Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = gas-insulated line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5654 KB  
Article
Analysis of the Influence of Structural Defects on the Insulation of GIL Basin Insulator Under AC Electric Field
by Zhuoran Yang, Yue Wang, Jian Liu, Hongze Li, Lixiang Lv and Xiaolong Li
Energies 2025, 18(20), 5347; https://doi.org/10.3390/en18205347 - 11 Oct 2025
Viewed by 380
Abstract
Basin insulator is a critical component of gas-insulated transmission line (GIL) systems. Air gap defects and surface crack defects may form in basin insulators due to casting, installation, or transport processes. This phenomenon poses a significant threat to long-term safety and stability and [...] Read more.
Basin insulator is a critical component of gas-insulated transmission line (GIL) systems. Air gap defects and surface crack defects may form in basin insulators due to casting, installation, or transport processes. This phenomenon poses a significant threat to long-term safety and stability and may even lead to partial discharges. This study establishes a simulation model of a GIL system-incorporating insulator to systematically analyze the influence patterns of various defects on the insulation characteristics of the basin insulator. Meanwhile, an equation predicting the relationship between defect size and maximum electric field strength is derived. The research revealed the following: For short air gap defects near the conductor, increasing length reduces their impact on the surrounding electric field, with the radius having minimal effect; for long air gap defects near the conductor, increasing length amplifies their influence. Smooth air gap defects distant from the conductor show negligible variation in maximum electric field strength with increasing length, while unsmooth air gap defects exhibit more pronounced effects at shorter lengths. Under identical conditions, unsmooth air gap defects demonstrate greater influence on the electric field than smooth ones. For elliptical surface defects, variations in radius show the strongest distortion. The degree of influence from surface crack defects correlates directly with their proximity to the conductor. These findings provide critical diagnostic criteria for assessing the insulation performance of basin insulator under damaged conditions. Full article
Show Figures

Figure 1

16 pages, 2209 KB  
Article
The Interference Mechanism and Regularity Analysis of Gas Pipelines Affected by High-Speed Rail Based on Field Testing and Numerical Simulation
by Yuxing Zhang, Caigang Ge, Ziru Chang, Yanxia Du, Minxu Lu and Zitao Jiang
Materials 2025, 18(17), 4203; https://doi.org/10.3390/ma18174203 - 8 Sep 2025
Viewed by 676
Abstract
By monitoring the alternating interference voltage at the intersections and parallels of gas pipelines with high-speed railways, the alternating voltage between the high-speed railway track supports and the ground, the alternating ground voltage gradient along parallel and perpendicular high-speed railway tracks, and the [...] Read more.
By monitoring the alternating interference voltage at the intersections and parallels of gas pipelines with high-speed railways, the alternating voltage between the high-speed railway track supports and the ground, the alternating ground voltage gradient along parallel and perpendicular high-speed railway tracks, and the timing of train passages, the interference patterns caused by high-speed railways on pipelines are analyzed. A numerical model was developed to elucidate interference mechanisms. The conclusions indicate that the interference caused by the parallel and intersecting presence of high-speed railways and pipelines is far greater than that caused solely by the intersection of railways and pipelines. The peak alternating voltage interference on pipelines occurs at the insulation joints of the pipelines, the positions of the pipelines corresponding to the high-speed railway track circuits (AT), and the positions of the pipelines corresponding to the passage of trains. The alternating interference caused by high-speed railway lines on pipelines involves both resistive coupling interference and electromagnetic induction coupling interference, with the latter dominating. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

29 pages, 1494 KB  
Article
Advanced and Robust Numerical Framework for Transient Electrohydrodynamic Discharges in Gas Insulation Systems
by Philipp Huber, Julian Hanusrichter, Paul Freden and Frank Jenau
Eng 2025, 6(8), 194; https://doi.org/10.3390/eng6080194 - 6 Aug 2025
Viewed by 595
Abstract
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable [...] Read more.
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable and consistent modeling of the space charge density under realistic conditions. The core component of the framework is a discontinuous Galerkin method that ensures the conservative properties of the underlying hyperbolic problem. The space charge density at the electrode surface is imposed as a dynamic boundary condition via Lagrange multipliers. To increase the numerical stability and convergence rate, a homotopy approach is also integrated. For the experimental validation, a measurement concept was realised that uses a subtraction method to specifically remove the displacement current component in the signal and thus enables an isolated recording of the transient ion current with superimposed voltage stresses. The experimental results on a small scale agree with the numerical predictions and prove the quality of the model. On this basis, the framework is transferred to hybrid HVDC overhead line systems with a bipolar design. In the event of a fault, significant transient space charge densities can be seen there, especially when superimposed with new types of voltage waveforms. The framework thus provides a reliable contribution to insulation coordination in complex HVDC systems and enables the realistic analysis of electrohydrodynamic coupling effects on an industrial scale. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

20 pages, 6122 KB  
Article
Surface Charge and Electric Field Distribution of Direct-Current Gas-Insulated Transmission Lines’ Basin-Type Insulators Under Multi-Field Coupling
by Junran Jia, Xin Lin, Zhenxin Geng and Jianyuan Xu
Appl. Sci. 2025, 15(13), 7061; https://doi.org/10.3390/app15137061 - 23 Jun 2025
Cited by 1 | Viewed by 1020
Abstract
In direct-current gas-insulated transmission lines (DC GIL), complex heat transfer processes accelerate surface charge accumulation on insulators, causing local electric field distortion and elevating the risk of surface flashover. This study develops a three-dimensional multi-physics coupled mathematical model for ±200 kV DC GIL [...] Read more.
In direct-current gas-insulated transmission lines (DC GIL), complex heat transfer processes accelerate surface charge accumulation on insulators, causing local electric field distortion and elevating the risk of surface flashover. This study develops a three-dimensional multi-physics coupled mathematical model for ±200 kV DC GIL basin-type insulators. The bulk and surface conductivity of insulator materials were experimentally measured under varying temperature and electric field conditions, with fitting equations derived to describe their behavior. The model investigates surface charge accumulation and electric field distribution under DC voltage and polarity-reversal conditions, incorporating multi-field coupling effects. Results show that, at a 3150 A current in a horizontally arranged DC GIL, insulator temperatures reach approximately 62.8 °C near the conductor and 32 °C near the enclosure, with the convex surface exhibiting higher temperatures than the concave surface and distinct radial variations. Under DC voltage, surface charge accumulates faster in high-temperature regions, with both charge and electric field distributions stabilizing after approximately 300 h, following significant changes within the first 40 h. Following stabilization, the distribution of surface charge and electric field varies across different radial directions. During polarity reversal, residual surface charges cause electric field distortion, increasing maximum field strength by 13.6% and 47.2% on the convex and concave surfaces, respectively, with greater distortion on the concave surface, as calculated from finite element simulations with a numerical accuracy of ±0.5% based on mesh convergence and solver tolerance. These findings offer valuable insights for enhancing DC GIL insulation performance. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

19 pages, 7047 KB  
Article
Insulation Defect Diagnosis Using a Random Forest Algorithm with Optimized Feature Selection in a Gas-Insulated Line Breaker
by Gyeong-Yeol Lee and Gyung-Suk Kil
Electronics 2025, 14(10), 1940; https://doi.org/10.3390/electronics14101940 - 9 May 2025
Cited by 1 | Viewed by 806
Abstract
Fault diagnosis based on the partial discharge (PD) recognition has been widely applied on a gas-insulated line breaker (GILB) and gas-insulated switchgear (GIS) as a reliable online condition monitoring method. This paper dealt with insulation defect diagnosis based on a Random Forest (RF) [...] Read more.
Fault diagnosis based on the partial discharge (PD) recognition has been widely applied on a gas-insulated line breaker (GILB) and gas-insulated switchgear (GIS) as a reliable online condition monitoring method. This paper dealt with insulation defect diagnosis based on a Random Forest (RF) algorithm with an optimized feature selection method. Four different types of insulation defect models, such as the free-moving particle (FMP) defect, the protrusion-on-conductor (POC) defect, the protrusion-on-enclosure (POE) defect, and the delamination defect, were prepared to simulate representative PD single pulses and PRPD patterns generated from the GILB. The PD signals generated from defect models were detected using the PRPD sensor which can detect phase-synchronized PD signals with the applied high-voltage (HV) signals without the need for additional equipment. Various statistical PD features were extracted from PD single pulses and PRPD patterns according to four kinds of PD defect models, and optimized features were selected with respect to variance importance analysis. Two kinds of PD datasets were established using all statistical features and top-ranked features. From the experimental results, the RF algorithm achieved accuracy rates exceeding 92%, and the PD datasets using only half of the statistical PD features could reduce the computational times while maintaining the accuracy rates. Full article
(This article belongs to the Special Issue Fault Detection Technology Based on Deep Learning)
Show Figures

Figure 1

22 pages, 5840 KB  
Article
Fast Monocular Measurement via Deep Learning-Based Object Detection for Real-Time Gas-Insulated Transmission Line Deformation Monitoring
by Guiyun Yang, Wengang Yang, Entuo Li, Qinglong Wang, Huilong Han, Jie Sun and Meng Wang
Energies 2025, 18(8), 1898; https://doi.org/10.3390/en18081898 - 8 Apr 2025
Viewed by 830
Abstract
Deformation monitoring of Gas-Insulated Transmission Lines (GILs) is critical for the early detection of structural issues and for ensuring safe power transmission. In this study, we introduce a rapid monocular measurement method that leverages deep learning for real-time monitoring. A YOLOv10 model is [...] Read more.
Deformation monitoring of Gas-Insulated Transmission Lines (GILs) is critical for the early detection of structural issues and for ensuring safe power transmission. In this study, we introduce a rapid monocular measurement method that leverages deep learning for real-time monitoring. A YOLOv10 model is developed for automatically identifying regions of interest (ROIs) that may exhibit deformations. Within these ROIs, grayscale data is used to dynamically set thresholds for FAST corner detection, while the Shi–Tomasi algorithm filters redundant corners to extract unique feature points for precise tracking. Subsequent subpixel refinement further enhances measurement accuracy. To correct image tilt, ArUco markers are employed for geometric correction and to compute a scaling factor based on their known edge lengths, thereby reducing errors caused by non-perpendicular camera angles. Simulated experiments validate our approach, demonstrating that combining refined ArUco marker coordinates with manually annotated features significantly improves detection accuracy. Our method achieves a mean absolute error of no more than 1.337 mm and a processing speed of approximately 0.024 s per frame, meeting the precision and efficiency requirements for GIL deformation monitoring. This integrated approach offers a robust solution for long-term, real-time monitoring of GIL deformations, with promising potential for practical applications in power transmission systems. Full article
Show Figures

Figure 1

22 pages, 1918 KB  
Article
Data-Driven Dynamics Learning on Time Simulation of SF6 HVDC-GIS Conical Solid Insulators
by Kenji Urazaki Junior, Francesco Lucchini and Nicolò Marconato
Electronics 2025, 14(3), 616; https://doi.org/10.3390/electronics14030616 - 5 Feb 2025
Viewed by 1196
Abstract
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This [...] Read more.
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This article explores machine learning methods to derive time to steady state, dark current, gas conductivity, and surface charge density expressions. The focus was on constructing symbolic representations, which could be interpretable and less prone to overfitting, using the symbolic regression (SR) and sparse identification of nonlinear dynamics (SINDy) algorithms. The study successfully derived the intended expressions, demonstrating the power of symbolic regression. Predictions of dark currents in the gas–ground electrode interface reported an absolute error and mean absolute percentage error (MAPE) of 1.04 × 104 pA and 0.01%, respectively. The solid–ground electrode interface reported an error of 8.99 × 105 pA and MAPE of 0.04%, showing strong agreement with simulation data. Expressions for time to steady state had a test error of approximately 110 h with MAPE of around 3%. Steady-state gas conductivity expression achieved an absolute error of 0.55 log(S/m) and MAPE of 1%. An interpretable equation was created with SINDy to model the time evolution of surface charge density, achieving a root mean squared error of 1.12 nC/m2/s across time-series data. These results demonstrate the capability of SR and SINDy to provide interpretable and computationally efficient alternatives to time-consuming numerical simulations of HVDC systems under radiation conditions. While the model provides useful insights, performance and practical applications of the expressions can improve with more diverse datasets, which might include experimental data in the future. Full article
Show Figures

Figure 1

16 pages, 7215 KB  
Article
Modeling Approaches for Accounting Radiation-Induced Effect in HVDC-GIS Design for Nuclear Fusion Applications
by Francesco Lucchini, Alessandro Frescura, Kenji Urazaki Junior, Nicolò Marconato and Paolo Bettini
Appl. Sci. 2024, 14(24), 11666; https://doi.org/10.3390/app142411666 - 13 Dec 2024
Cited by 1 | Viewed by 1195
Abstract
This paper examines the modeling approaches used to analyze the electric field distribution in high-voltage direct-current gas-insulated systems (HVDC-GISs) used for the acceleration grid power supply (AGPS) of neutral beam injectors (NBIs). A key challenge in this context is the degradation of dielectric [...] Read more.
This paper examines the modeling approaches used to analyze the electric field distribution in high-voltage direct-current gas-insulated systems (HVDC-GISs) used for the acceleration grid power supply (AGPS) of neutral beam injectors (NBIs). A key challenge in this context is the degradation of dielectric performance due to radiation-induced conductivity (RIC), a phenomenon specific to the harsh radioactive environments near fusion reactors. Traditional models for gas conductivity in HVDC-GISs often rely on constant or nonlinear conductivity formulations, which are based on experimental data but fail to capture the effects of external ionizing radiation that triggers RIC. To address this limitation, a more advanced approach, the drift–diffusion recombination (DDR) model, is used, as it more accurately represents gas ionization and the influence of radiation fields. However, this increased accuracy comes at the cost of higher computational complexity. This paper compares the different modeling strategies, discussing their strengths and weaknesses, with a focus on the capabilities in evaluating the charge accumulation and the RIC phenomenon. Full article
(This article belongs to the Special Issue Novel Approaches and Challenges in Nuclear Fusion Engineering)
Show Figures

Figure 1

17 pages, 9807 KB  
Article
Comparative Study on Fire Resistance of Different Thermal Insulation Materials for Electric Vehicle Tunnel Fire
by Xiaojun Li and Yuanwei Cheng
Appl. Sci. 2024, 14(24), 11533; https://doi.org/10.3390/app142411533 - 11 Dec 2024
Cited by 2 | Viewed by 2364
Abstract
With the growing prevalence of lithium battery electric vehicles, the incidence of fires resulting from thermal runaway in lithium batteries is also on the rise. In contrast to conventional fuel vehicle fires, fires involving lithium battery electric vehicles exhibit distinct differences in fire [...] Read more.
With the growing prevalence of lithium battery electric vehicles, the incidence of fires resulting from thermal runaway in lithium batteries is also on the rise. In contrast to conventional fuel vehicle fires, fires involving lithium battery electric vehicles exhibit distinct differences in fire dynamics, fire loads, and smoke characteristics. These variations impose more stringent requirements on the design of passive fire protection systems within tunnels. To evaluate the fire resistance performance of existing passive fire protection systems under electric vehicle fire conditions, this study first used PyroSim software 2022 (integrating FDS 6.7.9) to establish fire models for combustion engine trucks and electric trucks, comparing the combustion characteristics of both types of fires without insulation lining materials. Based on the electric truck fire model, different insulation lining materials were added. The analysis of the simulation results focused on the impact of the thermal conductivity and emissivity of each lining material on peak tunnel temperatures, aiming to identify the insulation lining material with the best fire resistance performance. The results indicate that the heat release rate, temperature distribution, toxic gas concentration, and smoke propagation of lithium battery combustion engine truck fires are all higher than those of combustion engine truck fires. Among the five insulation lining materials studied, SiO2 gel material demonstrated superior fire resistance compared to the others. This research provides a scientific and rational basis for tunnel fire protection design and fire response strategies, aiming to mitigate the damage caused by lithium battery electric vehicle fires to tunnel lining structures. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

14 pages, 12507 KB  
Article
Broadband Millimeter-Wave Front-End Module Design Considerations in FD-SOI CMOS vs. GaN HEMTs
by Clint Sweeney, Donald Y. C. Lie, Jill C. Mayeda and Jerry Lopez
Appl. Sci. 2024, 14(23), 11429; https://doi.org/10.3390/app142311429 - 9 Dec 2024
Cited by 1 | Viewed by 2485
Abstract
Millimeter-wave (mm-Wave) phased array systems need to meet the transmitter (Tx) equivalent isotropic radiated power (EIRP) requirement, and that depends mainly on the design of two key sub-components: (1) the antenna array and (2) the Tx power amplifier (PA) in the front-end-modules (FEMs). [...] Read more.
Millimeter-wave (mm-Wave) phased array systems need to meet the transmitter (Tx) equivalent isotropic radiated power (EIRP) requirement, and that depends mainly on the design of two key sub-components: (1) the antenna array and (2) the Tx power amplifier (PA) in the front-end-modules (FEMs). Simulations using an electromagnetic (EM) solver carried out in Cadence AWR with AXIEM suggest that for two uniform square patch antenna arrays at 24 GHz, the 4 element array has ~6 dB lower antenna gain and twice the half power beam width (HPBW) compared to the 16 element array. We also present measurements and post-layout parasitic-extracted (PEX) EM simulation data taken on two broadband mm-Wave PAs designed in our lab that cover the key portions of the fifth-generation (5G) FR2-band (i.e., 24.25–52.6 GHz) that lies between the super-high-frequency (SHF, i.e., 3–30 GHz) band and the extremely-high-frequency (EHF, i.e., 30–300 GHz) band: one designed in a 22 nm fully depleted silicon on insulator (FD-SOI) CMOS process, and the other in an advanced 40 nm Gallium Nitride (GaN) high-electron-mobility transistor (HEMT) process. The FD-SOI PA achieves saturated output power (POUT,SAT) of ~14 dBm and peak power-added efficiency (PAE) of ~20% with ~14 dB of gain and 3 dB bandwidth (BW) from ~19.1 to 46.5 GHz in measurement, while the GaN PA achieves measured POUT,SAT of ~24 dBm and peak PAE of ~20% with ~20 dB gain and 3 dB BW from ~19.9 to 35.2 GHz. The PAs’ measured data are in good agreement with the PEX EM simulated data, and 3rd Watt-level GaN PA design data are also presented, but with simulated PEX EM data only. Assuming each antenna element will be driven by one FEM and each phased array targets the same 65 dBm EIRP, millimeter wave (mm-Wave) antenna arrays using the Watt-level GaN PAs and FEMs are expected to achieve roughly 2× wider HPBW with 4× reduction in the array size compared with the arrays using Si FEMs, which shall alleviate the thorny mm-Wave line-of-sight (LOS)-blocking problems significantly. Full article
Show Figures

Figure 1

19 pages, 9136 KB  
Article
Cost-Effectiveness Evaluation of Energy-Efficient Retrofit Strategies for Pre-1930s Mid-Terrace Houses in the UK
by Praveena Pochampalli, Renata Tubelo, Lucelia Rodrigues, Mark Gillott and Robert Nash
Buildings 2024, 14(12), 3849; https://doi.org/10.3390/buildings14123849 - 30 Nov 2024
Cited by 3 | Viewed by 3297
Abstract
Buildings are a major contributor to greenhouse gas emissions, with a large portion coming from energy use in housing. In the United Kingdom (UK), most of the housing stock was built before the introduction of building regulations that address energy efficiency and, therefore, [...] Read more.
Buildings are a major contributor to greenhouse gas emissions, with a large portion coming from energy use in housing. In the United Kingdom (UK), most of the housing stock was built before the introduction of building regulations that address energy efficiency and, therefore, needs to be retrofitted if net-zero emission targets are to be met. In this paper, the authors present a study of energy-efficient retrofit measures applied to a typical pre-1930s mid-terrace house, based on a home located in Nottingham, UK. Initially, a series of building envelope improvements aimed at reducing the heating demand were evaluated using dynamic building simulations. Subsequently, low-carbon heating systems were introduced, and their impact was assessed in line with the fabric improvements. Then, the annual energy costs of heating were calculated to understand the financial impact of the retrofit strategies and their cost-effectiveness. Lastly, this study also discussed the overall costs of the retrofit interventions, informed by 224 real cases, in terms of their carbon and energy impact. The findings from the simulations suggested a potential 50% reduction in the heating demand through typical fabric optimisation measures. The adoption of low-carbon heating systems resulted in a 50% reduction in carbon emissions compared to those produced by a typical gas boiler. Furthermore, following the adoption of various fabric optimisation measures, the annual running energy costs of heating decreased by 42% compared to their use in non-retrofit scenarios, highlighting the suitability of low-carbon heating such as heat pumps for installation in well-insulated homes with lower heat output demands. The results stressed the importance of coordinating fabric optimisation with the installation of low-carbon heating to maximise carbon savings and suggested that heat pumps can effectively reduce annual energy expenses and lower carbon footprints. The findings also provided an overview of the overall retrofit costs, which are usually overlooked in the literature. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 3192 KB  
Article
Suspended Slot Membrane Waveguide Based on Germanium-on-Silicon-on-Insulator at λ = 4.23 µm for CO2 Monitoring
by Muhammad A. Butt and Ryszard Piramidowicz
Micromachines 2024, 15(12), 1434; https://doi.org/10.3390/mi15121434 - 28 Nov 2024
Cited by 8 | Viewed by 1632
Abstract
In this work, we propose a novel suspended slot membrane waveguide (SSMW) utilizing a germanium-on-silicon-on-insulator (Ge-on-SOI) platform for carbon dioxide (CO2) gas-sensing applications. The design and analysis focus on the absorption line of CO2 in the mid-infrared region, specifically at [...] Read more.
In this work, we propose a novel suspended slot membrane waveguide (SSMW) utilizing a germanium-on-silicon-on-insulator (Ge-on-SOI) platform for carbon dioxide (CO2) gas-sensing applications. The design and analysis focus on the absorption line of CO2 in the mid-infrared region, specifically at a wavelength of 4.23 µm. The waveguide geometry has been precisely optimized to achieve a high evanescent field ratio (EFR) and minimize waveguide propagation losses. These optimizations significantly enhance the sensitivity of the waveguide, making it highly effective for evanescent field absorption-based gas sensing. Our optimized waveguide geometry demonstrates a notable EFR of 0.86, with a low propagation loss of just 1.07 dB/cm, and achieves a sensitivity as high as ~1.12 × 10−4 ppm−1 for SSMW lengths as short as 0.9 cm. Full article
Show Figures

Figure 1

24 pages, 8807 KB  
Article
A Study on Welding Sensitivity Assessment and Deformation Control of International Maritime Organization Type C Liquefied Natural Gas Fuel Tank Support Structures Using the Direct Inherent Strain Method
by Dong-Hee Park, Jin-Hyuk Yang, Sung-Hoon Kim, Jeong-Hyeon Kim and Jae-Myung Lee
J. Mar. Sci. Eng. 2024, 12(12), 2161; https://doi.org/10.3390/jmse12122161 - 26 Nov 2024
Cited by 1 | Viewed by 1574
Abstract
The increasing burden on shipowners and shipping companies due to environmental regulations imposed by the International Maritime Organization (IMO) has led to the adoption of various compliance strategies, including the use of low-sulfur fuel, installation of scrubbers, and the use of liquefied natural [...] Read more.
The increasing burden on shipowners and shipping companies due to environmental regulations imposed by the International Maritime Organization (IMO) has led to the adoption of various compliance strategies, including the use of low-sulfur fuel, installation of scrubbers, and the use of liquefied natural gas (LNG) as an alternative fuel. LNG is particularly prevalent in dual-fuel propulsion ships, with the IMO Type C tank being the most commonly used storage facility. The structure of the IMO Type C tank comprises a pressure vessel and supporting saddles, which can be integrated or separate systems. Despite being manufactured within specified tolerances, welding-induced deformation of the tank and saddle is inevitable since the saddle is welded directly onto the hull. In integrated tank–saddle systems, this deformation can lead to cracks in the epoxy resin, which has lower strength and stiffness, as well as burn damage to the resin and wooden blocks from welding heat. In separate tank–saddle systems, installation difficulties can arise due to interference between the fuel tank system and adjacent structures, such as insulation or the fuel preparation room (FPR), resulting from saddle deformation caused by welding. This study analyzes the sensitivity of all weld lines involved in saddle installation using the direct inherent strain (DIS) method. Based on this analysis, the initial welding deformations are evaluated in relation to the welding direction and sequence. Finally, an optimized method for saddle installation is proposed to minimize deformation. Full article
(This article belongs to the Special Issue Green Shipping Corridors and GHG Emissions)
Show Figures

Figure 1

14 pages, 1251 KB  
Article
Localization Method for Insulation Degradation Area of the Metro Rail-to-Ground Based on Monitor Information
by Aimin Wang, Yu Li, Wenxuan Yang and Guangxu Pan
Electronics 2024, 13(18), 3678; https://doi.org/10.3390/electronics13183678 - 16 Sep 2024
Cited by 1 | Viewed by 1309
Abstract
Since rail-to-ground insulation decreases, large-level direct currents (DCs) leak from railways and form metro stray currents, corroding the buried metal. To locate the rail-to-ground insulation deterioration area, a location method is proposed based on parameter identification methods and the monitored information including the [...] Read more.
Since rail-to-ground insulation decreases, large-level direct currents (DCs) leak from railways and form metro stray currents, corroding the buried metal. To locate the rail-to-ground insulation deterioration area, a location method is proposed based on parameter identification methods and the monitored information including the station rail potentials, currents at the traction power substations (TPSs), and train traction currents and train positions. According to the monitoring information of two adjacent TPSs, the section location model of the metro line is proposed, in which the rail-to-ground conductances of the test section are equivalent to the lumped parameters. Using the rail resistivity and traction currents as the known information, the rail-to-ground conductances are calculated with the least square method (LSM). The rail-to-ground insulation deterioration sections are identified by comparing the calculated conductances with thresholds determined by the standard requirements and section lengths. Then, according to the section location results, a detailed location model of the degradation section is proposed, considering the location distance accuracy. Using the genetic algorithm (GA) to calculate the rail-to-ground conductances, degradation positions are located by comparing the threshold calculated with the standard requirements and location distance accuracy. The location method is verified by comparing the calculation results under different degradation conditions. Moreover, the applications of the proposed method to different degradation lengths and different numbers of degradation sections are analyzed. The results show that the proposed method can locate rail-to-ground insulation deterioration areas. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

13 pages, 6087 KB  
Article
Online Detection of Hydrogen Fluoride under Corona Discharge in Gas-Insulated Switchgear Based on Photoacoustic Spectroscopy
by Liujie Wan, Xiaohe Zhao and Kang Li
Sensors 2024, 24(9), 2806; https://doi.org/10.3390/s24092806 - 27 Apr 2024
Cited by 2 | Viewed by 2052
Abstract
Internal discharge and overheating faults in sulfur hexafluoride (SF6) gas-insulated electrical equipment will generate a series of characteristic gas products. Hydrogen fluoride (HF) is one of the main decomposition gases under discharge failure. Because of its extremely corrosive nature, it can [...] Read more.
Internal discharge and overheating faults in sulfur hexafluoride (SF6) gas-insulated electrical equipment will generate a series of characteristic gas products. Hydrogen fluoride (HF) is one of the main decomposition gases under discharge failure. Because of its extremely corrosive nature, it can react with other materials in gas-insulated switchgear (GIS), resulting in a short existence time, so it needs to be detected online. Resonant gas photoacoustic spectroscopy has the advantage of high sensitivity, fast response, and no sample gas consumption, and can be used for the online detection of flowing gas. In this paper, a simulated GIS corona discharge experimental platform was built, and the HF generated in the discharge was detected online by gas photoacoustic spectroscopy. The absorption peak of HF molecule near 1312.59 nm was selected as the absorption spectral line, and a resonant photoacoustic cell was designed. To improve the detection sensitivity of HF, wavelength modulation and second-harmonic detection technology were used. The online monitoring of HF in the simulated GIS corona discharge fault was successfully realized. The experimental results show that the sensitivity of the designed photoacoustic spectroscopy detection system for HF is 0.445 μV/(μL/L), and the limit of detection (LOD) is 0.611 μL/L. Full article
(This article belongs to the Special Issue Photoacoustic Sensors and Devices for Gas Detection)
Show Figures

Figure 1

Back to TopTop