Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (297)

Search Parameters:
Keywords = gas seepages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 25
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

17 pages, 2495 KiB  
Article
Production Capacity and Temperature–Pressure Variation Laws in Depressurization Exploitation of Unconsolidated Hydrate Reservoir in Shenhu Sea Area
by Yuanwei Sun, Yuanfang Cheng, Yanli Wang, Jian Zhao, Xian Shi, Xiaodong Dai and Fengxia Shi
Processes 2025, 13(8), 2418; https://doi.org/10.3390/pr13082418 - 30 Jul 2025
Viewed by 260
Abstract
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law [...] Read more.
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law under depressurization exploitation. Therefore, a thermal–fluid–solid–chemical coupling model for natural gas hydrate depressurization exploitation in the Shenhu sea area was constructed to analyze the variation law of reservoir parameters and productivity. The results show that within 0–30 days, rapid near-well pressure drop (13.83→9.8 MPa, 36.37%) drives peak gas production (25,000 m3/d) via hydrate dissociation, with porosity (0.41→0.52) and permeability (75→100 mD) increasing. Within 30–60 days, slower pressure decline (9.8→8.6 MPa, 12.24%) and fines migration cause permeability fluctuations (120→90 mD), reducing gas production to 20,000 m3/d. Within 60–120 days, pressure stabilizes (~7.6 MPa) with residual hydrate saturation < 0.1, leading to stable low permeability (60 mD) and gas production (15,000 m3/d), with cumulative production reaching 2.2 × 106 m3. This study clarifies that productivity is governed by coupled “pressure-driven dissociation–heat limitation–fines migration” mechanisms, providing key insights for optimizing depressurization strategies (e.g., timed heat supplementation, anti-clogging measures) to enhance commercial viability of unconsolidated hydrate reservoirs. Full article
Show Figures

Figure 1

26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 317
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

26 pages, 11154 KiB  
Article
The Pore Structure and Fractal Characteristics of Upper Paleozoic Coal-Bearing Shale Reservoirs in the Yangquan Block, Qinshui Basin
by Jinqing Zhang, Xianqing Li, Xueqing Zhang, Xiaoyan Zou, Yunfeng Yang and Shujuan Kang
Fractal Fract. 2025, 9(7), 467; https://doi.org/10.3390/fractalfract9070467 - 18 Jul 2025
Viewed by 347
Abstract
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were [...] Read more.
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were systematically analyzed through field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, and gas adsorption experiments to characterize pore structures and calculate multi-scale fractal dimensions (D1D5). Key findings reveal that reservoir pores are predominantly composed of macropores generated by brittle fracturing and interlayer pores within clay minerals, with residual organic pores exhibiting low proportions. Macropores dominate the total pore volume, while mesopores primarily contribute to the specific surface area. Fractal dimension D1 shows a significant positive correlation with clay mineral content, highlighting the role of diagenetic modification in enhancing the complexity of interlayer pores. D2 is strongly correlated with the quartz content, indicating that brittle fracturing serves as a key driver of macropore network complexity. Fractal dimensions D3D5 further unveil the synergistic control of tectonic activity and dissolution on the spatial distribution of pore-fracture systems. Notably, during the overmature stage, the collapse of organic pores suppresses mesopore complexity, whereas inorganic diagenetic processes (e.g., quartz cementation and tectonic fracturing) significantly amplify the heterogeneity of macropores and fractures. These findings provide multi-scale fractal theoretical insights for evaluating coal-bearing shale gas reservoirs and offer actionable recommendations for optimizing the exploration and development of Upper Paleozoic coal-bearing shale gas resources in the Yangquan Block of the Qinshui Basin. Full article
Show Figures

Figure 1

15 pages, 2293 KiB  
Article
Preparing and Characterizing Nano Relative Permeability Improver for Low-Permeability Reservoirs
by Bo Li
Processes 2025, 13(7), 2071; https://doi.org/10.3390/pr13072071 - 30 Jun 2025
Viewed by 297
Abstract
Aiming at the problems of insufficient natural productivity and large seepage resistance in low-permeability oil and gas reservoirs, a nano relative permeability improver based on nano SiO2 was developed in this study. The nano relative permeability improver was prepared by the reversed-phase [...] Read more.
Aiming at the problems of insufficient natural productivity and large seepage resistance in low-permeability oil and gas reservoirs, a nano relative permeability improver based on nano SiO2 was developed in this study. The nano relative permeability improver was prepared by the reversed-phase microemulsion method, and the formula was optimized (nano SiO2 5.1%, Span-80 33%, isobutanol 18%, NaCl 2%), so that the minimum median particle size was 4.2 nm, with good injectivity and stability. Performance studies showed that the improvement agent had low surface tension (30–35 mN/m) and interfacial tension (3–8 mN/m) as well as significantly reduced the rock wetting angle (50–84°) and enhanced wettability. In addition, it had good temperature resistance, shear resistance, and acid-alkali resistance, making it suitable for complex environments in low-permeability reservoirs. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

31 pages, 2947 KiB  
Review
Assessing the Interaction Between Geologically Sourced Hydrocarbons and Thermal–Mineral Groundwater: An Overview of Methodologies
by Vasiliki Stavropoulou, Eleni Zagana, Christos Pouliaris and Nerantzis Kazakis
Water 2025, 17(13), 1940; https://doi.org/10.3390/w17131940 - 28 Jun 2025
Viewed by 598
Abstract
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as [...] Read more.
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as dissolution, adsorption, biodegradation, and redox reactions and can also affect groundwater chemistry in terms of pH, redox potential, dissolved organic carbon, and trace element concentrations. Accurate determination and identification of hydrocarbon contaminants requires advanced analytical methods like gas chromatography, GC–MS, and fluorescence spectroscopy, complemented with isotopic analysis and microbial tracers, which provide insights into sources of contamination and biodegradation pathways. The presence of hydrocarbons in groundwater is a matter of environmental concern but can also valuable data for petroleum exploration, tracing subsurface reservoirs and seepage pathways. This paper refers to the basic need for geochemical investigations combined with advanced detection techniques for successful regulation of thermal–mineral groundwater quality. This contributes towards successful sustainable hydrocarbon resource exploration and water resource conservation, with emphasis on the relationship between groundwater quality and hydrocarbon exploration. The study points out the significance of continuous observation of thermal mineral waters to identify their connection with the specific hydrocarbons of each study area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 1710 KiB  
Article
On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking
by Jie Zheng, Linfan Chen, Gun Huang, Jun Wang and Weile Geng
Appl. Sci. 2025, 15(13), 7167; https://doi.org/10.3390/app15137167 - 25 Jun 2025
Viewed by 234
Abstract
Coal and gas outburst remains a critical and persistent challenge in coal extraction, posing a profound threat for mine safety. The underlying mechanisms of such disaster, particularly the gas-driven coal fragmentation, continue to elude comprehensive understanding. To explore this problem, in this paper, [...] Read more.
Coal and gas outburst remains a critical and persistent challenge in coal extraction, posing a profound threat for mine safety. The underlying mechanisms of such disaster, particularly the gas-driven coal fragmentation, continue to elude comprehensive understanding. To explore this problem, in this paper, gas seepage regularity in different structural bituminous coal and its influence on outburst-coal breaking were investigated through strength tests, isothermal adsorption tests, and gas seepage tests of stressed coal under various conditions. The results indicated that coal permeability decreased as axial stress, confining pressure, and gas kinetic diameter increased. That meant outburst-induced abrupt stress unloading and coal matrix destabilization changed gas seepage characteristics. As a result, a self-reinforcing cycle effect where outburst-coal breaking and gas seepage are mutually stimulated was formed in a short time period when outbursts initiated, which further promoted outburst-coal breaking and outburst initiation. The findings of this study enhance our understanding of the mechanism of gas participating in coal fragmentation during outbursts, which are significantly conducive to gas disaster prevention, sustainable coal production, and efficient CBM development, further ensuring global energy security. Full article
Show Figures

Figure 1

15 pages, 1918 KiB  
Article
Innovative Application of the Ritz Method to Oil-Gas Seepage Problems: A Novel Variational Approach for Solving Underground Flow Equations
by Xiongzhi Liu, Hao Yang, Lifei Dong, Ming Lei, Jie Han and Hao Kang
Energies 2025, 18(12), 3207; https://doi.org/10.3390/en18123207 - 18 Jun 2025
Viewed by 258
Abstract
State-of-the-art commercial simulators (e.g., Eclipse, CMG) predominantly employ finite difference schemes, which face persistent challenges in modeling strongly nonlinear seepage dynamics. This study explores the application of the Ritz method, grounded in variational theory, to solve underground oil seepage problems in reservoir engineering. [...] Read more.
State-of-the-art commercial simulators (e.g., Eclipse, CMG) predominantly employ finite difference schemes, which face persistent challenges in modeling strongly nonlinear seepage dynamics. This study explores the application of the Ritz method, grounded in variational theory, to solve underground oil seepage problems in reservoir engineering. The research focuses on deriving the variational form of steady-state seepage equations and presents a systematic procedure for solving these equations in finite domains. Using a one-dimensional steady-state seepage problem as a case study (which can effectively represent a wide range of typical flow regimes), the study compares the approximate solutions obtained by the Ritz method (both monomial and binomial forms) with exact solutions. The results demonstrate that the binomial approximate solution achieves high accuracy, with an average deviation of only 0.30% from the exact solution, significantly outperforming the monomial solution. The findings validate the Ritz method as an effective tool for addressing seepage problems and highlight its potential for broader applications in oil and gas reservoir modeling. Full article
Show Figures

Figure 1

21 pages, 2249 KiB  
Article
Multifractal Characterization of Full-Scale Pore Structure in Middle-High-Rank Coal Reservoirs: Implications for Permeability Modeling in Western Guizhou–Eastern Yunnan Basin
by Fangkai Quan, Yanhui Zhang, Wei Lu, Chongtao Wei, Xuguang Dai and Zhengyuan Qin
Processes 2025, 13(6), 1927; https://doi.org/10.3390/pr13061927 - 18 Jun 2025
Viewed by 452
Abstract
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury [...] Read more.
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury intrusion porosimetry (MIP), low-pressure gas adsorption (N2/CO2), and multifractal theory to quantify multiscale pore heterogeneity and its implications for fluid transport. Results reveal weak correlations (R2 < 0.39) between conventional petrophysical parameters (ash yield, volatile matter, porosity) and permeability, underscoring the inadequacy of bulk properties in predicting flow behavior. Full-scale pore characterization identified distinct pore architecture regimes: Laochang block coals exhibit microporous dominance (0.45–0.55 nm) with CO2 adsorption capacities 78% higher than Tucheng samples, while Tucheng coals display enhanced seepage pore development (100–5000 nm), yielding 2.5× greater stage pore volumes. Multifractal analysis demonstrated significant heterogeneity (Δα = 0.98–1.82), with Laochang samples showing superior pore uniformity (D1 = 0.86 vs. 0.82) but inferior connectivity (D2 = 0.69 vs. 0.71). A novel permeability model was developed through multivariate regression, integrating the heterogeneity index (Δα) and effective pore throat diameter (D10), achieving exceptional predictive accuracy. The strong negative correlation between Δα and permeability (R = −0.93) highlights how pore complexity governs flow resistance, while D10’s positive influence (R = 0.72) emphasizes throat size control on fluid migration. This work provides a paradigm shift in coal reservoir evaluation, demonstrating that multiscale fractal heterogeneity, rather than conventional bulk properties, dictates permeability in anisotropic coal systems. The model offers critical insights for optimizing hydraulic fracturing and enhanced coalbed methane recovery in structurally heterogeneous basins. Full article
Show Figures

Figure 1

18 pages, 11001 KiB  
Article
Temperature Prediction Model for Horizontal Shale Gas Wells Considering Stress Sensitivity
by Jianli Liu, Fangqing Wen, Hu Han, Daicheng Peng, Qiao Deng and Dong Yang
Processes 2025, 13(6), 1896; https://doi.org/10.3390/pr13061896 - 15 Jun 2025
Viewed by 474
Abstract
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore [...] Read more.
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore temperature. The model integrates the effects of heat transfer in the temperature field, gas transport in the seepage field, and the mechanical deformation of shale induced by the stress field. The coupled model is solved using the finite difference method. The model was validated against field data from shale gas production, and sensitivity analyses were conducted on seven key parameters related to the stress field. The findings indicate that the stress field exerts an influence on both the wellbore temperature distribution and the total gas production. Neglecting the stress field effects may lead to an overestimation of shale gas production by up to 12.9%. Further analysis reveals that reservoir porosity and Langmuir volume are positively correlated with wellbore temperature, while permeability, Young’s modulus, Langmuir pressure, the coefficient of thermal expansion, and adsorption strain are negatively correlated with wellbore temperature. Full article
Show Figures

Figure 1

13 pages, 3319 KiB  
Article
Field Testing and Seepage Analysis of Multi-Layer Leachate Levels in Landfills with Intermediate Covers: A Case Study
by Wei Shi, Yang Zhang, Yifan Lin, Han Gao and Jiwu Lan
Processes 2025, 13(6), 1889; https://doi.org/10.3390/pr13061889 - 14 Jun 2025
Viewed by 340
Abstract
The distribution of leachate in landfill systems significantly influences landfill stability, pollutant migration, and gas transport. However, existing methods for measuring leachate levels in landfills with multiple intermediate cover layers remain insufficient. This study introduces a novel in situ testing method to determine [...] Read more.
The distribution of leachate in landfill systems significantly influences landfill stability, pollutant migration, and gas transport. However, existing methods for measuring leachate levels in landfills with multiple intermediate cover layers remain insufficient. This study introduces a novel in situ testing method to determine multi-layer leachate levels. Field experiments at a landfill site in northwestern China successfully quantified leachate levels on each intermediate cover layer. Seepage analysis simulated the leachate level recovery test method used in field investigations, enabling examination of the formation mechanisms and drainage characteristics of multi-layer leachate systems. Measurement results demonstrated that each intermediate cover layer retained a corresponding perched leachate level. Variations in perched water head across waste layers arise from differences in drainage capacity between waste strata. Differential settlement of the intermediate cover layers in localized areas generated adverse hydraulic gradients, contributing to spatial heterogeneity in perched leachate distribution. Back analysis yields an in situ saturated hydraulic conductivity ranging from 1 × 10−4 to 3.3 × 10−3 cm/s. Low-permeability intermediate cover layers were identified as the primary factors contributing to multi-layer leachate formation. The implementation of effective horizontal drainage can reduce perched leachate accumulation above intermediate layers. Full article
Show Figures

Figure 1

22 pages, 4926 KiB  
Article
Study on Air Injection to Enhance Coalbed Gas Extraction
by Yongpeng Fan, Longyong Shu, Xin Song and Haoran Gong
Processes 2025, 13(6), 1882; https://doi.org/10.3390/pr13061882 - 13 Jun 2025
Viewed by 292
Abstract
Gas extraction is an important means to reduce coalbed gas and ensure safe coal production. Injecting N2/CO2 into a coalbed can enhance coal seam gas extraction, but problems with N2/CO2 sources underground have prevented the wide application [...] Read more.
Gas extraction is an important means to reduce coalbed gas and ensure safe coal production. Injecting N2/CO2 into a coalbed can enhance coal seam gas extraction, but problems with N2/CO2 sources underground have prevented the wide application of this technology in coal mines. The air contains a large amount of N2, but only a few studies have investigated the injection of air into coalbeds to facilitate gas extraction. In this study, a thermal–hydraulic–solid coupling model for air-enhanced coalbed gas extraction (Air-ECGE) was established. Additionally, the impact of air injection on coalbed methane extraction was simulated, and field experiments were conducted on air injection to enhance gas extraction. The results showed that injecting high-pressure air into a coalbed can effectively facilitate gas desorption and gas migration within the coalbed, greatly improving the efficiency of gas extraction in the coalbed. In addition, owing to the large pressure gradient that can lead to fast coalbed gas seepage, the gas production rate of the extraction borehole is directly proportional to the gas injection pressure. Further, the spacing of the boreholes limits the influence range of the gas injection: the larger the spacing, the larger the influence range, and the higher the gas extraction rate of the extraction borehole. After injecting air into the coalbed of the Liuzhuang coal mine, the extraction flow rate and concentration of gas from the extraction boreholes both increased significantly. A certain delay effect was also observed in the gas injection effect, and the gas extraction flow rate only decreased after a period of time after the gas injection had stopped. Full article
Show Figures

Figure 1

21 pages, 5124 KiB  
Article
Full-Scale Pore Structure and Gas Adsorption Characteristics of the Medium-Rank Coals from Qinshui Basin, North China
by Yingchun Hu, Shan He, Feng Qiu, Yidong Cai, Haipeng Wei and Bin Li
Processes 2025, 13(6), 1862; https://doi.org/10.3390/pr13061862 - 12 Jun 2025
Viewed by 531
Abstract
To elucidate the gas adsorption characteristics of medium-rank coal, this study collected samples from fresh mining faces in the Qinshui Basin. A series of experiments were conducted, including low-temperature carbon dioxide adsorption, low-temperature liquid nitrogen adsorption, mercury intrusion, and methane isothermal adsorption experiments, [...] Read more.
To elucidate the gas adsorption characteristics of medium-rank coal, this study collected samples from fresh mining faces in the Qinshui Basin. A series of experiments were conducted, including low-temperature carbon dioxide adsorption, low-temperature liquid nitrogen adsorption, mercury intrusion, and methane isothermal adsorption experiments, which clarify the pore structure characteristics of medium-rank coals, reveal the gas adsorption behavior in medium-rank coal, and identify the control mechanism. The results demonstrate that the modified Dubinin–Radushkevich (D-R) isothermal adsorption model accurately describes the gas adsorption in medium-rank coal, with fitting errors remaining below 1%. Comprehensive pore structure analysis reveals that the coal pore volume consists primarily of absorption pores (<2 nm), transitional pores (10–100 nm), and seepage pores (>100 nm), while the specific surface area is predominantly contributed by absorption pores (<2 nm). At low pressures, gas molecules form monolayer adsorption on absorption pore (<2 nm) and adsorption pore (2–10 nm) surfaces. With increasing pressure, multilayer adsorption dominates. As pore filling approaches the maximum capacity, the adsorption rate decreases progressively until reaching an equilibrium, at which point the adsorption capacity attains its saturation limit. The adsorption data of the gas in medium-rank coal can be explained by the improved D-R isothermal adsorption model. The priority of gas filling in pores is different, and the absorption pore is normally better than the adsorption pore. The results provide a new idea and understanding for the further study of the coalbed gas adsorption mechanism. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 4770 KiB  
Article
In-Depth Analysis of Shut-In Time Using Post-Fracturing Flowback Fluid Data—Shale of the Longmaxi Formation in the Luzhou Basin and Weiyuan Basin of China as an Example
by Lingdong Li, Xinqun Ye, Zehao Lyu, Xiaoning Zhang, Wenhua Yu, Tianhao Huang, Xinxin Yu and Wenhai Yu
Processes 2025, 13(6), 1832; https://doi.org/10.3390/pr13061832 - 10 Jun 2025
Viewed by 457
Abstract
The development of shale gas relies on hydraulic fracturing technology and requires the injection of a large amount of fracturing fluid. The well shut-off period after fracturing can promote water infiltration and suction. Optimizing the well shut-off time is crucial for enhancing the [...] Read more.
The development of shale gas relies on hydraulic fracturing technology and requires the injection of a large amount of fracturing fluid. The well shut-off period after fracturing can promote water infiltration and suction. Optimizing the well shut-off time is crucial for enhancing the recovery rate. Among existing methods, the dimensionless time model is widely used, but it has limitations because it does not represent the length of on-site scale features. In this study, we focused on the shut-in time for a deep shale gas well (Lu-A) in Luzhou and a medium-deep shale gas well (Wei-B) in Weiyuan. By integrating the spontaneous seepage and aspiration experiments in the laboratory and the post-pressure backflow data (including mineralization degree, liquid volume recovery rate, etc.), a multi-scale well shutdown time prediction model considering the characteristic length was established. The experimental results show that the spontaneous resorption characteristic times of Lu-A and Wei-B are 3 h and 22 h, respectively. Based on the inversion of crack monitoring data, the key parameters such as the weighted average crack width (1.73/1.30 mm) and crack spacing (0.20/0.32 m) of Lu-A and Wei-B were obtained. Through the scale upgrade calculation of the feature length (0.10/0.16 m), the system determined that the optimal well shutdown times for the two wells were 14.5 days and 16.7 days, respectively. The optimization method based on a multi-parameter analysis of backflow fluid proposed in this study not only solves the limitations of the traditional dimensionless time model in characterizing the feature length but also provides a theoretical basis for the formulation of the well shutdown system and nozzle control strategy of shale gas wells. Full article
Show Figures

Figure 1

25 pages, 10227 KiB  
Article
Integrating Stochastic Geological Modeling and Injection–Production Optimization in Aquifer Underground Gas Storage: A Case Study of the Qianjiang Basin
by Yifan Xu, Zhixue Sun, Wei Chen, Beibei Yu, Jiqin Liu, Zhongxin Ren, Yueying Wang, Chenyao Guo, Ruidong Wu and Yufeng Jiang
Processes 2025, 13(6), 1728; https://doi.org/10.3390/pr13061728 - 31 May 2025
Viewed by 467
Abstract
Addressing the critical challenges of sealing integrity and operational optimization in aquifer gas storage (AGS), this study focuses on a block within the Qianjiang Basin to systematically investigate geological modeling and injection–production strategies. Utilizing 3D seismic interpretation, drilling, and logging data, a stochastic [...] Read more.
Addressing the critical challenges of sealing integrity and operational optimization in aquifer gas storage (AGS), this study focuses on a block within the Qianjiang Basin to systematically investigate geological modeling and injection–production strategies. Utilizing 3D seismic interpretation, drilling, and logging data, a stochastic geological modeling approach was employed to construct a high-resolution 3D reservoir model, elucidating the distribution of reservoir properties and trap configurations. Numerical simulations optimized the gas storage parameters, yielding an injection rate of 160 MMSCF/day (40 MMSCF/well/day) over 6-month-long hot seasons and a production rate of 175 MMSCF/day during 5-month-long cold seasons. Interval theory was innovatively applied to assess fault stability under parameter uncertainty, determining a maximum safe operating pressure of 23.5 MPa—12.3% lower than conventional deterministic results. The non-probabilistic reliability analysis of caprock integrity showed a maximum 11.1% deviation from Monte Carlo simulations, validating the method’s robustness. These findings establish a quantitative framework for site selection, sealing system evaluation, and operational parameter design in AGS projects, offering critical insights to ensure safe and efficient gas storage operations. This work bridges theoretical modeling with practical engineering applications, providing actionable guidelines for large-scale AGS deployment. Full article
Show Figures

Figure 1

Back to TopTop