of which are closely linked to the development of oral squamous cell carcinoma (OSCC). Although accumulating evidence indicates a strong association between acrolein exposure and OSCC, its prognostic significance remains poorly understood. In this study, we analyzed transcriptome data to identify differentially expressed genes (DEGs) between tumor and adjacent normal tissues, and screened acrolein-related candidates by intersecting DEGs with previously identified acrolein-associated gene sets. Functional alterations of these genes were assessed using Gene Set Variation Analysis (GSVA), and a protein–protein interaction (PPI) network was constructed to identify key regulatory genes. A prognostic model was developed using Support Vector Machine–Recursive Feature Elimination (SVM-RFE) combined with LASSO-Cox regression and validated in an independent external cohort. Among the acrolein-related DEGs, four key genes (PLK1, AURKA, CTLA4, and PPARG) were ultimately selected for model construction. Kaplan–Meier analysis showed significantly worse overall survival in the high-risk group (p < 0.0001). Receiver operating characteristic (ROC) curve analysis further confirmed the strong predictive performance of the model, with area under the curve (AUC) values of 0.72 at 1 year, 0.72 at 3 years, and 0.75 at 5 years. Furthermore, the high risk score was significantly correlated with a ‘cold’ immune microenviroment, suggesting that acrolein-related genes may modulate the tumor immune microenvironment. Collectively, these findings highlight the role of acrolein in OSCC progression, suggesting the importance of reducing acrolein exposure for cancer prevention and public health, and call for increased attention to the relationship between environmental toxicants and disease initiation, providing a scientific basis for public health interventions and cancer prevention strategies. Full article
(This article belongs to the Special Issue Environmental Pollutants Exposure and Toxicity)
Show Figures

Figure 1

15 pages, 1403 KB  
Article
Catechin Augments the Antifungal Efficacy of Fluconazole Against Candida parapsilosis
by Nora Tóth Hervay, Alexandra Konečná, Daniel Eliaš, Petra Kocúreková, Juraj Jacko, Hanka Súlovská, Libuša Šikurová and Yvetta Gbelská
Int. J. Mol. Sci. 2026, 27(2), 620; https://doi.org/10.3390/ijms27020620 - 7 Jan 2026
Viewed by 108
Abstract
The rising global incidence of Candida parapsilosis infections is increasingly complicated by antifungal resistance, resulting in frequent therapeutic failure. This study investigated the potential of the natural compound catechin to enhance the efficacy of fluconazole through synergistic interaction. We evaluated the susceptibility of [...] Read more.
The rising global incidence of Candida parapsilosis infections is increasingly complicated by antifungal resistance, resulting in frequent therapeutic failure. This study investigated the potential of the natural compound catechin to enhance the efficacy of fluconazole through synergistic interaction. We evaluated the susceptibility of C. parapsilosis clinical isolates and a reference strain to combinations of catechin and fluconazole using standardized microbiological assays and molecular techniques. In vivo efficacy was assessed using the Galleria mellonella infection model. Mechanistic studies included the measurement of intracellular reactive oxygen species (ROS) production and plasma membrane permeability. Catechin alone caused growth retardation in all strains. However, the combination of catechin and fluconazole resulted in complete growth inhibition of the reference strain and significant growth reduction in azole-resistant clinical isolates. While the combination slightly increased intracellular ROS production, no significant changes in plasma membrane permeability or membrane potential were observed. Notably, catechin induced the expression of the resistance-associated genes CpTAC1 and CpCDR1B in resistant isolates. In vivo experiments demonstrated that catechin significantly reduced mortality in G. mellonella larvae infected with C. parapsilosis. These findings suggest that catechin is a promising candidate for developing synergistic antifungal therapies against resistant Candida species. Full article
(This article belongs to the Special Issue Biological Study of Plant Bioactive Compounds)
Show Figures

Figure 1

28 pages, 4505 KB  
Article
Resveratrol Mediates Anti-Atherogenic Actions In Vitro and in LDL Receptor-Deficient Mice Fed a High-Fat Diet via Antioxidant, Anti-Inflammatory and Plaque-Stabilising Activities
by Alaa Alahmadi, Reem Alotibi, Yee-Hung Chan, Sarab Taha, Daniah Rifqi, Nouf Alshehri, Sulaiman Alalawi, Fahad Alradi, Alex Gibbs, Timothy R. Hughes and Dipak P. Ramji
Antioxidants 2026, 15(1), 76; https://doi.org/10.3390/antiox15010076 - 7 Jan 2026
Viewed by 165
Abstract
Current pharmacotherapies against atherosclerotic cardiovascular disease are associated with considerable residual risk, together with various adverse side effects. Nutraceuticals, such as resveratrol (RSV), with excellent safety profile, represent promising alternatives and potential treatment. However, the full spectrum of anti-atherogenic actions regulated by RSV [...] Read more.
Current pharmacotherapies against atherosclerotic cardiovascular disease are associated with considerable residual risk, together with various adverse side effects. Nutraceuticals, such as resveratrol (RSV), with excellent safety profile, represent promising alternatives and potential treatment. However, the full spectrum of anti-atherogenic actions regulated by RSV and the underlying molecular mechanisms remain poorly understood. The objective of this study therefore was to investigate the impact of RSV on key atherosclerosis-associated processes in monocytes, macrophages, endothelial cells, and smooth muscle cells in vitro, as well as in LDL receptor-deficient mice fed a high-fat diet in vivo. RSV produced beneficial changes in the plasma lipid profile and peripheral blood lymphoid cells in vivo. RSV also attenuated plaque inflammation by decreasing macrophage and T cell content and enhanced markers of plaque stability, with increased levels of smooth muscle cells and collagen content. In vitro, RSV inhibited chemokine-driven monocyte migration, inflammasome activation, matrix metalloproteinase activity, pro-inflammatory gene expression, reactive oxygen species production, and smooth muscle cell invasion. RNA-sequencing of the thoracic aorta revealed key genes and pathways mediating the antioxidant, anti-inflammatory and plaque-stabilising activities of RSV. These studies provide novel mechanistic insights on the anti-atherogenic actions of RSV and support further evaluation in human clinical trials. Full article
Show Figures

Figure 1

21 pages, 2879 KB  
Article
Overcoming Target Drift: Development and Validation of a One-Step TaqMan qPCR Assay for Epidemiological Surveillance of Carpione rhabdovirus Circulating in Southern China
by Yucong Huang, Zhiyuan Huang, Haoyu Wang, Xiaojuan Li, Xin Liu, Huajian Lin, Zhi Zhang, Xiaofeng Chen, Jichang Jian and Heng Sun
Microorganisms 2026, 14(1), 126; https://doi.org/10.3390/microorganisms14010126 - 7 Jan 2026
Viewed by 154
Abstract
Carpione rhabdovirus (CAPRV) is an emerging virus within the family Rhabdoviridae, posing potential threats to aquaculture species such as golden pompano (Trachinotus anak). However, since the 21st century, and for CAPRV strains isolated from marine fish, only a single CAPRV2023 [...] Read more.
Carpione rhabdovirus (CAPRV) is an emerging virus within the family Rhabdoviridae, posing potential threats to aquaculture species such as golden pompano (Trachinotus anak). However, since the 21st century, and for CAPRV strains isolated from marine fish, only a single CAPRV2023 sequence has previously been available in public databases, with no additional sequences reported. Because the virus undergoes genetic variation, relying on this single sequence likely introduced mismatches or off-target risks in earlier detection assay designs. Notably, the previously developed two-step N-targeting detection assay was designed based solely on that single CAPRV2023 sequence. Consequently, this study involved determining and analyzing the N gene sequences from CAPRV isolates gathered from 2023 to 2025, with the aim of pinpointing conserved regions for assay development, and sequence comparisons subsequently verified the existence of mismatches in the primer–probe binding sites of the previous assay. Since quantitative assays in aquatic virology often define copy numbers utilizing either plasmid DNA templates or RNA templates produced via in vitro transcription, which may lead to variations in amplification kinetics and sensitivity, this study compared both standards to ensure reliable quantification across different nucleic acid types. Based on these findings, a one-step TaqMan quantitative PCR (qPCR) assay was developed and validated using dual nucleic acid standards, namely plasmid DNA and in vitro–transcribed RNA. Compared with conventional two-step qPCR, the one-step format combines cDNA synthesis and subsequent DNA amplification in a single sealed tube, thereby effectively preventing cross-contamination, simplifying the workflow, and improving detection efficiency. The assay exhibited strong linearity (R2 > 0.99) and consistent amplification efficiencies between 90% and 110%, demonstrating excellent quantitative performance. The detection limits were 2 copies per reaction for plasmid DNA and 20 copies for in vitro–transcribed RNA templates. No cross-reactivity was observed with other aquatic pathogens, and the assay showed strong repeatability and reproducibility (coefficients of variation below 2.0%), providing a sensitive and reliable tool for epidemiological surveillance and the analysis of CAPRV distribution in marine aquaculture systems of southern China. Full article
Show Figures

Figure 1

Back to TopTop