Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = gel polymer electrolytes (GPEs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2989 KB  
Review
Polymer-Based Electrolytes for Organic Batteries
by Chetna Tewari, Kundan Singh Rawat, Somi Yoon and Yong Chae Jung
Energies 2025, 18(19), 5168; https://doi.org/10.3390/en18195168 - 28 Sep 2025
Cited by 1 | Viewed by 946
Abstract
The pursuit of sustainable and environmentally benign energy storage solutions has propelled significant interest in organic batteries, which utilize redox-active organic compounds as electrode materials. A pivotal component in determining their electrochemical performance, safety, and long-term stability is the electrolyte. Polymer-based electrolytes (PBEs) [...] Read more.
The pursuit of sustainable and environmentally benign energy storage solutions has propelled significant interest in organic batteries, which utilize redox-active organic compounds as electrode materials. A pivotal component in determining their electrochemical performance, safety, and long-term stability is the electrolyte. Polymer-based electrolytes (PBEs) have emerged as promising candidates owing to their intrinsic advantages, such as enhanced thermal stability, mechanical integrity, and the mitigation of leakage and flammability risks associated with conventional liquid electrolytes. Unlike previous reviews that broadly cover solid electrolytes, this review specifically focuses on the unique developments of polymer-based electrolytes tailored for organic batteries over the past few years. This review presents a comprehensive overview of the recent progress in PBEs specifically designed for organic battery systems. It systematically examines various categories, including solid polymer electrolytes (SPEs), valued for their structural simplicity and stability; gel polymer electrolytes (GPEs), noted for their high ionic conductivity and processability; and polymer-inorganic composite electrolytes, which synergistically integrate the mechanical flexibility of polymers with the ionic conductivity of inorganic fillers. Additionally, the review delves into the latest advancements in ionogels and poly(ionic liquid) electrolytes, highlighting their potential to overcome existing limitations and enable next-generation battery performance. The article concludes with a critical discussion on prevailing challenges and prospective research directions, emphasizing the importance of advanced material design, interfacial engineering, and sustainable synthesis approaches to facilitate the practical realization of high-performance organic batteries. Full article
Show Figures

Figure 1

18 pages, 4914 KB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Cited by 1 | Viewed by 1047
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

17 pages, 2734 KB  
Article
Fabrication and Performance Study of 3D-Printed Ceramic-in-Gel Polymer Electrolytes
by Xiubing Yao, Wendong Qin, Qiankun Hun, Naiyao Mao, Junming Li, Xinghua Liang, Ying Long and Yifeng Guo
Gels 2025, 11(7), 534; https://doi.org/10.3390/gels11070534 - 10 Jul 2025
Viewed by 1040
Abstract
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at [...] Read more.
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at room temperature. The innovative application of 3D printing in the field of electrochemistry, particularly in solid-state electrolytes, endows energy storage devices with attractive characteristics. In this study, ceramic-in-gel polymer electrolytes (GPEs) based on PVDF-HFP/PAN@LLZTO were fabricated using a direct ink writing (DIW) 3D printing technique. Under the optimal printing conditions (printing speed of 40 mm/s and fill density of 70%), the printed electrolyte exhibited a uniform and dense sponge-like porous structure, achieving a high ionic conductivity of 5.77 × 10−4 S·cm−1, which effectively facilitated lithium-ion transport. A structural analysis indicated that the LLZTO fillers were uniformly dispersed within the polymer matrix, significantly enhancing the electrochemical stability of the electrolyte. When applied in a LiFePO4|GPEs|Li cell configuration, the electrolyte delivered excellent electrochemical performance, with high initial discharge capacities of 168 mAh·g−1 at 0.1 C and 166 mAh·g−1 at 0.2 C, and retained 92.8% of its capacity after 100 cycles at 0.2 C. This work demonstrates the great potential of 3D printing technology in fabricating high-performance GPEs. It provides a novel strategy for the structural design and industrial scalability of lithium-ion batteries. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

12 pages, 2267 KB  
Article
Composite Polymer Electrolytes with Tailored Ion-Conductive Networks for High-Performance Sodium-Ion Batteries
by Caizhen Yang, Zongyou Li, Qiyao Yu and Jianguo Zhang
Materials 2025, 18(13), 3106; https://doi.org/10.3390/ma18133106 - 1 Jul 2025
Viewed by 889
Abstract
Gel-polymer electrolytes offer a promising route toward safer and more stable sodium-ion batteries, but conventional polymer systems often suffer from low ionic conductivity and limited voltage stability. In this study, we developed composite GPEs by embedding methylammonium lead chloride (CH3NH3 [...] Read more.
Gel-polymer electrolytes offer a promising route toward safer and more stable sodium-ion batteries, but conventional polymer systems often suffer from low ionic conductivity and limited voltage stability. In this study, we developed composite GPEs by embedding methylammonium lead chloride (CH3NH3PbCl3, MPCl) into a UV-crosslinked ethoxylated trimethylolpropane triacrylate (ETPTA) matrix, with sodium alginate (SA) as an ionic conduction enhancer. Three types of membranes—GPE-P, GPE-El, and GPE-Eh—were synthesized and systematically compared. Among them, the high-MPCl formulation (GPE-Eh) exhibited the best performance, achieving a high ionic conductivity of 2.14 × 10−3 S·cm−1, a sodium-ion transference number of 0.66, and a wide electrochemical window of approximately 4.9 V vs. Na+/Na. In symmetric Na|GPE|Na cells, GPE-Eh enabled stable sodium plating/stripping for over 600 h with low polarization. In Na|GPE|NVP cells, it delivered a high capacity retention of ~79% after 500 cycles and recovered ~89% of its initial capacity after high-rate cycling. These findings demonstrate that the perovskite–polymer composite structure significantly improves ion transport, interfacial stability, and electrochemical durability, offering a viable path for the development of next-generation quasi-solid-state sodium-ion batteries. Full article
Show Figures

Figure 1

15 pages, 5965 KB  
Article
Gel Polymer Electrolytes with High Thermal Stability for Safe Lithium Metal Batteries
by Xianhui Chen, Xue Wang, Xing Li and Xing Xin
Colloids Interfaces 2025, 9(3), 30; https://doi.org/10.3390/colloids9030030 - 14 May 2025
Viewed by 2739
Abstract
The poor thermal stability of polypropylene (PP) separators poses risks of electrolyte leakage and battery short-circuiting, limiting their application in lithium metal batteries (LMBs). To address these challenges, a gel polymer membrane was designed using polymer blending technology. This membrane effectively retains the [...] Read more.
The poor thermal stability of polypropylene (PP) separators poses risks of electrolyte leakage and battery short-circuiting, limiting their application in lithium metal batteries (LMBs). To address these challenges, a gel polymer membrane was designed using polymer blending technology. This membrane effectively retains the electrolyte, provides a stable environment, enhances thermal stability, and significantly decreases the risk of battery explosions and side reactions between the lithium metal and the electrolyte. Compared to commercial PP separators, the developed blend-type gel polymer electrolyte (b-GPE) demonstrates a superior performance, including structural stability at temperatures up to 150 °C and a high lithium-ion transference number (tLi+) of 0.513. Furthermore, a cell with a LiCoO2 cathode operated at a 1 C rate retains 97.4% of its capacity after 300 cycles. After exposure to 120 °C, the b-GPE-120 demonstrates that its performance is comparable to that of the b-GPE, such as a tLi+ of 0.506, a high electrolyte absorption rate, and a wide electrochemical window of 5.2 V. Full article
Show Figures

Figure 1

14 pages, 4225 KB  
Article
Preparation and Performance of PVDF-HFP/PAN-Based Gel Polymer Electrolytes
by Xiubing Yao, Lingxiao Lan, Qiankun Hun, Xuanan Lu, Jianghua Wei, Xinghua Liang, Pengcheng Shen, Ying Long and Yifeng Guo
Gels 2025, 11(5), 317; https://doi.org/10.3390/gels11050317 - 24 Apr 2025
Cited by 2 | Viewed by 4619
Abstract
Solid-state electrolytes are widely expected to enhance the performance of lithium-ion batteries, providing higher energy density and improved safety. However, challenges still need to be solved in their practical application due to low ionic conductivity and high interfacial resistance at room temperature. In [...] Read more.
Solid-state electrolytes are widely expected to enhance the performance of lithium-ion batteries, providing higher energy density and improved safety. However, challenges still need to be solved in their practical application due to low ionic conductivity and high interfacial resistance at room temperature. In this study, we successfully developed a high-performance gel polymer electrolyte (GPEs) by blending poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) and polyacrylonitrile (PAN) through UV curing, cross-linking with ethoxylated trimethylolpropane triacrylate (ETPTA), and incorporating Li6.4La3Zr1.4Ta0.6O12 (LLZTO). At room temperature, the ionic conductivity of the GPEs was 2.8 × 10−4 S/cm, with a lithium-ion transference number of 0.6. Moreover, during lithium plating/stripping tests, the assembled Li/PPEL/Li symmetric cell exhibited stable cycling for up to 600 h at a current density of 0.1 mA/cm2. Notably, the GPEs enabled the LiFePO4/GPEs/Li battery to achieve excellent performance, delivering high discharge capacities at room temperature (164.3 mAh g−1 at 0.1 C and 88.8 mAh g−1 at 1 C), with a capacity retention of 89.4% after 200 cycles at 0.5 C. Therefore, solid-state batteries using this electrolyte exhibit excellent performance, including adequate capacity and cycling stability. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

16 pages, 3222 KB  
Article
Anisotropic Conductivity and Mechanical Strength Enhancements in Gel Polymer Electrolyte Films by Hot Pressing
by Zhifan Fang, Hao Zhang and Shuangjun Chen
Materials 2025, 18(8), 1751; https://doi.org/10.3390/ma18081751 - 11 Apr 2025
Cited by 1 | Viewed by 968
Abstract
Gel polymer electrolyte (GPE) with a polymer matrix swollen in liquid electrolytes offers several advantages over conventional liquid electrolytes, including no leakage, lightweight properties, and high reliability. While poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based GPEs show promise for lithium-ion batteries, their practical application is hindered by [...] Read more.
Gel polymer electrolyte (GPE) with a polymer matrix swollen in liquid electrolytes offers several advantages over conventional liquid electrolytes, including no leakage, lightweight properties, and high reliability. While poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based GPEs show promise for lithium-ion batteries, their practical application is hindered by the intrinsic trade-off between ionic conductivity and mechanical robustness in conventional PVDF systems. Typical strategies relying on excessive plasticizers (e.g., ionic liquids) compromise mechanical integrity. Here, we propose a novel hot-pressing-induced recrystallization strategy to synergistically enhance both anisotropic ionic conductivity and puncture strength in PVDF-based GPE films. By blending PVDF with controlled amounts of 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), followed by solution casting and hot pressing, we achieve microstructural reorganization that dramatically improves through-thickness ion transport and mechanical performance. Crucially, hot-pressed PVDF with only 25 wt% [HMIM]Cl exhibits a 12.5-fold increase in ionic conductivity (reaching 4.7 × 10−4 S/cm) compared to its solution-cast counterparts. Remarkably, this formulation surpasses the conductivity of PVDF-HFP composites with a higher [HMIM]Cl content (35 wt%, 1.7 × 10−4 S/cm), demonstrating performance optimization of anisotropic conductivity. What is more, the mechanical strength of the piercing strength perpendicular to the GPE film after hot pressing increased by 42% compared to the solution-cast film. This work establishes a scalable processing route to break the conductivity–strength dichotomy in GPEs, offering critical insights for designing high-performance polymer electrolytes. Full article
(This article belongs to the Special Issue Polymer Electrolytes: Fundamentals, Approaches and Applications)
Show Figures

Figure 1

12 pages, 2430 KB  
Article
High Electrochemical Performance of Sodium-Ion Gel Polymer Electrolytes Achieved Through a Sandwich Design Strategy Combining Soft Polymers with a Rigid MOF
by Hanjiao Huang, Zongyou Li, Yanjun Gao, Tianqi Wang, Zihan Chen, Songjie Gan, Caizhen Yang, Qiyao Yu and Jian-Guo Zhang
Energies 2025, 18(5), 1160; https://doi.org/10.3390/en18051160 - 27 Feb 2025
Cited by 1 | Viewed by 2317
Abstract
Sodium-ion batteries (SIBs) are considered the next-generation candidates for partially substituting for commercial lithium-ion batteries in future energy storage systems because of the abundant sodium/potassium reserves and these batteries’ cost-effectiveness and high safety. Gel polymer electrolytes (GPEs) have become a popular research focus [...] Read more.
Sodium-ion batteries (SIBs) are considered the next-generation candidates for partially substituting for commercial lithium-ion batteries in future energy storage systems because of the abundant sodium/potassium reserves and these batteries’ cost-effectiveness and high safety. Gel polymer electrolytes (GPEs) have become a popular research focus due to their advantages in terms of safety and performance in research on quasi-solid-state sodium-ion batteries (QSSIBs). Building on previous studies that incorporated MOF fillers into polymer-based gel electrolytes, we propose a 3D sandwich structure in which MOF materials are first pressed into thin films and then coated and protected by polymer materials. Using this approach, we achieved an ion conductivity of 1.75 × 10−4 S cm−1 at room temperature and an ion transference number of 0.69. Solid-state sodium-ion batteries using this gel film electrolyte exhibited long cycling stability at a 2 C current density, retaining 75.2% of their specific capacity after 500 cycles. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

16 pages, 3404 KB  
Article
Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study
by Nasser AL-Hamdani, Paula V. Saravia, Javier Luque Di Salvo, Sergio A. Paz and Giorgio De Luca
Batteries 2025, 11(1), 27; https://doi.org/10.3390/batteries11010027 - 14 Jan 2025
Cited by 2 | Viewed by 2189
Abstract
Lithium metal batteries (LiMBs) have emerged as extremely viable options for next-generation energy storage owing to their elevated energy density and improved theoretical specific capacity relative to traditional lithium batteries. However, safety concerns, such as the flammability of organic liquid electrolytes, have limited [...] Read more.
Lithium metal batteries (LiMBs) have emerged as extremely viable options for next-generation energy storage owing to their elevated energy density and improved theoretical specific capacity relative to traditional lithium batteries. However, safety concerns, such as the flammability of organic liquid electrolytes, have limited their extensive application. In the present study, we utilize molecular dynamics and Density Functional Theory based simulations to investigate the Li interactions in gel polymer electrolytes (GPEs), composed of a 3D cross-linked polymer matrix combined with two different non-flammable electrolytes: 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/dimethyl carbonate (DMC) and 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in trimethyl phosphate (TMP) solvents. The findings derived from radial distribution functions, coordination numbers, and interaction energy calculations indicate that Li⁺ exhibits an affinity with solvent molecules and counter-anions over the functional groups on the polymer matrix, highlighting the preeminent influence of electrolyte components in Li⁺ solvation and transport. Furthermore, the second electrolyte demonstrated enhanced binding energies, implying greater ionic stability and conductivity relative to the first system. These findings offer insights into the Li+ transport mechanism at the molecular scale in the GPE by suggesting that lithium-ion transport does not occur by hopping between polymer functional groups but by diffusion into the solvent/counter anion system. The information provided in the work allows for the improvement of the design of electrolytes in LiMBs to augment both safety and efficiency. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Graphical abstract

61 pages, 12512 KB  
Review
Advanced Polymer Electrolytes in Solid-State Batteries
by Ningaraju Gejjiganahalli Ningappa, Anil Kumar Madikere Raghunatha Reddy and Karim Zaghib
Batteries 2024, 10(12), 454; https://doi.org/10.3390/batteries10120454 - 23 Dec 2024
Cited by 14 | Viewed by 14630
Abstract
Solid-state batteries (SSBs) have been recognized as promising energy storage devices for the future due to their high energy densities and much-improved safety compared with conventional lithium-ion batteries (LIBs), whose shortcomings are widely troubled by serious safety concerns such as flammability, leakage, and [...] Read more.
Solid-state batteries (SSBs) have been recognized as promising energy storage devices for the future due to their high energy densities and much-improved safety compared with conventional lithium-ion batteries (LIBs), whose shortcomings are widely troubled by serious safety concerns such as flammability, leakage, and chemical instability originating from liquid electrolytes (LEs). These challenges further deteriorate lithium metal batteries (LMBs) through dendrite growth and undesirable parasitic reactions. Polymer electrolytes (PEs) have been considered among the few viable options that have attracted great interest because of their inherent non-flammability, excellent flexibility, and wide electrochemical stability window. However, practical applications are seriously limited due to the relatively low ionic conductivity, mechanical instability, and short operational life cycle. This review covers the recent developments in the field and applications of polymer electrolytes in SSBs, including solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), and composite polymer electrolytes (CPEs). The discussion comprises the key synthesis methodologies, electrochemical evaluation, and fabrication of PEs while examining lithium-ion’s solvation and desolvation processes. Finally, this review highlights innovations in PEs for advanced technologies like lithium metal batteries and beyond, covering emerging trends in polymer materials and advancements in PE performance and stability to enhance commercial applications. Full article
Show Figures

Graphical abstract

24 pages, 6204 KB  
Review
A Comparison of the Electrical Properties of Gel Polymer Electrolyte-Based Supercapacitors: A Review of Advances in Electrolyte Materials
by Ghobad Behzadi Pour, Hamed Nazarpour Fard and Leila Fekri Aval
Gels 2024, 10(12), 803; https://doi.org/10.3390/gels10120803 - 6 Dec 2024
Cited by 10 | Viewed by 3641
Abstract
Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy [...] Read more.
Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy storage field, likely owing to their safety, lack of leakage, and compatibility with various separators as well as their higher ionic conductivity (IC) than traditional solid electrolytes. This review covers the classification, properties, and configurations of different GPE-based supercapacitors and recent advancements that have occurred in this area of energy storage. Ionic liquid (IL)-based materials are popular GPEs for electrochemical energy storage and can be used to prepare unprecedented flexible supercapacitors due to their great IC and wide potential range. A comparative assessment of the GPEs-based supercapacitors reveals that in a majority of them, the value of specific capacitance is generally under 1000 F g−1, energy density reaches around 125 Wh kg−1, and the power density is seen to be less than 1500 W kg−1. The results of this research serve as an essential reference for upcoming scholars, and could significantly improve our comprehension of the efficacy of GPE-containing supercapacitors. Full article
Show Figures

Figure 1

12 pages, 2617 KB  
Article
Polymerizable Ionic Liquid-Based Gel Polymer Electrolytes Enabled by High-Energy Electron Beam for High-Performance Lithium-Ion Batteries
by Wookil Chae and Taeshik Earmme
Gels 2024, 10(12), 798; https://doi.org/10.3390/gels10120798 - 6 Dec 2024
Cited by 2 | Viewed by 3042
Abstract
Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm−1 [...] Read more.
Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm−1 at 25 °C), a lithium transference number of 0.62, and an electrochemical stability exceeding 5 V. E-beam irradiation enabled rapid polymer network formation within a metal-cased battery structure, eliminating the need for initiators and improving the process efficiency. In the NCM811/PIL-GPE/Li cells, PIL-GPE (8:2) delivered an initial discharge capacity of 198.8 mAh g−1 with 82% retention at 100 cycles, demonstrating enhanced thermal stability and cycling performance compared to traditional GPEs. The demonstrated PIL-GPEs demonstrate strong potential for high-stability, high-performance LIB applications. Full article
(This article belongs to the Special Issue Gel Materials in Advanced Energy Systems)
Show Figures

Graphical abstract

10 pages, 1662 KB  
Article
A Protic Ionic Liquid Promoted Gel Polymer Electrolyte for Solid-State Electrochemical Energy Storage
by Jiaxing Liu, Zan Wang, Zhihao Yang, Meiling Liu and Hongtao Liu
Materials 2024, 17(23), 5948; https://doi.org/10.3390/ma17235948 - 5 Dec 2024
Cited by 1 | Viewed by 1715
Abstract
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO4 and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). [...] Read more.
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO4 and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.7 V), and good ionic conductivity (2.43 × 10−2 S cm−1 at 20 °C). EDLC, using this novel GPE film, shows high specific capacitance (81 F g−1) as well as good retention above 90% of the initial capacitance after 4500 cycles. The engineered protic ionic liquid GPE is, hopefully, applicable to high-performance solid-state electrochemical energy storage. Full article
Show Figures

Figure 1

15 pages, 3627 KB  
Article
Photo-Crosslinked Polyurethane—Containing Gel Polymer Electrolytes via Free-Radical Polymerization Method
by Fatmanur Uyumaz, Yerkezhan Yerkinbekova, Sandugash Kalybekkyzy and Memet Vezir Kahraman
Polymers 2024, 16(18), 2628; https://doi.org/10.3390/polym16182628 - 18 Sep 2024
Cited by 2 | Viewed by 2863
Abstract
Using a novel technique, crosslinked gel polymer electrolytes (GPEs) designed for lithium-ion battery applications have been created. To form the photo crosslink via free-radical polymerization, a mixture of polyurethane acrylate (PUA), polyurethane methacrylate (PUMA), vinyl phosphonic acid (VPA), and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) was [...] Read more.
Using a novel technique, crosslinked gel polymer electrolytes (GPEs) designed for lithium-ion battery applications have been created. To form the photo crosslink via free-radical polymerization, a mixture of polyurethane acrylate (PUA), polyurethane methacrylate (PUMA), vinyl phosphonic acid (VPA), and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) was exposed to ultraviolet (UV) radiation during the fabrication process. The unique crosslinked configuration of the membrane increased its stability and made it suitable for use with liquid electrolytes. The resulting GPE has a much higher ionic conductivity (1.83 × 10−3 S cm−1) than the commercially available Celgrad2500 separator. A crosslinked structure formed by the hydrophilic properties of the PUA-PUMA blend and the higher phosphate content from BMEP reduced the leakage of the electrolyte solution while at the same time providing a greater capacity for liquid retention, significantly improving the mechanical and thermal stability of the membrane. GPP2 shows electrochemical stability up to 3.78 V. The coin cell that was assembled with a LiFePO4 cathode had remarkable cycling characteristics and generated a high reversible capacity of 149 mA h g−1 at 0.1 C. It also managed to maintain a consistent Coulombic efficiency of almost 100%. Furthermore, 91.5% of the original discharge capacity was maintained. However, the improved ionic conductivity, superior electrochemical performance, and high safety of GPEs hold great promise for the development of flexible energy storage systems in the future. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

15 pages, 5626 KB  
Article
Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Gel Polymer Electrolyte Modified with Multi-Walled Carbon Nanotubes and SiO2 Nanospheres to Increase Rechargeability of Zn–Air Batteries
by Lucia Díaz-Patiño, Minerva Guerra-Balcázar, Lorena Álvarez-Contreras and Noé Arjona
Gels 2024, 10(9), 587; https://doi.org/10.3390/gels10090587 - 12 Sep 2024
Viewed by 3183
Abstract
Zn–air batteries (ZABs) are a promising technology; however, their commercialization is limited by challenges, including those occurring in the electrolyte, and thus, gel polymer electrolytes (GPEs) and hydrogels have emerged as substitutes for traditional aqueous electrolytes. In this work, PVA/PAA membranes were synthesized [...] Read more.
Zn–air batteries (ZABs) are a promising technology; however, their commercialization is limited by challenges, including those occurring in the electrolyte, and thus, gel polymer electrolytes (GPEs) and hydrogels have emerged as substitutes for traditional aqueous electrolytes. In this work, PVA/PAA membranes were synthesized by the solvent casting method and soaked in 6 M KOH to act as GPEs. The thickness of the membrane was modified (50, 100, and 150 μm), and after determining the best thickness, the membrane was modified with synthesized SiO2 nanospheres and multi-walled carbon nanotubes (CNTs). SEM micrographs revealed that the CNTs displayed lengths of tens of micrometers, having a narrow diameter (95 ± 7 nm). In addition, SEM revealed that the SiO2 nanospheres had homogeneous shapes with sizes of 110 ± 10 nm. Physicochemical experiments revealed that SiO2 incorporation at 5 wt.% increased the water uptake of the PVA/PAA membrane from 465% to 525% and the ionic conductivity to 170 mS cm−1. The further addition of 0.5 wt.% CNTs did not impact the water uptake but it promoted a porous structure, increasing the power density and the stability, showing three-times-higher rechargeability than the ZAB operated with the PVA/PAA GPE. Full article
Show Figures

Graphical abstract

Back to TopTop