Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = gastro retentive drug delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2729 KiB  
Article
Development of Novel Oral Delivery Systems Using Additive Manufacturing Technologies to Overcome Biopharmaceutical Challenges for Future Targeted Drug Delivery
by Micol Cirilli, Julius Krause, Andrea Gazzaniga, Werner Weitschies, Matteo Cerea and Christoph Rosenbaum
Pharmaceutics 2025, 17(1), 29; https://doi.org/10.3390/pharmaceutics17010029 - 27 Dec 2024
Cited by 2 | Viewed by 3475
Abstract
Background/Objectives: The development of targeted drug delivery systems for active pharmaceutical ingredients with narrow absorption windows is crucial for improving their bioavailability. This study proposes a novel 3D-printed expandable drug delivery system designed to precisely administer drugs to the upper small intestine, where [...] Read more.
Background/Objectives: The development of targeted drug delivery systems for active pharmaceutical ingredients with narrow absorption windows is crucial for improving their bioavailability. This study proposes a novel 3D-printed expandable drug delivery system designed to precisely administer drugs to the upper small intestine, where absorption is most efficient. The aim was to design, prototype, and evaluate the system’s functionality for organ retention and targeted drug release. Methods: The system was created using 3D printing technologies, specifically FDM and SLA, with materials such as PLA and HPMC. The device was composed of matrices and springs, with different spring geometries (diameter, coil number, and cross-sectional shape) being tested for strength and flexibility. A gastro-resistant string was used to maintain the device in a compact configuration until it reached the neutral pH environment of the small intestine, where the string dissolved. The mechanical performance of the springs was evaluated using a texture analyzer, and the ability of the system to expand upon pH change was tested in simulated gastrointestinal conditions. Results: The results demonstrated that the system remained in the space-saving configuration for two hours under acidic conditions. Upon a pH change to 6.8, the system expanded as expected, with opening times of 5.5 ± 1.2 min for smaller springs and 2.5 ± 0.3 min for larger springs. The device was able to regain its expanded state, suggesting its potential for controlled drug release in the small intestine. Conclusions: This prototype represents a promising approach for targeted drug delivery to the upper small intestine, offering a potential alternative for drugs with narrow absorption windows. While the results are promising, further in vivo studies are necessary to assess the system’s clinical potential and mechanical stability in real gastrointestinal conditions. Full article
(This article belongs to the Special Issue 3D Printing of Drug Delivery Systems)
Show Figures

Graphical abstract

24 pages, 5375 KiB  
Article
Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System
by Sadia Rehman, Qazi Adnan Jamil, Sobia Noreen, Muhammad Azeem Ashraf, Asadullah Madni, Hassan Mahmood, Hina Shoukat and Muhammad Rafi Raza
Pharmaceutics 2024, 16(11), 1451; https://doi.org/10.3390/pharmaceutics16111451 - 13 Nov 2024
Cited by 4 | Viewed by 2486
Abstract
Background: Despite extensive research over the decades, cancer therapy is still a great challenge because of the non-specific delivery of chemotherapeutic agents, which could be overcome by limiting the distribution of chemotherapeutic agents toward cancer cells. Objective: To reduce the cytolytic effects against [...] Read more.
Background: Despite extensive research over the decades, cancer therapy is still a great challenge because of the non-specific delivery of chemotherapeutic agents, which could be overcome by limiting the distribution of chemotherapeutic agents toward cancer cells. Objective: To reduce the cytolytic effects against cancer cells, graphene oxide (GO) nanoparticles (NPs) can load anticancer medicines and genetic tools. Methodology: During the current study, folic-acid-conjugated graphene oxide (Fa-GO) hybrid mucoadhesive chitosan (CS)-based hydrogel beads were fabricated through an “ion-gelation process”, which allows for regulated medication release at malignant pH. Results: The fabricated chitosan–alginate (SA-CS) hydrogel beads were examined using surface morphology, optical microscopy, XRD, FTIR, and homogeneity analysis techniques. The size analysis indicated that the size of the Fa-GO was up to 554.2 ± 95.14 nm, whereas the beads were of a micrometer size. The folic acid conjugation was confirmed by NMR. The results showed that the craggy edges of the graphene oxide were successfully encapsulated in a polymeric matrix. The mucoadhesive properties were enhanced with the increase in the CS concentration. The nanohybrid SA-CS beads exhibited good swelling properties, and the drug release was 68.29% at pH 5.6 during a 24 h investigation. The accelerated stability study, according to ICH guidelines, indicated that the hydrogel beads have a shelf-life of more than two years. Conclusions: Based on the achieved results, it can be concluded that this novel gastro-retentive delivery system may be a viable and different way to improve the stomach retention of anticancer agents and enhance their therapeutic effectiveness. Full article
Show Figures

Graphical abstract

34 pages, 498 KiB  
Review
Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions
by Penelope N. Rampedi, Modupe O. Ogunrombi and Oluwatoyin A. Adeleke
Pharmaceutics 2024, 16(6), 712; https://doi.org/10.3390/pharmaceutics16060712 - 26 May 2024
Cited by 7 | Viewed by 2934
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in [...] Read more.
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments. Full article
16 pages, 2171 KiB  
Article
Fused Deposition Modelling 3D-Printed Gastro-Retentive Floating Device for Propranolol Hcl Tablets
by Abdulsalam A. Alqahtani, Abdul Aleem Mohammed, Farhat Fatima and Mohammed Muqtader Ahmed
Polymers 2023, 15(17), 3554; https://doi.org/10.3390/polym15173554 - 26 Aug 2023
Cited by 16 | Viewed by 2633
Abstract
Three-dimensional printing has revolutionized drug manufacturing and has provided a solution to the limitations associated with the conventional manufacturing method by designing complex drug delivery systems with customized drug release profiles for personalized therapies. The present investigation aims to design a gastric floating [...] Read more.
Three-dimensional printing has revolutionized drug manufacturing and has provided a solution to the limitations associated with the conventional manufacturing method by designing complex drug delivery systems with customized drug release profiles for personalized therapies. The present investigation aims to design a gastric floating tablet with prolonged gastric floating time and sustained drug release profile. In the present study, a gastro retentive floating device (GRFD) was designed and fabricated using a fused deposition modelling (FDM)-based 3D printing technique. This device acts as a multifunctional dosage form exhibiting prolonged gastric retention time and sustained drug release profile with improved oral bioavailability in the upper gastrointestinal tract. Commercial polyvinyl alcohol (PVA) and polylactic acid (PLA) filaments were used to design GRFD, which was comprised of dual compartments. The outer sealed compartment acts as an air-filled chamber that imparts buoyancy to the device and the inner compartment is filled with a commercial propranolol hydrochloride immediate-release tablet. The device is designed as a round-shaped shell with a central opening of varying size (1 mm, 2 mm, 3 mm, and 4 mm), which acts as a drug release window. Scanning electron microscope (SEM) images were used to determine morphological characterization. The in vitro buoyancy and drug release were evaluated using the USP type II dissolution apparatus. All the designed GRFDs exhibit good floating ability and sustained drug release profiles. GRFDs fabricated using PLA filament show maximum buoyancy (>24 h) and sustained drug release for up to 10 h. The floating ability and drug release from the developed devices were governed by the drug release window opening size and the filament material affinity towards the gastric fluid. The designed GRFDs show great prospects in modifying the drug release characteristics and could be applied to any conventional immediate-release product. Full article
(This article belongs to the Special Issue High-Performance 3D Printing Polymers)
Show Figures

Graphical abstract

18 pages, 3248 KiB  
Article
Preparation, Characterization and Evaluation of Flavonolignan Silymarin Effervescent Floating Matrix Tablets for Enhanced Oral Bioavailability
by Sher Ahmad, Jamshaid Ali Khan, Tabassum Naheed Kausar, Mater H. Mahnashi, Ali Alasiri, Abdulsalam A. Alqahtani, Thamer S. Alqahtani, Ismail A. Walbi, Osama M. Alshehri, Osman A. Elnoubi, Fawad Mahmood and Abdul Sadiq
Molecules 2023, 28(6), 2606; https://doi.org/10.3390/molecules28062606 - 13 Mar 2023
Cited by 18 | Viewed by 3306
Abstract
The convenient and highly compliant route for the delivery of active pharmaceutical ingredients is the tablet. A versatile platform of tablets is available for the delivery of therapeutic agents to the gastrointestinal tract. This study aimed to prepare gastro retentive drug delivery floating [...] Read more.
The convenient and highly compliant route for the delivery of active pharmaceutical ingredients is the tablet. A versatile platform of tablets is available for the delivery of therapeutic agents to the gastrointestinal tract. This study aimed to prepare gastro retentive drug delivery floating tablets of silymarin to improve its oral bioavailability and solubility. Hydroxypropyl methylcellulose (HPMCK4M and HPMCK15), Carbopol 934p and sodium bicarbonate were used as a matrix, floating enhancer and gas generating agent, respectively. The prepared tablets were evaluated for physicochemical parameters such as hardness, weight variation, friability, floating properties (floating lag time, total floating time), drug content, stability study, in vitro drug release, in vivo floating behavior and in vivo pharmacokinetics. The drug–polymer interaction was studied by Differential Scanning Calorimetry (DSC) thermal analysis and Fourier transform infrared (FTIR). The floating lag time of the formulation was within the prescribed limit (<2 min). The formulation showed good matrix integrity and retarded the release of drug for >12 h. The dissolution can be described by zero-order kinetics (r2 = 0.979), with anomalous diffusion as the release mechanism (n = 0.65). An in vivo pharmacokinetic study showed that Cmax and AUC were increased by up to two times in comparison with the conventional dosage form. An in vivo imaging study showed that the tablet was present in the stomach for 12 h. It can be concluded from this study that the combined matrix system containing hydrophobic and hydrophilic polymers min imized the burst release of the drug from the tablet and achieved a drug release by zero-order kinetics, which is practically difficult with only a hydrophilic matrix. An in vivo pharmacokinetic study elaborated that the bioavailability and solubility of silymarin were improved with an increased mean residence time. Full article
Show Figures

Figure 1

14 pages, 1014 KiB  
Article
In Vivo Evaluation of Thiamine Hydrochloride with Gastro-Retentive Drug Delivery in Healthy Human Volunteers Using Gamma Scintigraphy
by Li-Ying Kam, Jia-Woei Wong and Kah-Hay Yuen
Pharmaceutics 2023, 15(2), 691; https://doi.org/10.3390/pharmaceutics15020691 - 17 Feb 2023
Cited by 6 | Viewed by 2647
Abstract
A floating tablet system containing thiamine hydrochloride, a model drug with a narrow absorption window, was evaluated. The tablet was found to have a floating lag time of less than 30 s with a sustained drug release over 12 h during in vitro [...] Read more.
A floating tablet system containing thiamine hydrochloride, a model drug with a narrow absorption window, was evaluated. The tablet was found to have a floating lag time of less than 30 s with a sustained drug release over 12 h during in vitro dissolution studies. The gastro-retentive property of the tablet in relation to the bioavailability of thiamine was determined in healthy human volunteers using gamma scintigraphy under fasted and fed conditions. The gastro-retentive time of the floating tablet could be prolonged up to 10 h under the fed state, compared to about 1.8 h in the fasted state. The prolonged gastric retention under the fed state resulted in a 2.8-fold increase in oral bioavailability of thiamine compared to that of the fasted state. There was also a 1.4-fold increase in thiamine absorption compared to that of a conventional immediate release tablet in the fed state. In the fasted state, the extent of thiamine absorption from the floating tablet was only about 70% of that absorbed from the immediate release tablet. Thus, to achieve a better performance, such floating tablet systems should be administered under a fed condition, to prolong the gastric retention time. Full article
(This article belongs to the Special Issue New Technology for Prolonged Drug Release)
Show Figures

Figure 1

18 pages, 2657 KiB  
Article
Clarithromycin and Pantoprazole Gastro-Retentive Floating Bilayer Tablet for the Treatment of Helicobacter Pylori: Formulation and Characterization
by Ghufran Ullah, Asif Nawaz, Muhammad Shahid Latif, Kifayat Ullah Shah, Saeed Ahmad, Fatima Javed, Mulham Alfatama, Siti Aisyah Abd Ghafar and Vuanghao Lim
Gels 2023, 9(1), 43; https://doi.org/10.3390/gels9010043 - 4 Jan 2023
Cited by 10 | Viewed by 5389
Abstract
Bilayer/multilayer tablets have been introduced to formulate incompatible components for compound preparations, but they are now more commonly used to tailor drug release. This research aimed to formulate a novel gastro-retentive tablet to deliver a combination of a fixed dose of two drugs [...] Read more.
Bilayer/multilayer tablets have been introduced to formulate incompatible components for compound preparations, but they are now more commonly used to tailor drug release. This research aimed to formulate a novel gastro-retentive tablet to deliver a combination of a fixed dose of two drugs to eliminate Helicobacter pylori (H. pylori) in the gastrointestinal tract. The bilayer tablets were prepared by means of the direct compression technique. The controlled-release bilayer tablets were prepared using various hydrophilic swellable polymers (sodium alginate, chitosan, and HPMC-K15M) alone and in combination to investigate the percent of swelling behavior and average drug release. The weight of the controlled-release floating layer was 500 mg, whereas the weight of the floating tablets of pantoprazole was 100 mg. To develop the most-effective formulation, the effects of the experimental components on the floating lag time, the total floating time, T 50%, and the amount of drug release were investigated. The drugs’ and excipients’ compatibilities were evaluated using ATR-FTIR and DSC. Pre-compression and post-compression testing were carried out for the prepared tablets, and they were subjected to in vitro characterization studies. The pantoprazole layer of the prepared tablet demonstrated drug release (95%) in 2 h, whereas clarithromycin demonstrated sustained drug release (83%) for up to 24 h (F7). The present study concluded that the combination of sodium alginate, chitosan, and HPMC polymers (1:1:1) resulted in a gastro-retentive and controlled-release drug delivery system of the drug combination. Thus, the formulation of the floating bilayer tablets successfully resulted in a biphasic drug release. Moreover, the formulation (F7) offered the combination of two drugs in a single-tablet formulation containing various polymers (sodium alginate, chitosan, and HPMC polymers) as the best treatment option for local infections such as gastric ulcers. Full article
(This article belongs to the Special Issue Engineering Hydrogel for Biomedical Applications)
Show Figures

Figure 1

20 pages, 5182 KiB  
Article
Development of Novel Unfolding Film System of Itopride Hydrochloride Using Box-Behnken Design—A Gastro Retentive Approach
by Shaima Alaithan, Nimbagal Raghavendra Naveen, Prakash S. Goudanavar, Penmetsa Durga Bhavani, Beveenahalli Ramesh, Naga Prashant Koppuravuri, Santosh Fattepur, Nagaraja Sreeharsha, Anroop B. Nair, Bandar E. Aldhubiab, Pottathil Shinu and Rashed M. Almuqbil
Pharmaceuticals 2022, 15(8), 981; https://doi.org/10.3390/ph15080981 - 10 Aug 2022
Cited by 7 | Viewed by 3171
Abstract
Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges [...] Read more.
Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)’s unfolding process for controlled release. The IH-loaded unfolding film formulation was optimized using the Box-Behnken design for folding endurance and length of tested layer (LTL). Initially, the formulation was made using several anti-adhesive additives to promote the unfolding mechanism. Citric acid and sodium bicarbonate were selected as anti-adhesives based on these results. The enfolded film in a capsule shell was shown to unroll in the stomach fluids and render drug delivery up to 12 h in acidic conditions. A fabricated system should have dimensions more than the size of the relaxed pyloric sphincter, and as required, >20 mm LTL was identified. This further confirms that the residence period in the stomach is irrelevant to the fed or fasted condition. Based on desirability criteria, the formulation containing 143.83, 0.7982, and 14.6096 Eudragit L100, PEG, and sodium bicarbonate are selected as optimized formulations (O-IH-UF). The optimized formulation was further analyzed for various parameters such as tensile strength, mechanical strength, unfolding nature, degradability, and in vitro release studies. The pharmacokinetic study revealed greater AUC (area under the curve) and long half-life with the designed O-IH-UF formulation, confirming that the unfolding film type can be a favorable drug system for enhancing the bioavailability of low soluble drugs. The results showed that unfolding types of gastro retentive systems could potentiate the drugs with stability issues in an alkaline medium or those with absorption in acidic conditions. Full article
(This article belongs to the Special Issue Recent Advances in Stomach and Intesinal Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 5937 KiB  
Article
3D Printed Mini-Floating-Polypill for Parkinson’s Disease: Combination of Levodopa, Benserazide, and Pramipexole in Various Dosing for Personalized Therapy
by Hellen Windolf, Rebecca Chamberlain, Jörg Breitkreutz and Julian Quodbach
Pharmaceutics 2022, 14(5), 931; https://doi.org/10.3390/pharmaceutics14050931 - 25 Apr 2022
Cited by 44 | Viewed by 5568
Abstract
Therapy for Parkinson’s disease is quite challenging. Numerous drugs are available for symptomatic treatment, and levodopa (LD), in combination with a dopa decarboxylase inhibitor (e.g., benserazide (BZ)), has been the drug of choice for years. As the disease progresses, therapy must be supplemented [...] Read more.
Therapy for Parkinson’s disease is quite challenging. Numerous drugs are available for symptomatic treatment, and levodopa (LD), in combination with a dopa decarboxylase inhibitor (e.g., benserazide (BZ)), has been the drug of choice for years. As the disease progresses, therapy must be supplemented with a dopamine agonist (e.g., pramipexole (PDM)). Side effects increase, as do the required dose and dosing intervals. For these specific requirements of drug therapy, the 3D printing method fused deposition modelling (FDM) was applied in this study for personalized therapy. Hot melt extrusion was utilized to produce two different compositions into filaments: PDM and polyvinyl alcohol for rapid drug release and a fixed combination of LD/BZ (4:1) in an ethylene-vinyl acetate copolymer matrix for prolonged drug release. Since LD is absorbed in the upper gastrointestinal tract, a formulation that floats in gastric fluid was desired to prolong API absorption. Using the FDM 3D printing process, different polypill geometries were printed from both filaments, with variable dosages. Dosage forms with 15–180 mg LD could be printed, showing similar release rates (f2 > 50). In addition, a mini drug delivery dosage form was printed that released 75% LD/BZ within 750 min and could be used as a gastric retentive drug delivery system due to the floating properties of the composition. The floating mini-polypill was designed to accommodate patients’ swallowing difficulties and to allow for individualized dosing with an API release over a longer period of time. Full article
(This article belongs to the Special Issue The Evolution of Pharmaceutical Three-Dimensional Printing)
Show Figures

Graphical abstract

9 pages, 13907 KiB  
Article
Mucoadhesive Electrospun Nanofiber-Based Hybrid System with Controlled and Unidirectional Release of Desmopressin
by Mai Bay Stie, Johan Ring Gätke, Ioannis S. Chronakis, Jette Jacobsen and Hanne Mørck Nielsen
Int. J. Mol. Sci. 2022, 23(3), 1458; https://doi.org/10.3390/ijms23031458 - 27 Jan 2022
Cited by 15 | Viewed by 3451
Abstract
The sublingual mucosa is an attractive route for drug delivery, although challenged by a continuous flow of saliva that leads to a loss of drug by swallowing. It is of great benefit that drugs absorbed across the sublingual mucosa avoid exposure to the [...] Read more.
The sublingual mucosa is an attractive route for drug delivery, although challenged by a continuous flow of saliva that leads to a loss of drug by swallowing. It is of great benefit that drugs absorbed across the sublingual mucosa avoid exposure to the harsh environment of the gastro-intestinal lumen; this is especially beneficial for drugs of low physicochemical stability such as therapeutic peptides. In this study, a two-layered hybrid drug delivery system was developed for the sublingual delivery of the therapeutic peptide desmopressin. It consisted of peptide-loaded mucoadhesive electrospun chitosan/polyethylene oxide-based nanofibers (mean diameter of 183 ± 20 nm) and a saliva-repelling backing film to promote unidirectional release towards the mucosa. Desmopressin was released from the nanofiber-based hybrid system (approximately 80% of the loaded peptide was released within 45 min) in a unidirectional manner in vitro. Importantly, the nanofiber–film hybrid system protected the peptide from wash-out, as demonstrated in an ex vivo flow retention model with porcine sublingual mucosal tissue. Approximately 90% of the loaded desmopressin was retained at the surface of the ex vivo porcine sublingual mucosa after 15 min of exposure to flow rates representing salivary flow. Full article
Show Figures

Figure 1

14 pages, 3343 KiB  
Article
Floating Ricobendazole Delivery Systems: A 3D Printing Method by Co-Extrusion of Sodium Alginate and Calcium Chloride
by Giovanni Falcone, Juan P. Real, Santiago D. Palma, Rita P. Aquino, Pasquale Del Gaudio, Emilia Garofalo and Paola Russo
Int. J. Mol. Sci. 2022, 23(3), 1280; https://doi.org/10.3390/ijms23031280 - 24 Jan 2022
Cited by 22 | Viewed by 4701
Abstract
At present, the use of benzimidazole drugs in veterinary medicine is strongly limited by both pharmacokinetics and formulative issues. In this research, the possibility of applying an innovative semi-solid extrusion 3D printing process in a co-axial configuration was speculated, with the aim of [...] Read more.
At present, the use of benzimidazole drugs in veterinary medicine is strongly limited by both pharmacokinetics and formulative issues. In this research, the possibility of applying an innovative semi-solid extrusion 3D printing process in a co-axial configuration was speculated, with the aim of producing a new gastro-retentive dosage form loaded with ricobendazole. To obtain the drug delivery system (DDS), the ionotropic gelation of alginate in combination with a divalent cation during the extrusion was exploited. Two feeds were optimized in accordance with the printing requirements and the drug chemical properties: the crosslinking ink, i.e., a water ethanol mixture containing CaCl2 at two different ratios 0.05 M and 0.1 M, hydroxyethyl cellulose 2% w/v, Tween 85 0.1% v/v and Ricobendazole 5% w/v; and alginate ink, i.e., a sodium alginate solution at 6% w/v. The characterization of the dried DDS obtained from the extrusion of gels containing different amounts of calcium chloride showed a limited effect on the ink extrudability of the crosslinking agent, which on the contrary strongly influenced the final properties of the DDS, with a difference in the polymeric matrix toughness and resulting effects on floating time and drug release. Full article
(This article belongs to the Special Issue 3D Printing and Biomaterials for Biological and Medical Application)
Show Figures

Figure 1

13 pages, 250 KiB  
Article
Floating Matrix Dosage Form for Propranolol Hydrochloride Based on Gas Formation Technique: Development and In Vitro Evaluation
by Kiran CHATURVEDI, S. UMADEVI and Subhash VAGHANI
Sci. Pharm. 2010, 78(4), 927-940; https://doi.org/10.3797/scipharm.0909-02 - 26 Sep 2010
Cited by 40 | Viewed by 2171
Abstract
Gastroretentive tablets of propranolol hydrochloride were developed by direct compression method using citric acid and sodium bicarbonate as the effervescent base. Hydroxypropyl methylcellulose; HPMC K15M was used to prepare the floating tablets to retard the drug release for 12h in stomach. Na-carboxymethyl cellulose [...] Read more.
Gastroretentive tablets of propranolol hydrochloride were developed by direct compression method using citric acid and sodium bicarbonate as the effervescent base. Hydroxypropyl methylcellulose; HPMC K15M was used to prepare the floating tablets to retard the drug release for 12h in stomach. Na-carboxymethyl cellulose (NaCMC) or carbopol 934P was added to alter the drug release profile or the dimensional stability of the formulation. Dicalcium phosphate (DCP) was used as filler. Formulations were evaluated for floating lag time, duration of floating, dimensional stability, drug content and in vitro drug release profile. The formulations were found to have floating lag time less than 1min. It was found that the dimensional stability of the formulations increase with increasing concentration of the swelling agent. The release mechanism of propranolol hydrochloride from floating tablets was evaluated on the basis of Peppas and Higuchi model. The ‘n’ value of the formulations ranged from 0.5201 to 0.7367 (0.5<n<1.0) which indicated anomalous (non-Fickian) transport mechanism. Formulation containing 27.5% HPMC K15M, 29% DCP, 3.75% citric acid and 18.75% sodium bicarbonate seemed most desirable. FTIR, DSC and XRPD studies indicated the absence of any significant chemical interaction within dug and excipients. Stability study of optimized formulation revealed no significant change and found to be stable. Full article
17 pages, 360 KiB  
Article
Design and Development of a Self Correcting Monolithic Gastroretentive Tablet of Baclofen
by Rishad R. JIVANI, Chhagan N. PATEL and Nuruddin P. JIVANI
Sci. Pharm. 2009, 77(3), 651-668; https://doi.org/10.3797/scipharm.0905-11 - 24 Jul 2009
Cited by 11 | Viewed by 1507
Abstract
The present investigation describes the design and development of selfcorrecting monolithic Gastroretentive system of baclofen. Tablets were prepared by direct compression method. Optimization was carried out using simplex lattice design. Drug released at 2h, 4h, 8h, and floating lag time were considered as [...] Read more.
The present investigation describes the design and development of selfcorrecting monolithic Gastroretentive system of baclofen. Tablets were prepared by direct compression method. Optimization was carried out using simplex lattice design. Drug released at 2h, 4h, 8h, and floating lag time were considered as response variables related to percentages of diluent (MCC), Polyethylene oxide (PEO) and sodium bicarbonate. Tablets were evaluated for in-vitro buoyancy, in-vitro drug release, swelling index and ex-vivo bioadhesion studies. The similarity factor (f2) was used as a base to compare dissolution profiles. Drug release data was fitted into different kinetic models. The floating lag time and floating time were found to be 2min and 12h respectively. Increasing trend in bioadhesive strength was observed with an increase in the amount of PEO. The experimental values of Q2, Q4 and Q8 for check point batch were found to be 30.8%, 44.1% and 69.9% respectively. Similarity factor (f2) for check point batch was 78.08. Kinetics of drug release from tablet followed Korsmeyer–Peppas model by anamolous non-fickian diffusion. It was concluded that gastroretentive tablet of baclofen can be prepared via floating and bioadhesion mechanism to increase residence time of drug in stomach and there by increases absorption. Full article
Back to TopTop