Photo-Crosslinked Polyurethane—Containing Gel Polymer Electrolytes via Free-Radical Polymerization Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Gel Electrolyte
2.3. Characterization
2.3.1. Fourier Transform Infrared Spectra
2.3.2. SEM Analysis
2.3.3. Thermogravimetric Analysis
2.3.4. DSC Analysis
2.3.5. Electrolyte Uptake of Membranes
2.3.6. Electrolyte Absorption
2.3.7. Gel Fraction
2.3.8. Porosity
2.3.9. Tensile Stress–Strain Test
2.3.10. Crosslinking Density
2.4. Electrochemical Characterization
2.4.1. Electrochemical Impedance Spectroscopy (EIS)
2.4.2. Linear Sweep Voltammetry
2.4.3. Electrochemical Performance Tests
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wang, Z.; Chen, L.; Huang, X. Research on Advanced Materials for Li-ion Batteries. Adv. Mater. 2009, 21, 4593–4607. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Pramanik, A.; Maiti, S.; Sreemany, M.; Mahanty, S. Rock-Salt-Templated Mn3O4 Nanoparticles Encapsulated in a Mesoporous 2D Carbon Matrix: A High Rate 2 V Anode for Lithium-Ion Batteries with Extraordinary Cycling Stability. ChemistrySelect 2017, 2, 7854–7864. [Google Scholar] [CrossRef]
- Zou, H.Y.; Gratz, E.; Apelian, D.; Wang, Y. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem. 2013, 15, 1183–1191. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.S.; Gao, X.W.; Wang, X.J.; Hou, Y.Y.; Liu, L.L.; Wu, Y.P. A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochem. Commun. 2012, 22, 29–32. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Song, J.Y.; Cheng, C.L.; Wang, Y.Y.; Wan, C.C. Microstructure of Poly(vinylidene fluoride)-Based Polymer Electrolyte and Its Effect on Transport Properties. J. Electrochem. Soc. 2002, 149, A1230. [Google Scholar] [CrossRef]
- Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. Angew. Chem. (Int. Ed. Engl.) 2016, 55, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Choi, I.; Hong, J.; Kim, O. Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J. Appl. Polym. Sci. 2013, 129, 2363–2376. [Google Scholar] [CrossRef]
- Kalhoff, J.; Eshetu, G.G.; Bresser, D.; Passerini, S. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8, 2154–2175. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Ji, Y.J.; Zhang, Z.R.; Yang, Y. Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries. ChemPhysChem 2014, 15, 1956–1969. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Huang, X.; Chen, S.; Wang, G. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 2014, 4, 6007. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–540. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Marcinek, M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T.; et al. Electrolytes for Li-ion transport—Review. Solid State Ion. 2015, 276, 107–126. [Google Scholar] [CrossRef]
- Dias, F.B.; Plomp, L.; Veldhuis, J.B.J. Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 2000, 88, 169–191. [Google Scholar] [CrossRef]
- Kayaman-Apohan, N.; Demirci, R.; Cakir, M.; Gungor, A. UV-curable interpenetrating polymer networks based on acrylate/vinylether functionalized urethane oligomers. Radiat. Phys. Chem. 2005, 73, 254–262. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, J.; Cheng, L.; Liu, X.; Liu, R. Curing and properties of urethane acrylates with different functionalities under electron-beam and ultraviolet irradiation. Prog. Org. Coat. 2021, 156, 106252. [Google Scholar] [CrossRef]
- Wang, F.; Hu, J.Q.; Tu, W.P. Study on microstructure of UV-curable polyurethane acrylate films. Prog. Org. Coat. 2008, 62, 245–250. [Google Scholar] [CrossRef]
- Santhosh, P.; Gopalan, A.; Vasudevan, T.; Lee, K.-P. Evaluation of a cross-linked polyurethane acrylate as polymer electrolyte for lithium batteries. Mater. Res. Bull. 2006, 41, 1023–1037. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, Y.; Liu, K.; Liu, N.; Du, Y.; Ma, C.; Zhou, L.; Liang, Y.; Jin, Y. Study of solid polyurethane electrolytes synthesized from HDI and PEO of different molecular weight. J. Electroanal. Chem. 2021, 893, 115305. [Google Scholar] [CrossRef]
- Ugur, M.; Kılıç, H.; Berkem, M.; Güngör, A. Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries. Chem. Pap. 2014, 68, 1561–1572. [Google Scholar] [CrossRef]
- Lee, E.-J.; Park, K.-H.; Lee, Y.-H.; Kim, K.-G.; Jeong, Y.U.; Kim, S.Y.; Kim, H.-D. Poly(urethane acrylate)-based gel polymer films for mechanically stable, transparent, and highly conductive polymer electrolyte applications. J. Appl. Polym. Sci. 2017, 134, 45009. [Google Scholar] [CrossRef]
- Ko, K.W.; Cho, T.Y.; Ham, D.S.; Kang, M.; Choi, W.J.; Cho, S.K. Preparation of highly adhesive urethane–acrylate-based gel-polymer electrolytes and their optimization in flexible electrochromic devices. J. Electroanal. Chem. 2022, 917, 116423. [Google Scholar] [CrossRef]
- Kahraman, M.V.; Bayramoglu, G.; Boztoprak, Y.; Güngör, A.; Kayaman Apohan, N. Synthesis of fluorinated/methacrylated epoxy based oligomers and investigation of its performance in the UV curable hybrid coatings. Prog. Org. Coat. 2009, 66, 52–58. [Google Scholar] [CrossRef]
- Mulazim, Y.; Kahraman, M.V.; Kayaman-Apohan, N.; Kızıltaş, S.; Güngör, A. Preparation and characterization of UV-curable, boron-containing, transparent hybrid coatings. J. Appl. Polym. Sci. 2011, 120, 2112–2121. [Google Scholar] [CrossRef]
- Baştürk, E.; Kahraman, M.V. Photocrosslinked biobased phase change material for thermal energy storage. J. Appl. Polym. Sci. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, F.; Mei, Y.; Ding, Y.; Pang, H.; Zhang, P. Gel polymer electrolyte based on hydrophilic–lipophilic TiO2-modified thermoplastic polyurethane for high-performance Li-ion batteries. J. Mater. Sci. 2021, 56, 2474–2485. [Google Scholar] [CrossRef]
- Wen, T.C.; Du, Y.L.; Digar, M. Compositional effect on the morphology and ionic conductivity of thermoplastic polyurethane based electrolytes. Eur. Polym. J. 2002, 38, 1039–1048. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Dang, Y.; Wu, E.; Sun, J.; Zhang, X.; Du, S.; Liu, X.; Yi, X.; Cui, P.; et al. Uv-curable polyborosilazane precursors for sibcn coatings under harsh environments. ACS Appl. Polym. Mater. 2023, 5, 2166–2176. [Google Scholar] [CrossRef]
- Fukuda, T.; Terauchi, T.; Goto, A.; Ohno, K.; Tsujii, Y.; Miyamoto, T.; Kobatake, S.; Yamada, B. Mechanisms and kinetics of nitroxide-controlled free radical polymerization. Macromolecules 1996, 29, 6393–6398. [Google Scholar] [CrossRef]
- Kassenova, N.; Kalybekkyzy, S.; Kahraman, M.V.; Mentbayeva, A.; Bakenov, Z. Photo and thermal crosslinked poly(vinyl alcohol) based nanofiber membrane for flexible gel polymer electrolyte. J. Power Sources 2022, 520, 230896. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Dhiman, A.; Mohan, M. Synthesis and characterization of arabinoxylan bis [2-(methacryloyloxy)ethyl] phosphate crosslinked copolymer network by high energy gamma radiation for use in controlled drug delivery applications. Int. J. Biol. Macromol. 2022, 200, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Mashouf, G.; Ebrahimi, M.; Bastani, S. UV curable urethane acrylate coatings formulation: Experimental design approach. J. Coat. Technol. Res. 2014, 11, 687–694. [Google Scholar] [CrossRef]
- Ahmed, F.; Kim, D.; Lei, J.; Ryu, T.; Yoon, S.; Zhang, W.; Lim, H.; Jang, G.; Jang, H.; Kim, W. UV-Cured Cross-Linked Astounding Conductive Polymer Electrolyte for Safe and High-Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 34102–34113. [Google Scholar] [CrossRef]
- Mascaraque, N.; Januchta, K.; Frederiksen, K.F.; Youngman, R.E.; Bauchy, M.; Smedskjær, M.M. Structural dependence of chemical durability in modified aluminoborate glasses. J. Am. Ceram. Soc. 2018, 102, 1157–1168. [Google Scholar] [CrossRef]
- Susan, M.A.B.H.; Kaneko, T.; Noda, A.A.; Watanabe, M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 2005, 127, 4976–4983. [Google Scholar] [CrossRef]
- Ciurduc, D.E.; Boaretto, N.; Fernández-Blázquez, J.P.; Marcilla, R. Development of high performing polymer electrolytes based on superconcentrated solutions. J. Power Sources 2021, 506, 230220. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, X.; Deng, N.; Cheng, B.; Kang, W. A novel edot/f co-doped pmia nanofiber membrane as separator for high-performance lithium-sulfur battery. Chem. Asian J. 2022, 17, e202200669. [Google Scholar] [CrossRef] [PubMed]
- Yerkinbekova, Y.; Kalybekkyzy, S.; Tolganbek, N.; Kahraman, M.V.; Bakenov, Z.; Mentbayeva, A. Photo-crosslinked lignin/PAN electrospun separator for safe lithium-ion batteries. Sci. Rep. 2022, 12, 18272. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wu, X.; Yang, Y.; Fei, M.; Liu, S.; Li, G.; Gao, X.-P. Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries. ACS Energy Lett. 2021, 7, 42–52. [Google Scholar] [CrossRef]
Abbreviation | PP1 | PP2 | PP3 |
---|---|---|---|
GPE Membrane Formulation | Mass (g) | ||
Polyurethane Acrylate | 1 | 1 | 1 |
Polyurethane Methacrylate | 4 | 4 | 4 |
Vinyl Phosphonic Acid | 0.55 | 0 | 0 |
Bis[2-(methacryloyloxy)ethyl)]phosphate | 0 | 0.55 | 1.25 |
2-hydroxy-2-methylpropiophenone | 3 wt% of the total mass |
Samples | Gel Fraction, % | Porosity, % | Electrolyte Uptake, % | Ionic Conductivity, S cm−1 |
---|---|---|---|---|
PP1 | 98.60 | 78.2 | 296 | 0.70 × 10−3 |
PP2 | 99.09 | 81.3 | 345 | 1.83 × 10−3 |
PP3 | 98.18 | 76.5 | 279 | 0.12 × 10−3 |
Celgrad-2500 | --- | 55.0 * | 126 | 0.36 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyumaz, F.; Yerkinbekova, Y.; Kalybekkyzy, S.; Kahraman, M.V. Photo-Crosslinked Polyurethane—Containing Gel Polymer Electrolytes via Free-Radical Polymerization Method. Polymers 2024, 16, 2628. https://doi.org/10.3390/polym16182628
Uyumaz F, Yerkinbekova Y, Kalybekkyzy S, Kahraman MV. Photo-Crosslinked Polyurethane—Containing Gel Polymer Electrolytes via Free-Radical Polymerization Method. Polymers. 2024; 16(18):2628. https://doi.org/10.3390/polym16182628
Chicago/Turabian StyleUyumaz, Fatmanur, Yerkezhan Yerkinbekova, Sandugash Kalybekkyzy, and Memet Vezir Kahraman. 2024. "Photo-Crosslinked Polyurethane—Containing Gel Polymer Electrolytes via Free-Radical Polymerization Method" Polymers 16, no. 18: 2628. https://doi.org/10.3390/polym16182628
APA StyleUyumaz, F., Yerkinbekova, Y., Kalybekkyzy, S., & Kahraman, M. V. (2024). Photo-Crosslinked Polyurethane—Containing Gel Polymer Electrolytes via Free-Radical Polymerization Method. Polymers, 16(18), 2628. https://doi.org/10.3390/polym16182628